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1. INTRODUCTION

One of the possible models of a data base is the following 'relational" model intro-
duced by Codd [1]. In a data base there are several different data of several dif-
ferent individuals. E.g. a data base may contain the name, the place of birth, the
date of birth, and so on ... of different persons. The possible data are called
attiibutes while the whole of the data of one individual is its tecond. In the a-
bove example the name, the place of birth, the date of birth are attributes. The
whole of data of one person is a record. It is rather natural to describe this sys-
tem by a matrix whose rows and columns correspond to the records and attributes,
respectively. The entries of the jth row or jth attribute can be chosen from a set
Dj where these sets are not necessarily disjoint. However, for our investigations
the choice of sets Dj plays no role, thus we may assume the D.'s are equal to the
set of non-negative integers. That is, we shall simply consider m>xn matrices with
non-negative entries. As two different individuals should have different records we

may assume that the rows of the matrix are different.

For a fixed mn’ mgtrix M, a set K{1,...,n} of columns is called a key iff the
rows of the submatrix M(X) determined by the given columns are different. That is,
K is a key iff the attribute corresponding to K undiquely determine the records

(individual) in the sense that given any values of these attributes there is at most
one record having these values. A key K is called minimal iff there is no different

key K' satisfying K' < K.

Let 4 ©B<{1,...,n}. We say (write) that 4 implies B (A4 - B) when two Tows of
M(A) are equal iff the corresponding rows of M(B) are also equal. In other words,
A implies B when the values of the attributes in A uniquely determine the values
of the attributes in B. (That is, 4 is a "key" in B 1in a certain sense.) If

A+B then the pair (4,B) is called a junctional dependency or simply a depen-
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dency. A dependency (4,B) is called basic iff

1) A#B
2) there is no A'c 4, A' £ A such that A'»> B
3) there is no B'2 B, B' # B, such that A -+ B'.

There are many natural extremal problems concerning the above concepts. The present
paper gives a suivey of the not very numerous results of this type. However, the
main air is to call the reader's attention to these applicable and mathematically

interesting problems.

The next section determines the maximal number of minimal keys when the number 7 of
attributes is given. Section 3 gives lower and upper estimates on the maximal number
of basic dependencies. In the last section there are some initial results in the
determination of the smallest number m of rows such that there is a data base

(m*n matrix) in which the family of minimal keys is given beforehand.

2. MAXIMUM NUMBER OF MINIMAL KEYS

The keys play an important role in data bases. The records can be uniquely found by
them. Of course, it is worth-while to consider the minimal ones, only. It is quite

natural to ask at most how many minimal keys can exist.

Theorem 1 [31. The maximal numben of minimal keys in a data base with n atiributes
L

v ([%]

Proof . The minimal keys K are subsets of {1,...,n} and do not contain each

other. Sperner's well-known theorem [2] states that such a family-can not contain

n
more than {'E. members .
d

”n % \
We will now construct an mxn matrix (with m = [%] -1 + 1) having [%])

minimal keys.
n
The first row of M consists of nothing but I's. The other rows contain [:E:}— 1

1's in all possible ways while the remaining entries of the <-th row are <'s

n
2<1 f_([%] _ I)+ _'D For n = 4, see the matrix below:
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W W
£~

n . 2 ;
If we chose [:E:} places in a row then we find there either only 1's or at least

one number < different from 1. Therefore the row < is uniquely determined. Any X

with |K| = L‘g:] is a key. On the other hand, it is easy to see that no set K

with |KI < [:g:] can be a key, the first row coincides with another onme in M(X).
The proof is complete.

Let us remark that a stronger statement is proved in C3J. There is a matrix M for

any prescribed family of keys if it has the Sperner—property.

3. MAXIMUM NUMBER OF BASIC DEPENDENCIES

All dependencies trivially follow from the basic dependencies. Therefore their
number can be considered the complexity of the data base. Thus our aim given in the
title of the section is in fact equivalent to the problem of finding the most com—

plex data base.

Let N(n) denote the maximum number of basic dependencies in a data base with n

attributes (or of a matrix with n columns).

It is easy to construct amatrix in which the basic dependencies are of the form

A+ AU {z} where x is a fixed attribute. That is, 2n—1 < W(n). However, the
real value is greater:
Theorem 2 [4]
4 log, log,n 1
: no(, _ 2 2 n B
(2) L log, e log, n (2 +0(1) W 2" (1 - 75)
Sketch of the proof (It can be found in Chl) Lowen estimate. Let GysG g5y
: k a5
be positive integers satisfying I q; = n. The (C 0+ Xq, matrix Qi is

=
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defined in the following way. The first row of Q. consists of nothing but 1's.
[

The other rows contain q; 2 I's in all the possible ways. In the rest of the

places we put <'s in the <th row (2.5 < (?;) +.1), The rows of the matrix
o )
M :'QI ... X Qk are all the iEI(( 2) + 1) possible combinations of the rows of
QI,...JQk. (More precisely, we put together an arbitrary row of QI’ then an
arbitrary row of QZ e.t.c., in this order.) It follows from ig] q;=n
that M has n  columns. We show the construction for n =25, k=2, q; = 3,
qq = a:
1 1 | 1
11 1 2 2
1 2 2 101 1
1 2 2 E 2 2
3 1 37 0@ |
3 ) 3 E 2 2
4 4 11
4 1 2 2
*
L:t Qi denote the set of indices of columns of Qi in M, that is
Qi = {q1+...+qiq1 * 1,...,q1+...+q{}. One can see that the basic dependencies

(4,B) 1in M are those satisfying

B
min(qi - |4 f]Qi|) =

Their number is

k 5 kg
(3 I (2°-1)-T (2% -q.-1).

This give a lower estimate on N(n). In the above example (n=5; 4,3, q?:Z) this

estimate gives 17 < N(5)
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For large n we choose first

3 -
2 Lo T _ 2 _ 5 e
q = qn) = [log n - log (Zog e(log log n - log log log n - log log e - 1))]
where log means the logarithm of base 2. Then k = k(n) and r = r(n) are
defined by n = qn) k(n) + r(n) 0 < r(n) < qn)

Finally choose

Qpog = +++ = =9

With this choice (3) gives the left hand side of (2) after some long but elementary

calculations.

Upper estimate. Let H be the family of sets A4 having a pair B such that (4,B)
is a basic dependency. It can be seen that the set ( satisfying A4 cg<ea8
|c|= |4] +1 is not an element of H. Such a (¢ can be obtained from at most n

different sets A only, consequently for at least |H|/n sets C ¢ & H, implying

H n i ow . ;
[H] + l;l_i 2°. This is equivalent to the right hand side of (2). The theorem is

proved.

That is, it remains an Open quesfdlon: what is the proper second term of  N(n)?

4. SMALLEST NUMBER OF INDIVIDUALS REALIZING A GIVEN FAMILY OF MINIMAL KEYS

Suppose a family F of subsets of n-element sets is given and it is known that
the data base has exactly these sets as minimal keys. It is useful to know something
about the number of rows of the data base. This section offers some results along

this line.

Let F satisfy the Sperner-property, that is, A,B e F A # B implies A & B.
Then s(F) denotes the minimum number m of the rows of an n Xm matrix M in

which the set of minimal keys is F.

Theorem 3. [51 Forany n >0 Zhere 48 an F  satisfying

n
0 s(F) > 2 %]
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Proof. Let s(n) = max s(F), where F runs over the families satisfying the

Sperner-property. We say that M #nealizes F  if the set of minimal keys of M is F.
Then any F can be realized by an m xn M where m < s(n). Urite completely
new and different integers into the (m+1)th, (m+2)th,...,s(n)th row. The new
enlarged s(n) X n  matrix realizes the same F. Consequently any F can be

realized by an s(n) X n matrix. Furthermore, we may suppose that the entries of

these matrices are 1,2,..., s(n), only.

Indeed, if the integers found in the first column of M are ij < i2 <on. ﬁp
(1<r < s(n)) ‘then let us make the changes ij + j. This change does not change
the family of minimal keys. Thus, following the same procedure with all the columns
independently, we finally arrive to a s(1) X n matrix containing only 1,...,s(n)
n s(n)

as entries. The number of such matrices is s(n) , therefore we have

(5) el % > v sp  Era

Any family of some [:%:]—element sets has the Sperner-property, consequently,

n

n s(n) Eg]
(6) s(n) > 2 ‘

follows from (5). (6) results in (4). The theorem is proved.

Now we will try to determine s(F) for some simple particular F's. Let F:

denote the family of k-element subsets of an n-set. First an easy lemma.

Lemma ]. Forn any 0<k<n

(7) . e
holds .

: ; n
Proo f. Suppose that an m X n matrix M realizes Fy. For any (k-1)-
element set A of columns there is a pair of rows in which these columns have

identical entries. Moreover for different A's these pairs of rows must be dif-

ferent. Hence (g) > (kil) and (7) follow. The lemma is proved.
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From this lemma B(F?} > 2 follows. The construction

shows that s(F?) = 2.

. n . ;
Let us determine S(FZ). If an m X n matrix realizes Fg then by the above

lemma
m
(8 n<(2)
holds. On the other hand, if (8) is satisfied we are able to construct an m % on
y .. n : ;
matrix M realizing FZ. M contains two O's in each column. Of course the

pair of places is different for different columns. The other entries of the Zth
row will be <'s (I <% < m). Consequently s(Fg) is the smallest integer m

satisfying-(B).

Let us apply lemma 1 for k = n-1. We obtain S(FZ—I) > n. On the other hand

m =n 1is enough for the comstruction:

1 o . ... 0
0 I owow s s
0 0 L

this leads to S(FZ-J) = M

: ; n . ; : ;

The determination of S(Fﬁ) needs a slightly harder consideration. If ¥ 1is an
m % n matrix, let 7(M) denote the graph whose vertices are the rows of M,
two vertices are connecced with an edge iff the set A of places where the two

rows are equal is non-empty. The edgé is J{abetfed by A.

. Lemma 2. Let M be a mtrnix and Let A
o4 G(M). Then

JTRREET be the Labels afong a cireull



117

r
A. —A. =
) I dy=-dy=d
1=1
i3]
Proof - Suppose that, in the contrary, (9) is non-empty, that is, there is a

column, say the uth one, which is an element of all Ai but Aj. Let the vertices

of the circuit be Kk sk in such a way that the edge (Hay K

Jo 55 5 i—I) is labelled

A. (I <1 < ; 1 . g i
by 5 ( <1 r) and the edge (kr’ kj) is labelled by AP From u € Aj+1 Tt
follows that the k‘+1th and kj+2th entries in the wth column are equal. The
same holds for the kj+2th and kj+3th entries, etc. Consequently, the kj+1th,
Ko i Clmn 5 S 1 iEhg k,th,...,k.th entries in the wuth column are all equal. This

J#2 r 1 g

leads to u € Aj contradicting the assumption. The proof is complete.

' . . ”n : .
Now we are able to determine S(Fn).Suppose that the m X n matrix M realizes

FZ. An (n-I)-element subset A of {I,...,n} 1is not a key therefore there must

be an edge in  G(M) 1labelled with 4. Consequently G(M) 'has n different edges
labelled with the (n-1)-element subsets of {I1,...,n}. These edges cannot form a

circuit because the (n-I1)-element subsets cannot satisfy (9), the lemma is applic-—
able. G(M) has at least n + 1 vertices, m>n+ 1. The following (n+1) xn

. . n
matrix realizes Fn

0 .

1 .

0 1

0] 0 L .

We summarize our moderate results in a theorem.

Theorem 4

s(F’;) & 5, S(Fg) = [ 1+ /; F dn ]

s(F) =n+1 , s(F
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In the case of &k = 3 lemma | gives s(Fg) 2 1, again. There are problems,

however, with the construction of an 1 X n matrix realizing F;. Checking the

proof of lemma | we can see that equality can stand in (7) iff for any pair of rows

there are exactly two equal entries. In fact a column is a partition P,:(A.I)...,A. )

z ir.
z

on n elements (the set of rows) (I < 7 < n). These partitions have to satisfy the

following conditions:

1) For any pair «,y of elements of the n-element set X there are exactly two

sets Aip and qu containing both of them (Z#£7)

2) For any given <#7 there is a unique pair p,q such that ]A.p riqu|:2.
|Aip n qul < 2 holds for the other pairs.
Condition 1) implies

.
21 IAiJ']
(10) =n -1
Jj=1 2

for any 1 <7 < n. If n =3 or 6 (10) has no solution, therefore s(Fg) >n
for these values. However, for the values of form #n = 3k + 1 there is always a
solution IA{Z[ .. = ]AikI =3, Ai,k+1| = 1. This suggests the following con-
jecture.
Conjecture 1. There is a system of 3-element subsets of a gk + 1 —element set
satisfying the following conditions 1) Any pair of elements is contained in
exactly two 3-sets, 2) the family of 3-sets can be divided into subfamilies
where a subfamily consists of Xk disjoint 3-sets. 3) Exactly one pair of members

of two different subclasses meet in 2 elements.

The problem of sesolvable Stedner systems is very closely related. This problem is

solved in (6]. We were able to construct them for n = ¢ and 7 (using the Fano-

geometry):
0 0 1 2 1 1 1 0 0
0 0 1 0 0 2 1 0 1 1
0 1 0 0 o} 2 1 0 1 1
1 0 0 0 1 0 2 1 0 1
1 0 1 0 2 0 1
1 o 0 1 1 2
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. 5 ; n o g
Conjecture I implies S(F3) =n for infinitely many »n. However we state

Conjecture 2 s(Fg) =n (n>7).

We state the next lemma without proof.

Lemma 3.

n+1 n "
S<Fk ) < S(Fk) + S(Fk_z)

This implies s(F?) <e ns/d, a fairly weak upper bound.
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