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SUMS OF VECTORS AND TURAN’S GRAPH PROBLEM

G.0.H. KATONA
Mathematical Institute, Redltanoda 13-15, 1053 Budapest, Hungary

1. Introduction

Let X be a Hilbert space and 0=m =< n integers. If a,,...,a, € X, then
N,(ai,...,a,) denotes the number of sets A ={i,,..., i}, |A|= g such that

g
B

ji=1

=

=1.

Finally, let us consider the minimum
N (X,n,m)=min N, (a,,..., a,),

where the minimum is taken over all the sequences ai,...,a., |a|=1
(I<ism).|a|<1 (m<i<n); n and m are fixed.

The aim of this paper is to investigate the values N.(X, n, m) and Ni(X, n, m).
It is, following the author’s talk in Marseille, a version of [6], with less proofs, but
giving a wider view of the subject.

2. Vectors and graphs

Theorem 1 ([3)). If X is a Hilbert space of at least two dimensions then
N?(X,n,m):l(m,)—l):‘.

Proof. It is easy to see that for any three vectors a,, a., a, satisfying | a, ||, || a.||,
[a:|=1 there is a pair i# j with |la + a;||= 1. It is enough to verify this for 3
dimensions. Then it follows for any Hilbert space as the 3 vectors span a
3-dimensional subspace.

Suppose ay, ..., a, satisfy the condition ||a||=1 (1 <i < m). Define a graph
G = (X, E) on the vertex-set X ={a,, ..., a,}. The unoriented edge {a:, a;} is in
E iff |a, + a;||= 1. By the above remark, any 3 vertices of G span at least one
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edge, that is, G contains no spanned empty triangle. So we can use the following
special case of Turan’s theorem [12]:

If a graph on m vertices contains no spanned empty triangle then the number of
edges is at least |((m —1)/2)].

Therefore,

Ni(a,,...,a,)= Ni(a,,...,a.)= l(mT—l) J ,

that is,

Na(X, n,m)= l('"T_l)J .

The following construction proves the equality. X is not one-dimensional,
consequently there are two orthogonal vectors e and f in X with lengths
||e”=0_99, ”f“=02 Put A= =Amp=€—f, Qe ="' =Qp =
—e—f and a,.=---=a,=f Here, [2f[=](e—f)+(—e-f)=04,
e =)+ fII=II(—e —f)+ | =0.99 hold, hence |a; + a;||=1 occurs iff either
I<i, j=<[m/2] or |m/2| <i, j<m. The number of these pairs is really
[(m —1)/2)°. The proof is complete.

It is interesting that the one-dimensional X needs somewhat more complex
tools.

Lemma 1 [4]. If the graph G = (X, U X5, E)(X, N X> =0, | X\| = ny, | Xs| = n,)
contains no empty triangle spanned by at least two vertices from X, then

[(n;+nl)2_2nf—2n3+lJ if n, < n,,
4

E] -
(Z) if n,= n,.

Unlike in the higher-dimensional case, here the sums a; + a;, || a:||= 1, || a; || < 1
should also be considered. In the optimal case they are not all smaller than 1.
The above lemma makes us able to use these sums, too. The following theorem
follows by a proof similar to that of Theorem 1.

Theorem 2 ([7]). If X is the real line then

[—n3—2m2+4nm—2m+1j tfnSZm
4 >
Ng(X,n,m) =

(';) if n=2m.
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There is a more general question considered in the literature. The following
notation is needed for posing it:

N, (X,¢,n,m)=min N, (a,,...,a,),

where 0<c¢ <o, 0<m <n and the minimum is taken over all the sequences
ai,....a., |a]=c I<sism), |a|<c (m<i<n). Ny(X,c,n,m) is fully
determined in [7] for Hilbert spaces of dimension 1, 2 or . Lemmas like Lemma
1 are used in the proofs. Sidorenko [10] has considered linear normed spaces.

The problems concerning two-sums led to graph problems. Similarly, the
three-sums lead to three-graphs. This makes these problems much harder since
very little is known about three-graphs. Like before, we need some geometry in
order to be able to use graph theory.

Lemma 2. Ifa,...,a,€ Xand ||a.|=1(1<i<4)then, forsomei# j# k# i,

a+a+al=1.
Let T(m,4,3) denote the minimum number of edges of a 3-graph (no loops, no
multiple edges) on m vertices satisfying the condition that
any 4-set of vertices contains at least one 3-edge. (1)
Using the idea of the proof of Theorem 1, one can prove [9]
Ni(X,n,m)= T(m,4,3). 2)

However, this is not sharp enough. According to the famous conjecture of Turan

lim T(m,4,3)/(’3")=%,

but only results like [8]

T(m.4,3)/(§1)21% (m

are proved. This gives

\
&

Ny(X.n,m)=5 (':f) (m =8). 3)

First we show that even the order of magnitude of (3) is too small when m is
small in comparison to n. The reason is, again, that we did not use the sums with
small components in (2). We can use them on the basis of the following.

Lemma 3 ([6]). Suppose a\, a-, a:, b,, b€ X, ||a:||=1 (1<i=<3). Then either
there exist indices 1<i<j=<3 and 1<k <2 such that

la.+a +b]=1,
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or,
lla + b, +b.)=1

holds for some i (1<i<3).

The combinatorial tool which we use is a lemma about 3-graphs with two
different classes of vertices. Its suppositions are clear from Lemma 3.

Lemma 4 ([6]). Let G = (V,E) be a 3-graph (no loops, no multiple edges) where
V=V UV, VinV,=0,|V|=n,|V.|=n.<2n,—1 and E contains an edge
either of the form {x, x;,y.} (1<i<j<3, 1<k =<2) or of the form {x.,y,, y.}
(1=i=3) for any choice of x,,x.,x;€ V, and y,, y. € V. Then,

el (3]

By Lemmas 3 and 4 we can easily prove the following.

Theorem 3
N(X,n,m)=(n — m) ('2")+(';‘) .

For n = m the order of magnitude of (3) is, of course, correct. However, the
constant is too small. We conjecture [6]

N,(X,n,n):(g)—[%ﬂ(["fj). )

The right-hand side of (4) can be realized with a, = e (1<i < [2nr/3]), a. = —2e
([2n/3] <i=n) where e is an arbitrarily chosen vector of length 1. Eq. (4) is
about 3(3). Eq. (3) gives (%) and the Turdn conjecture would give i(5). That is,
condition (1) is not strong enough. In [6] it is proved for the one-dimensional X
that there are no 5-vectors @, € X, |a;|= 1 (1 <i < 5)such that |a, + a>+ a;| =1,
|a,+a.+as|=1 and |a:+ a,+as| =1, but all the other 7 combinations give a
sum with length < 1. (This statement is probably true for any X.) Hence we have
the following condition for our 3-graphs (defined by |a; + a; + a. | = 1):

There are no 5 vertices x;, xo,..., Xs spanning

the graph ({x,,..., xs}, {{xhx;,x;}, {%05 %5, %3}, { %0, 245 %3} )

If we denote by h(n) the minimum number of 3-edges of a 3-graph on n vertices
satisfying (1) and (5) then a combination of [6] and [1] proves

h(n)= (49) (';) (n=8).
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Consequently, the same is true for N:(X, n,n). However, we conjecture [6]

h(n)
(5)

In [6] a further condition is given which excludes another spanned subgraph
on 5 vertices and which can be imposed on the basis of some easy geometrical
lemma. We conjecture that under this condition + (1) + (5), the number of
edges cannot be smaller than the right-hand side of (4).

lim =4-2V3=0.5358984... .

3. Connections with probability theory

Let £ and n be independent identically distributed random vectors taking on
the values a,,...,a, € X with equal probabilities where |la||=x (1<i<m),
la:||<x (m <i=<n). Then at least N.(X, n, m) pairs i # j satisty ||a; + a,|| = x
and ||a; + a:||> x holds for 1 <i < m. Therefore

IN(X,n,m)+m

P(le + = x)= = (©)

The inequality
2N(X.n,m)+m_(m’—2m)+m _, (m)l 7
n? = n: 2 n ()

follows from Theorem 1. However, m/n = P(||¢[| = x). By (6) and (7) we proved
3]
P(|&+nll=x) =P (|| £]|= x). (8)

However, if £ and 7 are (independent and identically distributed) arbitrary
random vectors then we need a ‘continuous’ variant of Thecrem 1, that is, of
Turan’s theorem, where ‘number of’ (vertices, edges) is substituted by ‘measure
of’. This is worked out in [5] and independently in [2]. Consequently (8) can be
proved for such general random vectors too [4].

Theorem 2 similarly implies

L—(1-P(|&|=x)) if P(¢]=x)=1
P(|é+n]=x)=

P(|£é]=x) otherwise.

It is interesting to mention that these inequalities are improvable. Simple
constructions give equality in them. Lower estimations of P(|[£ + n|= x) by use
of P(||¢]|= ex) are worked out in [7] and [10].
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The probabilistic version of Theorem 3 is
Pl + &+ &= x)=P(| &.]|= x) (1 - P(| £.]| = x),
while our efforts concerning Nx(X, n, n) can be formulated in the form
P(|6+ &+ &ll= x| &)= x| & |&)= x)= cP(| &)= x),

where ¢ = 5/14 is proved for any X, ¢ = 4/9 is proved for the real X, and ¢ =5/9
is conjectured.
Interested readers can find more about the geometrical tools in [11]. T also

would like to draw attention to the forthcoming paper (or papers) of Sidorenko
[10].

= X,
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