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1. Introduction

Let ¢ and 5 be independent and identically distributed random variables
taking values in a Hilbert-space X. The aim of the paper is to give lower
estimations on the probability P(||E+p|=x) in terms of the quantity
P(||¢]|z cx) where O0<c is a fixed constant. More precisely, we are looking for
a function f satisfying

P(lE+nllzx)2 f(P(IEIl Z cx)). (h

We say that f (or the estimate) is the best possible if for any x>0 and any
value of P(||[|Zcx) there is a pair & 5 with equality in (1).

Inequalities of this type can be proved for one dimensional x with the
classical methods (convolution).

Higher dimensions need, however, another technique. The elements of this
technique can be found in [3], where

P(IE+nllZx)Z3P2(I€] 2 x) 2

is proved for any Hilbert-space (with a technical side-condition which turned
out to be unnecessary). (2) is best possible if the dimension is at least 2.

The idea of the method of [3] is the following. We associate an oriented
graph G =(X, E) to the random variables, where x is the space and the set E of
edges consists of the pairs (a.b) satisfying |a+b||=x, where X is a fixed
positive real. By some geometry, certain conditions can be imposed on this
graph. As P(||E+#| =x) is the measure of E, we obtain a lower estimation
minimizing the measure of edges under the conditions obtained for the
graph. That is, we have to solve some extremal graph-problems for a “con-
tinuous™ vertex set. The analogous minimization problems for a finite number
of vertices are either solved or easier treatable. Thus, we start with the finite
case and then we take the “continuous” version of it. This method is more or
less developed in [4], but it did not work smoothly enough in the form
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presented there. The reason is that the question “when does the continuous
version follow the finite extremal graph theorem?” was not completely an-
swered in [4]. Since then [5] has settled this question by more appropriate
definitions and theorems. In the present paper these improved results will be
used. On the other hand, the aim of [4] was to show the method with
kaleidoscopic results, only. The aim of the present paper, in contrary to [4], is
to go deeper and to determine the best lower estimate of P(|<+#|=x) in terms
of P(|¢]=c¢x) for any ¢>0.

Section 2 lists the theorems, Sects. 3 and 4 contain the geometrical lemmas
and finite graph-results, respectively, Sect. 5 gives the “continuous™ versions
and Sect. 6 proves the theorems. Finally, the last section mentiones some
further questions.

2. Results

Theorem 1. If X is an infinite dimensional Hilbert-space, & and n are X-valued
iid. random variables, then the best possible functions f in the inequality
P(|E+n||Z2x)=f(P(|¢]| = cx)) are the following ones:

: 1/2 if p=1/3,
= o )< o . 2]
J(p) {Zp—;pz otherwise, when 5/2<c¢<o0; (3)
. 1/2 if p=1/2, ‘
I (p)= { v e ' when < e (4)
2p(1—p) otherwise,
—1242p—p*  if p=1j2 . _‘
= ' : 2<c<3/2; 5
S (p) {Pz otherwise. when 1/5/2=c¢<3/2; (3)
ok 1o Vs
f(p)=%p> when 1 g(-<7; (6)
1 k—1 k—2
: e D S oS e~ - w2 . 7
f(p) Py when Sk ):c< 3E—3) (4<k<w); (7)
f(p)=0 when 0<c= 1/']/5 (see Fig. 1) (8)

Remarks 1. Only (7) is known from these estimates (see [4]).

2. In our theorems we implicitely suppose that {||£+ 5] =x} is measurable
in the product space. This automatically holds when X is a separable Hilbert
space.

The fact that these estimates are sharp show that our method, using
extremal graph theory, cannot be too artificial.

For finite dimensional (Euclidean) space we cannot expect such a “perfect”
theorem. The reason is that the following question of geometry is unsolved in
general: Determine

e, (d)=sup min (angle between a; and a)), )

1<i<jsk
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f(x)

(3)

(4)

(5)

(6)

413

(7
(7)

®

where a; (1 Si<k) are vectors of length 1 in the d-dimensional Euclidean space.
In terms of these numbers, best estimates can be obtained, again:

Theorem 2. If X is a d-dimensional (d=2), Euclidean space, ¢ and n are X-
valued i.id. random variables, then the following estimates are best possible:

(3) when
(4) when

(5) when

(6) when

(7) when

(8) when

5/2= o< oo,

32<¢<5/2,
]/_/2 <e<3/2,
/3

[Se<—,
Se<

1

@=cs
e, |G
08—~ 2 cos

O<es1/2.

)
2

(d=k<o);

Some known values of e,(d) can be found in [4]. In paper [4] only the case
(7) is formulated in some special cases.
Let us formulate the case d =1 separately:

Theorem 3. If ¢ and n are i.id. real-valued random variables, then the following
lower estimates of P(|¢+n|=x) are best possible:

(3) when

(4) when

52=Zc<o0;

32=5¢<5/2;
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(5) when 1=Z¢<3/2;
(6) when 1/2Zc¢<1;

(8) when 0<c<1/2.

3. Some Trivial Geometry

Lemma 3.1. If a,,...,a, are vectors of length at least 1 in a Hilbert-space then
there is a pair i#j satisfying.

2(k—2)

H“i"‘%“g K—1

This is a special case of Lemma 5 of [4].
Lemma 3.2. If a,, a,, a, are vectors in a Hilbert-space and |a,|| =1, then there
is a pair i=j, satisfying
lla; +a;ll = 2/3. (10)

Proof. The statement follows from the triangle inequality.

Lemma 3.3. If a,, a,, a, are vectors in a Hilbert-space and |a,]|, |la2|Lg]ﬁ/2,
then there is a pair i=j satisfying

lay+a;l = 1.

Proof. If ||a, +a,| <1, then cosa< —3/5 holds for their angle « (0=<a<m). The
smaller angle  (0<f<m) from the other two ones (say the angle of a, and a,)
2n—o

. Hence

. 1
cos f=cos(m—a/2)= w@> _1/5,

la, +asl =V lla, 1>+ a2 +2 lla, || la; | cos B

>V lay 1P+ lag |2 =2, | a3 V/1/5.
The minimum of the two-variable function x?+y?—2xy}/1/5 in the domain

x;ﬁ

3 ,y=20is 1. |la, +a,| =1 follows.

satisfies =

that is,

Lemma 3.4. If a,, a,, ay, a, are vectors in a Hilbert-space and ||a,||=5/2 |a,
+al <1, Jay+as <1, lay+a] <1, then |la+a,) 2 1.

Proof. | a,| ;]Halﬂ = ||lay —|—a2|l| >5/2—1=3/2 follows from the triangle in-
equality. Now Lemma 3.2 implies that one of the vectors a,+as, a,+a,, a;
+a, is of length at least 1. By the conditions, this vector must be a5 +a,.
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4. Two-Part Turdn Type Theorems for Graphs

Let us start with the well-known

Turan Theorem [9]. Suppose that an undirected (no loops, no multiple edges)
graph G=(X,E) on n=|X| vertices contains no empty k-set, that is, for any k
vertices there is at least one edge in E among them. Then the number of edges is

at least
r(q;1)+(k—l—r)(g), (11)

where n=(k—1)g+r (0=2r=<k—1) and the only optimal graph is the following
one: take k—1 disjoint complete graphs with q+1,...,q+1, q, ..., q vertices (the
number of g+ 1’s is r).

If YeX then the subgraph G,=(Y,E') induced by Y from G=(X,E) is
defined by E'={{x,y}:x,yeY, {x,y}eE}. The condition of the above theorem
can be formulated that the subgraphs of G induced by 3 different vertices are
not empty.

We need some extensions of the case k=3. Some of them are formulated
and proved in [4]. To save place for better papers we repeat only one of them.

—1\2
Observe that in the case k=3 (11) is l(nT) J (Lx] denotes the largest integer
= X).

Lemma 4.1. (Lemma 1| of [4]). If the undirected graph G=(X,E) (X=X,0X,,
X, nX,=0, |X,|=n,, |X,|=n,, n,+n,=n) contains no empty triangle with
exactly one vertex from X, then

1
nlnz—(“‘z+ ) if n,<n,
|El= (12)

(”22) if n,=n,.

Remark. We need the lemma in a slightly stronger way. Namely, (12) holds if E
denotes the set of edges within X, and between X, and X,. This follows
easily. If G satisfies the condition of the lemma, then omitting all the edges
within X, the new graph G’ still satisfies this condition. Thus, the lemma can
be applied for G".

Lemma 4.2. Suppose that the undirected graph G=(X,E) (X, 0 X,=X,X,nX,
=0, |X,|=n,, |X,|=n,, n, +n,=n) satisfies the following properties

it contains no empty triangle with at least
one vertex from X, (13)

all vertices of an empty triangle in X | are
connected with all vertices in X ,. (14)
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B l(”gl)zJ if n,<2n,+2
|E|2g(n,.n,)= .

a2
nli12+[(nzz I)J if n,=2n,+2.

Then

Proof. We use induction on n, with fixed n,. If n, <n, then (13) and Lemma 3
of [4] imply the desired result. Therefore suppose 1, >n, and (15) is proved for
smaller values of n,.

Let G(X,E) be a graph satisfying the conditions (13) and (14). The union of
the empty triangles (3-element sets) is denoted by Y. Put j=|X, —Y|. Here, of

course, 0=j=n,. The following two cases will be distinguished: 1) jg%, 2)
.o

<—.
J 3

1) Take the partition Y, (X, —Y)uX, of X. There is no empty triangle

with at least one vertex from (X, —Y)u X ,. This follows from (13) if one vertex
from the triangle is in X,, and from the definition of Y, otherwise. Con-
sequently, Lemma 3 of [4] can be applied for this partition. Sincejgn?l implies
n, —j<n,+j, the first case of the lemma applies:

oz

2) By (14) and the definition of Y there are n,(n, —j) edges between Y and
X
The triangles having two vertices from Y and one vertex from X, —Y can
not be empty. The stronger version of Lemma 4.1. (see remark) can be applied

for the partition Y, X, —Y of X,. Namely, the first row of (14), as j<%,

implies j<n, —j. So, the number of edges of G within Y and between Y and
. i+ 1

X, —Y is at least j(n, —j)— (j 5 )

Finally, the number of edges in the graph induced from G by (X, —Y)u X,
is at least g(j, n,) by the inductional hypothesis. Altogether:

i1
|E|2 ny(n, —i) 4, —f)— (’; )+gu;nz)- (17)

It means that either (16) is valid for E or (17) with some O§j<n—1. All we
have to show that the right hand sides of (16) and (17) are =g(n,,n,).
Start with (16). The case n, <2n,+2 is trivial. Suppose that n, =2n, +2.

(2 e | 557
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should be proved. It is sufficient to show this without the sings | |. This latter
inequality is equivalent to the condition n, =2n,+2.
In case of (17) we have to prove

j+1
mn—p+itn -~ () vetm)zemm)  (0si<T). a8)

Cases will be distinguished:
a) n, £2n,+2. This inequality and j<”71 imply j<2n,+2, that is, the first

row of (15) should be considered in both cases g(n,,n,) and g(j,n,). (18)
obtains the form

O G TS M LR

Omitting the signs | |, again, we obtain the inequality
—ni42n,n,+4n,j—2n,j+2n,—5j>—4;=0.
The coefficient of n, is 2n, —2j, consequently the quantity is not increased by

= s
taking the minimal value of n,: n2=”—]2—. The reduced inequality is

3n, j—5j2-2j=0.

This follows from 0§j<-}~121,

b) n,=z2n,+2.
ba) j=2n,+2.
(18) is now of the form

nz(n,ﬁf)fi(”lj)*(j;1)+1”2+l(,lzz‘l)ng”‘nl+l(n:£2_l)2J'

This can be reduced by the above method for

3j7
nj———=z=0.
1) P =
s n .
This follows from the supposition 0§j<71, again.

bb) j=2n,+2.
In this case we have to prove

=it == (54 | 27 [z | (20 |
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This can be reduced for

4n, z2n,+5j+4.

This inequality easily follows from the conditions n, =2n,+2, 0§j<%1.

5. Continuous Versions

In [5], we have proved some theorems giving a tool for making the continuous
versions of discrete statements. E.g. from Lemma2 of [5] and the Turan
theorem one can deduce the

Continuous Turdn Theorem. Let (X, 0, P) be a probability space G=(X,D) a
symmetric measurable graph (i.e. D=X? is measurable and (x,y)eD implies
(v, x)eD). Suppose that it contains all the loops (x,x) and Gy is non-empty for
any k-element Y then

1
P(D)z——-. 20
(D)2 (20
Hint for Proof. The right hand side of (20) is the limit of the ratio “(11) divided
by n?/2.”
Similarly, Theorem 3 of [5], Lemmas 3, 2 of [4] and Lemma 4.2 of the
present paper imply the next lemmas.

Lemma 5.1. Let (X,0,P) be a probability space, X=X,0X, (X,nX,=0) a
partition of X, X, measurable, G=(X,D) a symmetric, measurable graph with
the following properties

1) If |Y|=3,|YnX,|=1 then Gy is not empty;

2) contains all the loops in X, ;

3) For x,eX,, x,eX, either (x,,x,)€D or (x,,x,)eD. Then

1/2 if P(X,)<1/2

2P(X)(I—P(X))  if P(X)2172. =

P(D)z{

Lemma 5.2. Let (X,0,P) be a probability space, X=X, 0X, (X,nX,=0) a
partition of X, X, measurable, G=(X,D) a symmetric, measurable graph with
the following properties:

1) Gy is not empty whenever |Y|=3, |YnX,|=2;

2) G contains all the loops in X ,. Then

1/2—=P(X,)* if P(X)<1)2

P(X,)? i P(X 2172 =)

P(D)é{

Lemma 5.3. Let (X,0,P) be a probability space, X=X, 0X, (X,nX,=0) a
partition of X, X, measurable, G=(X,D) a symmetric, measurable graph with
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the following properties:

1) (13),

2) (14),

3) G contains all the loops in X ,;

4) if (x,,x3)¢D (x,,x3€X,) then x, and x, are connected with all elements
of X,. Then

12 if P(X,)=1/3

P(D)g{zp(xl)P(sz1/2P(Xz)2 i PX,)21/3.

(23)

6. Proofs of the Main Result

Proof of Theorem 1. First we prove the estimates. The constructions showing
that they are sharp will follow later.

(8) is trivial.

Fix the real number x>0 and put

]/ k—1
X, ,=<a: = :
o {a aeX, |la| = 2k=2) x}

The graph G=(X,,D) is defined by D={(a,b): |la+b| =x}. It is obvious that
(a,a)eD and that (a,b)eD iff (b,a)eD. That is, G=(X,. D) is a symmetric graph
containing all the loops. The measurability of the graph is our implicite
supposition. Lemma 3.1 shows that G, contains at least one edge for any Y
with |Y|=k. The continuous Turan theorem can be applied for the probability
space (X, 0/X o P(X "X )/P(X,)):

P(E+nlzx)

P (1212 2:‘k__12)x)=k_l'

] [ k—1 ;
(7) is proved for ¢= 2k=2)° Increasing ¢, P(||¢|| =c¢x) does not increase, thus

(7) is proved for k=4. For k=3, we obtain (6) for any c=1.

Fix the real number x>0 and put X, =<a:aeX, |a] <K2§x , Xa=X—-X,.
The graph G=(X, D) is defined by D={(a,b): |a+b| =x}. It is obvious that G
is symmetric and it contains all the loops in X,. Condition 1) of Lemma 5.2
follows from Lemma 3.3. Inequality (5) follows by Lemma 5.2.

Inequality (4) follows in the same way using X, ={a:a€X, |la| <3/2}, X,
=X—X,, Lemmas 5.1 and 3.2.

Finally, inequality (3) can be obtained by X, ={a:aeX,|ja| <5/2}, X,=X
—X,, and Lemmas 5.3 and 3.4.
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Constructions. Put k=4 and suppose that

k=1 _ 1/ k=2
2—2)= "V 2tk=3)°

Let the vectors s,...,s,_, of length ¢x form a (k—2)-dimensional regular
simplex. Define ¢ with P(é=si):k—f1(1§i§k—l), P(E=0)=1—p for any
fixed p(O=p<1). It is obvious that P(||¢|=cx)=p we have to prove P(|¢
pZI’ only. However, |s;+0[|=cx<x, Is;+s;] = 255_2)

(i#)) and ||2s;| =2¢x>x easily hold. \|q+i1|\>x is true iff =n=s, for some i

+illzx)=

cx<Xx

(1=i<k—1). The probability of this is really —— k (7) can not be improved.

: 1 .
The above construction works for ¢<—— at a fixed x and p with any k. So
2

2

p
k—1
infinity. Thus (8) can not be improved, either.

Let v and e be vectors in X with the properties ||v]|=|¢| =1, ve=0. Let ¢
be defined by

P(q“:%cx):P(i 1”/452/26 )_g, P(¢=_1;§CX)=1_F’

where p is a fixed real 0<p<1. If 1 §c<]ﬁ/2 then

P(|¢+n=x) can be chosen to be . This tends to 0 when k tends to

+v+e/2
V52

thus P(||¢|| = c¢x)=p is trivial.
On the other hand,

-cX L ex,

e
=c¢x and ” ——cXx

/s

H +b+e/2 —v+e/2 l
X+ exll<x,
V512 V5/2
H +v+e/2

Vi s

<x hold, consequently |[é+n||=x iff E=pn=

cx||<x

+v+e/2

V5/2

and cx. That is,

’2%(‘)(

2
P(lE+1| g::):% as desired. (6) cannot be improved.

For the case of (5) we need two constructions. Suppose that 1/2<p<1, then
define £ by P(é=cvx)=1/2, P((=—cvx)=p—1/2, P((=—-(E—e)vx)=1—p,
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where v is a fixed vector of length 1 and ¢ is a small positive number. It is easy
to see that

P(IE+nlZ2x)=P(E+n=2cvx)+P(E+n=—2cvx)+ Pl +n=—cox—(3—&)vx)
=(1/27+(p—1/2*+2(p—1/2)(1 —p) = —1/2+2p—p?,

if ¢ is small enough. Suppose now that 0=p=1/2.  is defined by P({=cvXx)
=p, P((=—(1/2—¢)vx)=(1 —p). Here P(|{+nl|Zx)=P(+n=2cvx)=p* for
small enough e. (5) can not be improved.

Let us consider now (4). For p=1/2 and p=1/2 the random vectors P(¢
=cvx)=1/2, P((=—cvx)=p—1/2, P((=—-(G—¢evx)=1—p, and P({=cvx)
=p, P((=—-(3—-2&vx)=p, P((=(3—¢uvx)=1—2p give the equality in (4),
resp.

In case of (3) the equality is constructed in three different ways for the cases
1)2<p, 1/3Zp=1/2 and p=1/3. In the first case the random vector P({=cvx)
=1/2, P((=—cvx)=p—1/2, P((=—(c—¢&)vx)=1—p, in the second case P(¢
=cvx)=p, P(é=(c—e)vx)=1/2—p, P(é=—(c—¢g)vx)=1/2 and finally in the
third case P(¢= +cvx)=p/2, P((=0)=1—p give the desired equality.

Proof of Theorem 2. The proof of the case 1=c<oo coincides with that of
Theorem 1. The fact that X has infinitely many dimensions was used neither in
the proof nor in the constructions. The proof of inequality (7) under the
condition

1 1

<
Q=" 4@
2 2

4=k<o) (24)
2 cos

is the same as at Theorem 1. The only difference is that the definition of e,(d)
is used in place of Lemma 3.1. On the other hand, suppose that (24) holds for ¢
with 4<k. Hence follows e, (d)<e, ,(d). Choose the vectors t,...,t,_; to
satisfy [|t,[|=cx (1=i=k—1) and

¢, _(d)= min (angle between ¢; and ¢;).

1Sicj<k—1

Here |t;+0| =cx <x follows from

2
O<e, (@S5 @sk2=d);

1 (d)

t;+¢;ll =2ex cose’“T<x follows from the construction of t; and (24). Con-

sequently, if the random vector ¢ is given by P(é=t,~)=%(l <i<k), P(E=0)
= 2

=1—p then P(|¢+n||=x)=P(E=n=t, for some Igigkvl)z%. The equa-

lity is constructed.
If ¢=1/2 then the above construction works for any k, so the probability
P(||¢+n| =x) can be arbitrarily small. The best estimation is really 0.
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Proof of Theorem 3. The proofs of the inequalities and the constructions are
the same as in the previous cases.

7. Further Possibilities

I. Our estimates are best in the sense that we determine the “best” function f
of the distribution-function of ||| at a given place (cx). Another problem is
to find the best operator f where P(||¢||=x) is considered to be a function. In
[4] there is an easy example where f is a function of two fixed points of the
distribution-function.

2. To give good lower estimates on P(||, +¢&,+&5|=x) is much more
difficult. Neither the geometrical not the combinatorial tools are developed.
Some results can be found in [8] and [7].

3. If £ is symmetric (that is, P((eA)=P(¢e — A)), then

2(11€] =
P(I¢+nl 202 PIE 20 -T2
is the best inequality for any linear normed space. A slightly weaker estimate is
proved in [1], for one dimension, only (however, more terms). This was
generalized by Kanter [2] using different methods. If, however P(||&||=cx) is
used in the estimate with ¢=1, then our method becomes useful again. E.g. we
are able to prove the “best” estimate

P(¢+n|zx)2ip? (lélzi)

V3

for a symmetric ¢ and » is two-dimensions. We are intending to work out this
problem in another paper.

4. Zolotarev [10] suggested the following problem. (2) is too weak if ¢ has
to have a very “smooth” distribution. For instance suppose that the con-
centration-function s(x) (s(x)=sup P(€S,), where S, is an arbitrary sphere of
s(x;) —s(x,)

X —X,
timate of P(|{+#n|=x) with P(/¢|=x) under this condition. (If K is large
(say =200) then our construction can be modified to be good, that is, (2) is the
best estimate).

5. The independence and identical distribution of ¢ and » are important
conditions. Our method hardly works without them. However, there are other
ways of extending the use of the method. Let f; and f, be a one-variable and a
two-variable function, resp. Our method can always help when an estimate is
needed for P(f,(&, n)=x) with P(f,({)=cx). Examples are f,(&)=|¢|, f,=¢n or
f1(&) is the vector of the coordinates of ¢.

radius x) satisfies ‘ =K with a small number K. Give good es-
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