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ABSTRACT

Let H be a finite set, and A;, A;,..., A, subsets of H. We call a system

& = {Ay, Ay, . .., A} separating system, if for any two distinct elements x and y
of H there exists an A; (1 < i < m) such that either

x € A; and yé&A;
or
x ¢ A; and yeEA;.

This paper deals with the problem of finding the minimum of m, if additionally
|4, <k (1 <i<m), where 1 <k < n, and |4, is the cardinal number of 4;. We
reduce this combinatorial problem to an analytical one, and give a lower and an upper
estimation:

T

log n n log 2n n
log enlk k

— < minm <
log n/k

1. INTRODUCTION

We call a system &7 of subsets of a set H a separating system, if the
system separates any two elements of the set H, that is, to any two ele-
ments of the set H there exists an element of the system .9 containing
exactly one of them. It is easy to see [1] that the minimal separating
system of a set of n elements has exactly {log, n} elements (where {x}
denotes the least integer = x). Rényi raised the problem of finding min-
imal separating systems, if in addition it is required that each subset
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175 ON SEPARATING SYSTEMS OF A FINITE SET

in the separating system should consist of exactly k elements. The pre-
sent paper investigates this question. We reduce this combinatorial prob-
lem to an analytical one, and give a lower and an upper estimation. The
lower estimation will be given by simple information-theoretic consid-
erations.

2. ORIGIN OF THE PROBLEM

Seeking an unknown element of a set H, of n elements, we can pro-
ceed in the following way: let us perform experiments to decide wheth-
er the unknown element in question is in a particular subset or not
for each subset of a system & of subsets of H,,. It is easy to see that this
procedure is always effective only for a separating system .. The con-
cept of a separating system was introduced by Rényi in his papers con-
cerning certain information-theoretic problems [1-5].

In practice we often have an additional condition, that the cardinal
numbers of the subsets are less than or equal to a number k. As we will
see, seeking for the minimal system one can replace this condition with
the exact equality.

3. REDUCTION OF THE PROBLEM

Let H, be a set having the elements
X Xgy v 00y Xy (P’l = 1),

and & = {4,, A,,..., A,,} a system of subsets of H,. We call this
system a separating system if for any x; and x, (j + /) there exists an
A; (1 <i=< m), such that

x,-EAi and xldEA,;
or
x; & A, and X € A;.

Let S denote the set of all separating systems, that is,
= { Ayl s uy Ay} ES

if and only if .&”is a separating system of subsets of H,. Let k be a positive
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integer, and let S, denote the set of systems & = {4,, Ay, ..., A}
for which &€ S, and | 4;| = k (1 <i < m), where | 4;| denotes the
cardinal number of the subset 4,. We want to determine the minimal
value of m for which there exists a system & = {4, 45, ..., 4,,} € S}.

Obviously, it is sufficient to examine the case k << n/2; otherwise
{4, Ay, ..., A,} €S, (Where 4 is the set complementary to 4 in H,)
and n — k < n/2.

To any set & = {4,, A5, ..., A,} of subsets of the set H, let us
define a corresponding m by n matrix M,,, of the elements ¢;, where
g;=11f x;€ A; and &; =0 otherwise (1 <i<m; 1 <j<n). Iy
{4}, Ay, ..., A,,} € S, then, because of the definition of S, for any two
columns there exists a row in which the two columns differ, that is,
there are no two identical columns in M,,,. Conversely, if all columns
are different, then to any two columns there exists a row in which they
differ; thus the corresponding system of sets is separating. Similarly,
the condition | 4, | = k in the term of matrices is the following. In each
row of M,,, stand exactly k ones, and the others are zeros.

Thus we have to determine the smallest integer m for which there
exists a matrix M,,,: (a) with elements 0, 1; (b) in each row containing k
ones; and (¢) no two columns are identical. Denote this integer by
U = U(n, k).

For the matrices having the above-mentioned three properties the
following interesting theorem is valid:

THEOREM 1. Let m, n, 1 < k < nf2, s¢, 815 . . . » 8, be fixed non-neg-
ative integers. We can find a matrix M ,,, of m rows and n columns having
the properties (a), (b), and (c) and in which the number of the columns
containing i ones is s; if and only if

pil AT )
=0

T @)
1=0

«=(7) e=0L.iLm @

COROLLARY. The number U = U(n, k) is equal to the least number m
for which there exists a system of non-negative integers m, Sy, Sy, - - - 5 S,
satisfying conditions (1), (2) and (3).
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The necessity of the conditions is trivial. We may obtain (1) by count-
ing the number of ones in M,,, in two different ways; (2) means that

the number of columns is n. Finally there can be at most ( rln ) different

columns containing i ones; thus (3) is also necessary. The point of the
theorem lies just in the sufficiency of these three evidently necessary con-
ditions.

The proof consists of four steps.

First we introduce some notations and definitions. If Q,, Q,, ..., 0,
are matrices with the same number of rows, [Q,, O,, . . ., Q,] denotes
the matrix obtained by writing side by side (in the given order) the ma-
trices Oy, Oy, . .., Q,. M[i] denotes the matrix consisting of the first i
columns of M.

We shall call a zero-one matrix admissible if each row contains the
same number of ones, and quasi-admissible if the numbers of ones in
the rows differ at most by one. Finally, we say that a matrix M is perfect,
if it is admissible and the matrices M[i] are quasi-admissible for each i.

REMARK 1.1. Obviously, if we write side by side two admissible
" matrices, the new matrix is also admissible.

REMARK 1.2. Similarly, writing side by side an admissible and a perfect
matrix, the new matrix has the property that the matrix consisting of its
first / columns is quasi-admissible if i is greater or equal to the number of
columns of the first matrix.

ReEMARK 1.3. Finally, writing side by side perfect matrices, the new
matrix will be perfect, too.

REMARK 1.4. By interchanging the rows of a matrix, the properties
“admissible”, “quasi-admissible”, and “perfect” remain valid. However
by interchanging the columns of a matrix only the properties “admissible”
and “quasi-admissible” remain valid, and the property of perfectness

may be destroyed.

Step A. Considering a fixed column C of elements 0, 1, and writing
all its distinct cyclic permutations side by side, the matrix M, obtained
in this way is admissible.

Proor. Let us put the last row of M, before the first. The obtained
matrix M’ differs from M, only in the order of the columns; the columns
of M,' are, namely, cyclic permutations of C; moreover the number of
columns is the same and the columns of M, are evidently different.
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Thus the number of ones in the i~th row of M, and the i-th row of M’
are equal; as, however, the i-th row of M/’ is identical with the (i — 1)-st
row of My fori=2,3,...,m, M, is admissible.

Step B. If D is a column of length mm which has 1 in its first ¢ places,
and 0 elsewhere, there exists a perfect matrix M* consisting of all cyclic
permutation of D.

Proor. We construct the desired matrix. Let D(j) denote the cyclic
shift of D by j downward. Thus D(0) = D. Determine M° as the ma-
trix consisting of the columns

D(0), D(¢), DQ20), ..., D ((@ - 1):)

([m, t] denotes the least common multiple of m and ¢). We may charac-
terize each column by r(D(j)), the position of the 0 preceding a 1. Such
a 0 always exists unless the column is identical with D. In the latter case
we put r(D(0)) = 0. Obviously r(D())) is the remainder of the division
of j by m:

J = qm + r(D(j)) 0 < r(D()) <m. C))
It is easy to see, by induction, that the number of ones in each of the

first r rows in the matrix M°[i] is greater by one than that in any of the
other rows, where

r=r(D(@t)) + t(modm) and 0<r <m.

Thus the matrix M° is perfect, because M° is admissible, since for the
case i = [m, t]/t — 1:

wm (B ) sm (BBA )y =,

and, further, r =0 follows from r(D(it)) = m — t.

If (m, t) = 1 where (m, t) denotes the greatest common divisor of m
and ¢) then [m, t]/t = m and the construction is completed. If however,
(m,t) =d > 1 we construct the matrices M1, M2, ..., M4 in the
following way: M:(1 <i<d — 1) consists of the columns

D(i),D(t+i),D(2t+i),...,D((M— l)t—!—i).
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We may say that M* results from M° by an i-fold cyclic shift of the
rows. Thus, by Remark 1.4, M? is also perfect (1 <i<<d— 1). If
M* = [M, MY, ..., M%1], then by Remark 1.3 M* is perfect, indeed.

It remains only to prove that the columns of M* are all differ-
ent. This follows from the remark that if a runs over the numbers
0,1,...,[m, t]/t — 1 and b over the numbers 0, 1, ..., (m, t) — 1, the
numbers at + b are all different mod m and thus represent each residue
class mod m exactly once, in view of [m, ] (m,t) = m1t.

. T m ;
Step C. Let s, be an integer satisfying s, << ( ); then there exists
t

a quasi-admissible matrix N, of m rows and s, columns containing in
each column exactly ¢ ones.

Proor. Let us consider all cyclically distinct columns of length m
containing exactly ¢ ones and form to each column the matrix M, de-
scribed in Step A, except for the column in which the first ¢ elements are
ones, to which we form the matrix M* described in Step B. Denote this
set of matrices by 9. Obviously each element M of 9N is admissible and
M* € 91 is perfect. In addition, denoting by /(M) the number of col-
umns of M

5 a0 = () (s
MeM ( i ( t )
holds, because in the matrices each column containing ¢ ones occurs
exactly once. Finally
IMy<m MedM 6)
and
I(M*) = m. (7

Number the elements of 9N in some manner, the only condition being,
that M* must be the last: M, M,,....If 5, < ( ’7 ) , then because of

(5), there exists an index i such that

i i+1
2 M) <5, < X (M)
j=1 f=1
holds, Obviously by (6) and (7)
s, — 2 (M) > I(M*).

j=1
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We obtained the desired matrix N, in the form
No= My My M MY s, — 3 1))
=1

Indeed, N, has s, columns, and by Remarks 1.1 and 1.2 is quasi-ad-
missible.

STEP D. On the basis of Steps A, B, and C we construct the matrix
M,,, occurring in Theorem 1 as follows:

It is easy to see that, if Q; and Q, are quasi-admissible matrices, the
rows of Q, can be interchanged so that for the new @, the matrix
[0,, 0,'] is quasi-admissible.

Thus, we construct for each ¢ the matrices N, and interchange the
rows of N, so that, for the N," obtained the matrix [N, N;'] should be
admissible. If we have already constructed N/, we determine N/, by
the condition of admissibility of [Ny, Ny, ..., N/, N/,]. Finally, in
this way we obtain the desired matrix

an o [Noa Nll» sz, D) Nm’]'

We have still to see that M, satisfies the conditions of Theorem 1.
It follows from the construction that the columns of M,,, are different,
and the number of columns containing ¢ ones is §,. It remains only to
show that each row contains exactly k ones. We know that the number
of the ones in M,,, is equal to X% is,. Applying (1), the number of the
ones in M,,, is divisible by m. But this is possible only if M,,, is ad-
missible. Thus, because of (1) each row contains exactly k ones, which
completes our proof.

Now we deal with a question mentioned in § 2. Denote by S’ the
set of systems satisfying the conditions

{4, Ayy ..., A,} €S and | A;|<k i=1,2,...,m.

The problem is to find the minimal value of m for which there exists a
system
{A;, Agy ..., A, } €S}

The following theorem shows how this question is related to that dis-
cussed above.
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THEOREM 2. If k <n/2, and the system {A,’,A,,...,A,}€ S,
then there esists a system {A,, Ay, ..., A,} € Sje

COROLLARY. The minimum of the numbers of the elements of a system
in S;' is U(n, k). (Obviously S, < S}').

ReMARK 2.1. For k > n/2 the condition | 4,| < k is not essential,
because either | 4, | < k or | A;| < k always holds. Thus for any system
{4;, Ay, ..., A,,} € S there exists a system {By, B,, ..., B,,} € §;' where

BizAi or Bi:ft_i‘

PROOF. Let us consider the matrix Ay, of elements &; where &; = 1
if x; € 4/ and &;; = 0 otherwise. If 5,/ denotes the number of columns
containing exactly ¢ ones, obviously

mk > % is,’, ®)
=0

— ©)
i=0

st <("). (10)

hold similarly to (1), (2), and (3).
Let m, 5o, 51, ..., 5, be a system of non-negative integers satisfying
(8), (9), and (10), and in addition }7,is; is maximal if m is fixed. If

T ) and 5, ; >0
hold, then the integers m, So, S, ..., 84 — 1,8+ 1,...,s, satisfy

the conditions (8), (9), and (10) and

mk > Y™, is; and for any / > 1 the inequalities 5, < (

S s < B i+ (= 1) Gy — D+ 1 4 1),

=0 =0
i#l-1,1
which contradicts our supposition that, for m, sy, sy, .. ., S,,, the ex-

pression X7, is; is maximal. Thus, either

mk =3 is (11)

=0
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or for some j
5;=0i=0,1,...,j—1 and s=(’:1) i=jj+1,...,m (12)

However, from (12) follows

-5(7)
i=j \ 1
and
mkzﬁi(”.’)
i=f !
Hence
mo(m
k>§-l;_(m)_mil m—1)>i§f(i)_i
_,;=jm i —izj—l( i - 2 o 2 ?

which contradicts the supposition k < n/2.

Therefore (11) holds for m, so, Sy, - . . » S, and applying Theorem 1
we can construct a matrix M,,,, that is, a system {4;, 4s, . . ., A,,} €S}
This completes our proof.

Using (1), (2), (3) or (8), (9), (10) to determine U(n, k) the assumption
of m, g, 51, + . + 5 5, being integer will cause difficulties. Thus we will try
to eliminate this requirement.

LEMMA 1. There exists a minimum of numbers m for which a system

of non-negative numbers m, So, 1, - . - , Sy Satisfies the conditions
{m}
mk >3 s, (13)
i=0
{m}
n=>3 S, (14)
i=0

05s5("§)= = Ve m = 3 1) ey o fal.  B)

il

PrROOF. Obviously there exists an infimum of numbers m. Denote it
by U'. Let mi(j=1,2,...) be a sequence converging to U’, and
U <m < [U]4+ 1(j=1,2,...). The systems n/, s/, sy, . . . , ¥ty
satisfy conditions (13), (14), and (15) for all j = 1. For fixed i the se-
quence s7(j=1,2,...) is bounded because of

osurs (7))

i
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Therefore there exists a convergent subsequence of the numbers s/
which converges to some s,. Performing this choice for all the i, we get
a subsequence of the sequence of the vectors m’, s,7,..., s%,y,; which
converges to U’, 5o, 8y,..., Siyn41. Since for each j (13), (14), and (15)
hold, U’, sy, 81, . . . , 84141 also satisfies these conditions. If U’ is not an
integer, we have finished the proof; if it is one, then we have still to
show s;ps,; = 0. But this is a trivial consequence of

m?
0<S[U’]+1— ( [U.‘]+ 1)

because the right side converges to zero if m/ — U’. This completes our
proof.

LEMMA 2.

(Uy=u

PrROOF. Let U/, s, 54, . . . s Sy be a system of non-negative real
numbers satisfying (13), (14), and (15). We have to construct a sys-
tem of non-negative integers {U'}, s, ..., Sgg+y» Which satisfies (8),
(9), and (10).

Let us choose the integer r according to

{U’}

E {si+ X [sl=n (16)

i=r+1

Such an r exists because

(3 6a+ 3 3 Isd) - (L 63+ 2 pa)=o0ory,

T=j+1
and
{u’} {o’}
2 sl=n< Z {s:} -
=0

Determine the s,/ in the following manner:

’ {si} i=0:19'~-1r5
i i=r4+1,...,{U}.

Then because of (16) condition (9) holds.
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Obviously, by (16) and (14)

{U’} r {o}
Z is; = ﬂoz{sl} =P _Z ils;] + Z_:o i(s; — {s:) + _Z i(s; — [sd)
> (s} + o4 s+ E (= )+ 3 G- D)
{u’} r {0’}
% ifsi} + T JORRIS PR RO R )
i=r+1 =0 =0 i=7+1
{U’}
=% s} + T ilsd; a7
further because of (13) and (17)
{U'Ye=U'k = E is; > Z i{s;} + 2 i[s,] :{%} is;,
=0 i=7+1 =0

that is, (8) hold also. Finally we deduce (10) from (15):
wsen={() (1) osi=wn

Thus we have proved the inequality
=10, (18)
but (8), (9), (10) is a special case of (13), (14), (15); thus

u <u, (19)
and

{Uy=4¥
from (18) and (19).

LeMMA 3. If U', sy, 815+« . » Sqgey IS a system of non-negative numbers
satisfying (13), (14), and (15), and U’ is minimal, then equality must
hold in (13).

Proor. Instead of the above statement we will prove that if m, s,
815+ v o5 Sgmy is a system of non-negative numbers satisfying (13), (14),
and (15), with strict inequality in (13), then m can be decreased, that is,
m + U'.
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Put
{m}
& =mk— 3 is;> 0. (20)

=0
For some r

otherwise

m i m 1 i, — 1 1 ™ m n
w=Ei)=g ("7 e (7]
contradicts the supposition k < n/2.

Denote by &, the difference ( n:) = 8.3

52=(":)—s,. @1)

Determine first the number ¢, in the following way

-

—min(f & ® )
(5,—m1n(2 5 2',:505'; , 22)
TET
then 6,(i=0,1,...,r—1, r+1,..., {m}) is determined by

0<d,<s; if s 40
i=0...,r—1Lr+1...,{m} (23
B iif m=10
{m}
2 0;=9, (24)

=0
TET

Further, let ¢, (i=0,1,...r —1,r+1,... {m} be a positive num-
ber, such that

si—aig(’”:g*‘). 25)
Obviously, by (23)
m
= ( i )

always holds; thus by continuity there exists such a o, Similarly we
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determine o, > 0 by the inequality
s+o,=("7 %) (25

Such a p, also exists, because by (22)

m
(7)==
==
J, < 5
Finally put
5*=m1n( k,gt(z—Ol ,{m}))>0. (26)

The new system
m— 6% 8o — gy 8 — 010y S0y — 0y g, S+ 0,800 — Opits e

Stmy — Otm)

also satisfies (13), (14), and (15). Indeed by (26), (20), and (22)

{m}
(m——é*)k>(m————)k—mk—£7—21s +—>
Z is; + r(s, +6,)—r—+ 2 = z(s o) + r(s, + 4,),
1=0
1,#1' T#ET

that is, (13) holds. (14) is a trivial consequence of (24); finally, (15)
results from (26), (25), and (25'). Thus the proof is finished.

Lemma 4. If U', sy, ..., sy is a system of non-negative numbers
satisfying (13), (14), and (15), and U’ is minimal, then for some r > 0

si———(lg) i=0,1,...,r—1,

(27)
s;=0 i=r+4+1,...,{U}

Proor. Instead of the above statement we will prove the following one:
If m, sq, 51, . .. »S(my 18 @ system of non-negative numbers satisfying
(13), (14), and (15), for which (27) does not hold, then it is possible to
construct a system m, sy, 8/, ..., Sgmy satisfying (13), (14), and (15)
with strict inequality in (13). Thus by Lemma 3 m is not minimal.
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If (27) does not hold, then for some j

m
o= (7)
J
and
Siyp >0
Put
. m
£ — min (( j)_S?', Sj+1),
and
s =8 i=01,....,7—1 j+2...,{m}

’__
§; =8+ &

' e —
Sip1 = Sj — &

Thus (14) and (15) obviously hold; further

{m} {m} {m}
mk=3is; =2 is; +j@s;+e)+ G+ D (50— &)+ &> is/,
=0 =0 i=0

#i+1,7

that is, (13) holds also, with strict inequality, and the proof of Lemma 4
is completed.
On the basis of Lemmas 1, 3, and 4 it follows that for some r

r—1 !
Uk=13% t(Ul )-i—rs,,

1=0
r—1 r
=3 (%) 4o
=0 \ !
and
UI
0<ys, < ( r1 ) .
In other words, eliminating s,
r—1 ! r—1 r
U’k:Zi(U.)—I—r[n—Z(U,)] (28)
=0 1 =0 \ I
and
r—1 ’ r U’
Z(U.)Sn<z(_). (29)
=0 \ 1 =0 \ 1

For a fixed r, (28) is an equation in U’. (29) means an additional limi-
tation for the solution of the equation.
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LemmA 5. (a) For any r, (28) has only non-negative solution. (b) There
exists one and only one r for which the above solution of (28) satisfies (29).

Proor. (a) The statement follows from the fact that the left side of
(28) has the value 0 for U’" = 0 and is monotonically decreasing.

(b) By Lemma I there exists the minimal U’, and it must satisfy (28)
and (29); thus we have at least one such r. Assume that for r the
solution of (28) satisfies (29). We will show, then for ¢ < r that this
is not possible. Indeed, in the case of ¢ we may write (28) in the
following form:

w5 () el E ()= F() b S (0)

“le—an-c-0%E(7)-Ze-a(}). oo

v

-

5

For U’ in (28) equality holds. The left side of equation (30) for U’

has the same value as in (28). However, as we will show, the right side

has a less or equal value; thus the root of (30) is less than or equal to U’.
We have to prove that

-1 /0’ r—1 . U’
c-gn-c-o% (5 )-2e-0(7)=o0.

=0 \ 1 i=¢ i
Diminishing the last term we obtain

o-ol-5 ()]0

But this follows from (29). Thus the root of (30) is << U’, but the con-
dition
4-1 q
z(“’f)us(’?) G1)
i=0 \ ! =0 \ 1
means that x must be in an interval lying disjointly in the right of the

interval determined by (29). This is a contradiction, which finishes the
proof.

THEOREM 3. If U is the minimal integer for which there exists a system
{41, Asy ..., Ay} € Sg and U' is a root of the equation

xk:rili();)qu[n—T_Zl()f)], (32)

=0 =0 \ !
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for some r, and satisfies the condition

z(5)=m<£(%) e

then
U= {U'}.

This theorem is a trivial consequence of our lemmas.

THEOREM 4. If k> 1,

k(k + 1)
2

n—1
e,
Proor. We will use Theorem 3. If r =2, we can write (32) in the
form

n= +1

then

xk=x[n—1—x].
Hence
n—1
k+1°

U'=2
The left side inequality of (33) holds, because by supposition

n_1<U

I+25 70U,

if k> 1. Similarly, the right side of (33) results from the inequality

k(k +1)

n= 3

+ 1.

ReEMARK 4.1. Of course this theorem can be proved directly too with-
out our Theorem 3. Different simple unpublished proofs have been
given independently of the author by B. Bollobas, J. Galambos, T. Ne-
metz, and D. Szasz.

ReEMARK 4.2. We may obtain further similar results if we perform for
r = 3 the same construction as in the proof of Theorem 4.
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4. Lower ESTIMATIONS

THEOREM 5. If {4y, Ay, ..., A,,} € Sg then

logn

<
”_klo . <m (34)
n gn—k

k

n

n
log 5+
(log denotes logarithm with base 2).

COROLLARY, Using the inequality In(1 4+ x) < x, we can obtain from
(34) a weaker but simpler estimation

nlogn

kloge—:

<m. (35)

PrROOF. Let § be the uniform probability space over the set H,
= {Xy, X3, . . . , X, }. Denote by «, the indicator function of A,, which
is now a random variable taking on the value 1 with probability k/n,
and the value 0 with the probability (n — k)/n, in view of | 4,| =k
(1 <i<<m). Denoting by H(«;) the entropy of the random variable «,,

k n n—k n
Hla) = - log -+ =~ log -

(36)

Investigate the joint distribution of the random variables o, oy, . . . , &,
There exist exactly 2 0,1 sequences of lenght m, but from these at most
n have positive probability, because there are n elementary events in H,,.
If for two elementary events x; and x; the random sequences o, &, ..., &,),
are identical, then x; and x; are simultaneously elementsof 4,(1 <i <m)
or not; that is, j = /since {4,, A,,..., A,,} € Sg is a separating system.
Thus the sequence oy, a,, ..., &,, has n distinct values with probability
1/n. The entropy of the joint distribution of the «; is therefore

H((ala Agy « v vy am)) = lOg n (37)
Applying (36), (37) and the well-known inequality (see e.g. [6])
H(al) + = + H(am) 2 H((al’ LA ’am))9

we get the desired inequality (34).
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5. UpPER ESTIMATION

THEOREM 6. There exists for arbitrary n> and 1 <k < n/2 a sys-
tem {Ay, As, ..., A,} € Sg such that

m= [{iogie ) ¥

([x] denotes the greatest integer < x).

PrROOF. We use Theorem 1, and so we have to find only a system of
non-negative integers m, o, sy, ..., §,, satisfying the conditions (1), (2),
and (3).

Let i be for the moment an arbitrary positive integer, and let » be
defined by

in = (mod k) 0<r<k.

Determine the integers s, y =r,s;,=n—r,5,=0(=0,1,...i — 2,
i+ 1,...,m), m= (in — r)/k. Thus the properties (1) and (2) ob-
viously hold. We will determine the integer i corresponding to con-
dition (3).

in—r in—r
n—r:i( k and r<< k ;
i i—1

These follow from

an 4
n<| k ) and rg(k . (38)
i i

Therefore it is sufficient to investigate (38). Now we need a simple
lemma

LEMMA 6. If i > 0 is an integer, further x = 2i and x = 2, then
1 [x\? x—1
_—ie <
2 (1) - ( i ) @)

ProOF. If i> j=> 2, then j<<2(j— 1) and because of x> 2i

Jj=220G—-D=x(—D.
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That is, ix —ij>ix — x(j — 1), and finally

__x_l_>_)_c_.'
i—j+1 = i
If j=1,
x—1 X
>__
i - 2i

trivially holds because of x > 2. Thus we have

L(ﬁa-c_)‘<x—1 x—2 x—1i _ x—l),
2 \i) — i i—1 1 i

and the lemma is proved.

Applying (39), it is sufficient to show that

1 1 fin)\é 1 1 in \i-1
e I S N
"= il(k) ad ks (i—l)l—l(k)

instead of (38). Both inequalities follow from

; log 2n
=~ logn/k ’

Thus set

s { log 2n } .

logn/k |’
that is,
- {1
logn/k| k|’

indeed.

6. FURTHER REMARKS AND PROBLEMS

(i) Theorem 6 and the corollary of Theorem 5 give for U the esti-
mation
log2n ) n
logn/k| k

logn n
—<< <
logen/k k — U‘—{

The lower and the upper estimations are formally very similar. Moreover
the ratio of the two bounds converges to 1 in the case n — oo only if
k = o(n) and (logn)/(log k) — 1.



193 ON SEPARATING SYSTEMS OF A FINITE SET

However, it is easy to see, that the ratio of the estimations is
bounded:

{loan}Hn_ 1+ logn 1 2logn
logn/k| k log n/k log nfk
< —
logn n logn . logn 4l luge)

log en/k "k loge + logn/k (14+loge)logn/k
If n — oo, this bound tends to 2(1 -+ loge); if in addition k& = o(n)
then it tends to 2; finally if k = cn then the limit is log (e/c)/log(1/c).

(i) The most important case is k = cn. For this case we have the
estimation

log n log2n) 1
22 el
H(c) _U_{logllc} ¢’

where

1 1
H(c):clogT—i— a1 — r:)logl =

On the basis of Theorem 3 it is not difficult to show that the lower esti-
mation is not even asymptotically the best (except for ¢ = 1/2). It is
well known that

d-:cx 1
z(i)~7-2wﬂ<d> for O<d<l1/2.
=0

In our case x = (logn)/H(c). Because of (33) we have

logn
[ HE)

Applying
=1 (x =2 fx—1 % L r [ x
Z:(7)==2 (") =52 (7)-=(7)

it is easy to see that (32) cannot hold for x = (logn)/H(c) and
r = c[(log n)/H(c)], only if ¢ = 1/2.

(iii) Our problem admits the following generalization. Let k,, ks,...,k,
be non-negative integers satisfying >?, k; = n, where n is the cardi-
nal number of the set H,. Further let A,(1 <i<m) be a partition
of H, into p parts having cardinal numbers k,, k,, . .., k,. We call a
system {A4,, A,, ..., A,,} separating if to any two elements of H,, there
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exists a partition 4, which separates these two elements. What is the
minimum of m?

Similarly to (1), (2), and (3) we can give necessary conditions for the
number of certain columns, but we do not know whether these condi-
tions are sufficient.
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