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CONTINUOUS VERSIONS OF SOME EXTREMAL
HYPERGRAPH PROBLEMS. II

By
G. O. H. KATONA (Budapest)

Introduction

In the previous paper [1] the simplest kind of extremal hypergraph problems
was considered: given a condition on the hypergraph, minimize the number of
edges (the number of vertices is fixed). In the present paper we treat another class
of problems. A good representative of this class is the following theorem of
KRUSKAL [2]. (By some kind authors it is called Kruskal—Katona theorem, based
on [3]; for simple proofs see [10], [11] and [12].): Given the number of vertices and
edges (g-tuples with a fixed g) of the hypergraph, the theorem determines the mi-
nimum number of (g—1)-tuples contained by at least one edge. To have a “con-
tinuous” version of this we take first all the “oriented” copies of the edges and of
the (g — 1)-tuples. In this way and edge of the hypergraph becomes simply g! elements
of the direct product X¢ of the vertex set X. We have to minimize the size of the
set of projections of these elements on X9~. It is easy to find a continuous analogue
of this problem; Take a measure space M=(X, o, 1) and choose a measurable
and symmetric set ECM? with a prescribed measure p,(E), so that the (outer)
measure of the projection of E on M?-! is minimal.

It is not hard to prove the continuous version of this problem by approximating
E with finitely many cubes (if it has a good shape), as it was made by DAYKIN [4]
who proved the continuous version of this problem, independently. However, if
we take a more complicated mapping in place of projection or we take some
assumptions on E, then we need a more complex proof. BOLLOBAS [6] suggested
a way, simpler than ours, which works for a wider class of problems. But their me-
thods fail to work in the generality of the present paper.

We try to make the continuous version of the following extremal combinatorial
problems. The number of vertices and edges of a hypergraph is fixed. The hyper-
graph satisfies certain conditions. Given a transformation which makes a new hyper-
graph on the same vertex-set, but the sizes of the edges may be new. The number
of edges of this transformed hypergraph is to be minimized.

The condition is of the following form: all finite spanned (induced) subhyper-
graphs belong to a prescribed family. The transformation maps any family of g-
tuples into a family of A-tuples (A=g) in a hereditary manner.

Although the paper is a continuation of [1], we shall repeat the necessary de-
finitions to make the paper selfcontained.

The methods of the proof are very similar to that of [1].
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68 G. 0. H. KATONA

Definitions, results

Let X be a finite or infinite set. G=(X, E) is called a directed g-graph (hyper-
graph), where EcC X9 that is, E consists of some ordered sequences of form
e=(x;, ..., X;,). The elements of X and F are called vertices and edges, respectively.
Multiple edgcs are excluded. The edges having less than g different vertices are
called loops. If Y X then the spanned subgraph Gy=(X, E)y=(Y, Ey) consists
of all those edges of G which satisfy x; ,Yforall jIf X'CX, E'CE, then (X, E’)
is a subgraph of (X, E).

Let ¢ be a set of finite directed g-graphs. We say that & is hereditary if for any
spanned subgraph G, of G€¥9, G,€¥ holds. If ¢ is not heredltary the hereditary
kernel % of % can be produced in the following way: G¢% if and only if all the
spanned subgraphs (including G) are in %. Itis easy to see that 9 is always
hereditary.

Let M=(X, 0, u) be a measure space with a finite measure. (In this paper
we shall consider only finite measures.) Furthermore, let EC X? be a measurable
set in the product space (X, o, p)?=(X", 0,, p,). We define the measure of a graph
G=(X, E) in the following way: u(G)=pu,(E).

Let ¢y be a function which maps the finite directed g-graphs to directed A-graphs
(h=g, fixed integer) with the same vertex-set. In other words @y maps the subsets
of X? (|X|<e) for subsets of X* in such a way that

1) ¢@x(E) is invariant under the permutations of X
and
2) ox(E) = ¢x,(E) when XcX, and EcC X

(1) and (2) imply that ¢y does not depend on X, just on the ‘“‘configuration” E.
It means that if ¢ is determined on a set X, then it is determined in any set of
a smaller cardinality. Thus, we write simply ¢ rather than ¢x. We call ¢ hereditary
if it satisfies (1), (2) and the condition

3) p(E)c @(E) if ECE,.
For infinite X’s ¢ is defined in the following way:
4 P(E)=ox(E)= U o(Ey).
Yyﬁflife
Let us introduce the next notation:
.L‘h(q’(E))
(%) B, 9, 0, M) = —W—,

where [i, is the outer measure generated by p, and inf is taken subject to the follow-
ing conditions:

(6) E is measurable in MY,
1y (E)

7 g =a,

vl n(XY

(8) all the finite spanned subgraphs of G=(X, E) are isomorphic to some graph
in 4.
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CONTINUOUS VERSIONS OF SOME EXTREMAL HYPERGRAPH PROBLEMS. II 69

It is easy to see that in condition (8) and in definition (5) % can be used equi-
valently in place of 4. Thus, in the future we can always assume that % is hereditary
without any loss of generality.

If there is no graph with |X| vertices satisfying (6)—(8), then B(x, 4, @, M)
is undefined. We assume throughout this paper, that this is not the case; when
Bla, 9, @, M) is used, it is always understood that there exists such a graph with
vertex-set X,

If X is finite, o will always be the family of all subsets of X. M, denotes the
measure space ({xy, ..., x,}, 6, &), where u(x)=1/r (1=i=n). M is called atomless
if for any A€o, p(A)=>0 there is a set BcC A, B€o such that 0<u(B)<u(4).

THEOREM. If % is a class of directed g-graphs and ¢ is a hereditary function

then the limit )
lim p(o, 4. ¢, M,) = pi(, %, )

exists for all but countable many values of o (0=a=1); it exists for a=0. By(a,
9, @) is defined to be equal to f.(a, ¥, p), where the latter is continuous and B,
(2, %, (p)—hm Bile—e, %, @) otherwise (x=0); f2(0,%, @)=I1im B(0,%, @, M,).

n—co

Then for any atomless measure space M

ﬁZ(a’ g’ q’) = ﬁ(as g’ (P, M)
holds.

Examples, remarks

ExAMPLE 1. We call a g-graph symmetric if it contains all the permutations of
its edges (x;, ..., X; ,)- Let & be the class of all symmetric g-graphs without loops.
Choose h=g—1 and define @ by @ (E)={(x, ee s Xgo D:(x1, ..., X,)EE}. Then for
a graph G=(X, E) ¢(E) denotes the set of (“oriented’’) non- loop (g —1)-tuples
being subsets of some edge in E. It is known (see [2], [3], simple proofs: [10], [11]

and [12]) that [];] non-oriented g-edges contain at least gjfl non-oriented
(g—1)-tuples (N is an integer). This means, that

A e L Gl

holds. As B(x, 9, ¢, M,) is a monotonic function of «, the inequality

N, N,
© (g——?li[;g—_—ll =B 9, 0, M) = :%“1—]

(e, _(¥)er

n? n?

follows from

v
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It is easy to see that the latter inequalities can be satisfied with N, =na'/9+0,(n)
and N,=na'/9+40,(n). Consequently,

lim B(ot, Z, o, Mn) = qla—Dlg

follows from (9). Using the theorem, we obtain that
B, 9, o, M) = ale—Dis

for any atomless M. The equality can be shown by the “cube”, that is the direct
product (g times with itself) of a set with measure au(X).

This result was independently deduced from the discrete case by DAYKIN [4].
On the other hand, it can be proved directly using the Holder-inequality, as it was
observed by LoomMis and WHITNEY [5], and A. MEIR [17].

EXAMPLE 2. Let 4 consist of the symmetric graphs without loops, containing
no empty (g+ 1)-tuple (g+1 vertices containing no g-edge). Choose an 4 (1=h=g)
and ¢ as in the above example: @(E)={(xy, ..., x3):(xy, ..., X,)EE}. Even the
discrete problem (f(x, %, ¢, M,)) is unsolved if g=3 and h=2. The case g=h=2
is the well known TURAN theorem [8]. The case g=2, k=1 is a consequence of it.

ExampLE 3. The discrete question is the following open problem due to
P. FrRANKL [15]. Given the number of vertices and g-edges of a symmetric g-graph.
Determine the minimal number of (g—1)-tuples contained by any union of two
edges. It is easy to see that this also fits to our conditions. h=g—1, and

qD(E) = {(x15 R, xg-l): X 7 xj (! ;t.])s 3(.Vla ---9yg ] (le sevy Zg)€E:
[y inrn Breiif 65 D ommi P B oen Bal
ExAMPLE 4, Put g=3, h=2. ¥ consists of the graphs without loops, containing

(x3, X5, X;) and (xy, X,, X3) simultaneously, ¢ as in Example 1. It is known (see [9])
that

ﬁ[(n—1)(n—2)(n—m):;m(n—m)(n—m—1)’g’ - Mn] ot n(n—-l);zm(m—l)
and
ﬁ(m(m—ln)a(m-nz) %0 M,,] _ m(n':z— 1)
if m(m-1)>n(nT_l)+n. It is easy to deduce
) if cxé—l:é 1
(10) lim (o, 4, ¢, M,) = iy
e a¥s if o= ﬁ =0,

where f~1(x) is the inverse function of f(x)=(1—x)*2+2x—1.
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What is now the continuous variant of this problem for the case when X is
(e.g.) the [0, 1] interval and u is the Lebesgue measure? Given a measurable set E
with volume « in the unit cube. E is symmetric on the plane connecting two opposite
edges of the cube, minimize the area of the projection on the side-plane which is
not cut by the above plane. It follows from our theorem, that the right hand side
of (10) is a lower estimation on f(«, 4, ¢, M). The contructions of Figure 1 show
that this estimation is the best possible. For this example see also [13].

a=1/J8 a= 1/J8

Fig. 1

ExampLE 5. The following problem of G. HALAsz [14] is not solved even in
the discrete case: In an undirected graph, the number of circuits of length g is given.
What is the minimal number of edges? It does fit to our model:

Let ¢ consist of graphs (with non-loop edges) G in which (x4, ..., x))€G is
followed by (s Xiyar oo0 s KgsXas sova Fi—)€G 0 ity Xy v 3 Xaw Xy 2009 X5321)EC
for all 1=i=g. h=2 and ¢ is as in Example 2.

REMARK 1. Sometimes it is easier to prove the continuous version than the
discrete one. The aim of our theorem is not necessarily to show a way of proof
for the continuous cases. Its aim is only to show the connection. However, it can
happen that there is only an inductional proof and in this case our theorem gives
a good way to the continuous through the discrete. On the other hand, the con-
tinuous version can be better visualized and this geometric picture can give a hint
for the proof of both cases.

ReEMARK 2. It is very concievable that we have equality in the theorem. How-
ever, we were not able to prove it.

REMARK 3. We did not work out here the case when M has “atoms”. However
[1] shows how it could be made.
The last example shows that the limit lim f(«, 4, ¢, M,) does not exist in
n—>co

general, and Tim f(a, %, ¢, M,) is not necessarily a continuous function of a.
s

EXAMPLE 6. Let % consist of the symmetric 2-graphs. Let further £ be a set
of (2-) edges, then
the set of vertices contained by the edges in E
if it contains a triangle (3 vertices with all the
6 non-loop edges) or a loop
@ otherwise.

p(E) =
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72 G. 0. H. KATONA

It is easy to see that ¢ satisfies (1), (2) and (3) that is, ¢ is hereditary. Choose
a=1/2. If n is even, then B(1/2, %, ¢, M,)=0, since the complete bipartitie graph
with n/2, n/2 vertices has exactly n?/2 edges, contains no loop or triangle, con-
sequently its @=@. On the other hand,

BU/2 9, 0, M,) = {]/"2;‘}/,1

({a} is the smallest integer =a) if n is odd. This follows from Turan’s theorem:
If the graph has more non-loop edges than the (n—1)/2 times (n+1)/2 complete
bipartite graph has, then it contains a triangle. The above bipartite graph has
(n*—1)/2 edges. Therefore, if E satisfies (7) with «=1/2 then it must contain either
a loop or a triangle. Denote by v the number of vertices being in the edges of E
(the “real vertices™ of E). The number of edges is at least (n2+1)/2 if n is odd. Thus

2
g +I}§v. On

the “nequality (n%2+1)/2=v? is obvious, its consequence is {]/

2

the other hand, {V - ;_ ; } can be easily constructed by a complete graph.

We have obtained

lim B(1/2,%, 0, M,)=0

n—-oco

and
im B(1/2, 9, ¢, M,) = 1/V2,

i.e. the limit does not exist.
It is easy to see, using similar ideas, that
! 0 if a<l1)2
nllrgﬁ(aﬂ g’ P, Mn)={-|/& lf (1>1/2

(see Fig. 2). The limit “function” is not continuous.

Fig. 2

On the other hand, it is easy to construct an example, when B(1/2, %, ¢, M)=0,
that is, the lim is the exact estimation. Let M be the [0, 1] interval with the Lebesgue
measure and let E be the set of pairs (x, ) where (1/2<x and y<1/2) or (x<1/2
and 1/2<y). Then E satisfies conditions (6)—(8), but it does not contain a complete
triangle, consequently ¢ (E)=0 and B(1/2, %, ¢, M)=0.
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CONTINUOUS VERSIONS OF SOME EXTREMAL HYPERGRAPH PROBLEMS. 11 73

REMARK 4. Condition (8) could be substituted by ¢(E)=X" when (8) is not
satisfied. In this case we would not use ¢ just ¢. However, in this case it is more
complicated to formulate the conditions assumed on ¢. This is why we choose
this way of formulation. (See problem 3.)

The proof

For the proof of the theorem we need a lemma which is a special case of the
law of the large numbers. We did not find it in the same form, but there are many
close versions (see e.g. [16]).

LEMMA 1. Let &,, &,, ... be identically distributed random variables with existing
expectation M, and variance D,. Denote by f(n) the number of pairs &, &; (1=
=i, j=n) such that §; and &; are not independent. If

(1) f—f::) ~0
then for any =0 and 6=0
1 »n
(12) - Z &i— =&
ni=1

with probability 1—6 when n is large enough.

. ; : 1
PrOOF. Let us consider the variance of the random variable {,=—
The equalities 2

(13) D) = M((G— M) = M [[% b (c,-—Ma] ] =

i

Gi-

13

1 ] “E A
= _2 [[ Z(é MI)] ] = ;1— ; ;M((fr“Ml)(&j_Ml))
are obvious.
Observe that M((&i——Ml)(éj—Ml))=0 if £; and §; are independent, and

|M((&—M)(E—MY)| = VM((E— MDY M((¢;,— M)?) = D?
otherwise. We have

D) = = f(m) D}
by (13). Hence
(14) lim D*() = 0

follows from (11). Apply the well-known Ceby3ev-inequality:
D2(L,
15) P(tu— M) = ) < Za).

If n is large enough, D?(£,)/e2<d holds by (14) and (15) gives the statement of
the lemma.
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74 G. 0. H. KATONA

Now we give another form of this lemma, closer to our needs.

LemMA 2. Let M=(X, g, n) be a finite measure space, E be a measurable subset
of X9. Then

I Bty 1(E)
4 n(xy

with a measure p(X)"(1—29).

ProoOF. We may suppose that u(X)=1. Let y,, ..., y, be independently chosen
elements of X, and define the random variables £(iy, ..., iy; V1, ..., ¥,) by

L if (J’il,---’.Vig)EE
0 otherwise.

(]6) é(ila---vig; yl,"'!yn)={

It is easy to see that their expectations and variances do not depend on 7, ..., i,,
that is, they are identical, M;=p,(E). Two variables of form (16) can be de-
pendent only when there is an equal number among iy, ..., i;and iy, ..., i;. The num-
ber of such pairs is equal to

(17) 2 (the number of sequences ij, ..., i

LS ERERTL P

, non-disjoint to iy, ..., i,).

One term here is equal to n9— (the number of disjoint sequences). The latter term
is at least (n—g)? and this gives an upper estimation for (17):

S (w9 (n—g)) = n¥—ns(n—gy.

l‘l,...,!g

Since the total number of pairs is #% and (nzg—ng(n g)%)/n*—~0 when n-—co,
(11) is satisfied. We may apply Lemma 1. Z'&j in (12) becomes |Ey, . ,3l/n°
in our case. The lemma is proved.

PrOOF OF THE THEOREM 1. Suppose M =(X, o, ¢) is an atomless measure space
and G=(X, E) is a graph satisfying (6), (7) and (8). Let us introduce the following
functions:

. ) 1 if (piy, ..., Yi€@(Eyy,, ...y
(18) TI(lys sossdys Wisrewm Py = {0 liapise
and
(19) SO s yw) = 152’; Fbiry voey 3 Wiy Jid)-
(1%_‘;5}-)

In other words f(y,, ..., »,) is the number of the ordered sequences (y;,, ..., ¥;,)
being in @(Ey, 1) Note that the functions (18) and (19) are not necessarily
measurable. For this reason we introduce I (iys -5 043 Y15---» ¥, as the indicating
function of a measurable set containing the support (denoted by supp) of I(iy, ..., iy;
Y15 -5 ¥,) While

(20) p(suppI(iy, ...yips Yisooos ¥u)) = A(SUPP I (iys v B3 V1o ooes Va))-
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CONTINUOUS VERSIONS OF SOME EXTREMAL HYPERGRAPH PROBLEMS. II 75

Similarly to (20) we have
(21) f{yls---ayn)z Z I(ils"-sih; yls“"yn)'

(11;',-5;)
After these, the notation @ (E) is obvious.
I, 2, ..., h; y1, ..., y,) is necessarily zero if (y,, ..., ¥») 4 @(E) by (3) and (4).
In other words, I(1, 2, ..., h; y4, ..., y,) as afunction of y,, ..., y, can be one only
if (y1, ..., VE@(E). Consequently, suppI(1,2,...,%4; y1, ..., Y )C@(E)X X"
and supp (/(1,2, ..., h yy, ..., ¥))C@(E)X X"~" follow, where @(E)XX"" is
measurable. Thus (@(E)xXX" ") Nsupp (I(1,2, ..., h; 34, ..., »,) is measurable
and it contains supp (7(1,2, ..., k; y;, ..., y,). This means, that we could choose
this set in place of I(l, ..., A; y;, ..., ¥,). Suppose, that I(l, ..., A; 1, ..., ¥p)
is chosen in this way. Then we have

22 supp (I(1, ..., b5 y1, ooy ) © BLE)X X",
ff(yls-"syn)d#nz Z fr(ily---yih; Y1,---=yn)dﬂn=
xn

= n"(1+o0(n)) ff(l,...,h;yl,...,y,,)dp,,én"(l-{-‘o(n)) f ldu, =

PEYXX"-h
= 1 i@ (E) (X ="(1+ o(m)
follow from (21), (22) and the definition of @(E). We shall use the inequality

(23) ST s y) dpty = nhig (@ (E)) p(X)=*(1+ 0(m).

2. Assume that y,, ..., y, are different. £ (y,, ..., »,) is simply the number of
elements in ¢(£y,, ...,,). Thus

W(E(yl,"-ﬁ_l = TV s P

n" n"

E
| L S A

follows from (5), since (6)—(8) are satisfied. As f is a monotonic function of «,
we obtain

> 4 [ﬁ:«(\’b;z TET M..] = f(_ylnh_y)

from (24), lemma 2 and the definition of f. (25) holds with a measure u(X)"(1—3)
on the basis of Lemma 2 and the fact that in an atomless measure y,, ..., ¥, are
almost surely different (see Lemma 4 of [1]).

Take the integral of (25) over X" and use (23):

e wOra-9p(BD 09,0, M) = o [T0u s v
¥,

= m(eE)pX) " (14 o0(n).
Since E is supposed to satisfy (7) we can write

(27) ﬂ(“"'sa ga @, Mn)—é = (1 _6):B(d—£s g: Ps Mn) = uh(((plY(')h)) (1 +o(n))

né

[IA
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76 G. 0. H. KATONA

instead of (26). By (5), E can be chosen in this way:

My (‘P (E ))

W éﬂ(ot,g,qo, M)+’5

From this and (27)
Bla—e, %, 0, M,)—6 = (B(o, %, ¢, M)+ 5) (1+0(n))
is a consequence of (5). Hence

(28) 1imﬂﬁﬁ(u_8’ g? (Ps Mn)éﬁ(asg) (ps M)

e+0 n+>oo

easily follows when o= 0.

3. Apply the proof of Section 2 for M,, in place of M (m is > n). In Section 2,
we used that M is atomfree only in one place, namely, that y,, ..., y, are different
with measure p(X)". If we use M,, in place of M, this is no longer true, but the
measure of sequences yy, ...,», with two identical members is small; at most

[g]/m Consequently, (25) holds with a measure ,u(X)"(l—zS)—[g]/m (where

pu(X)=1) in place of u(X)"(1-9). If m>[g]/5 then the new term is less than §,
thus we can simply write 1—26 in place of u(X)"(1—4) into the formulas (26)

and (27):
Bla—2.9, ¢, M)—25 =,(0 (E))(1+0(n)).

B(O!—E, ga Q, Mn)—25 = ﬁ(d7 g’ P, Mm)(l —|—0(11))

That is,

follows if n is large enough depending on g, § and m>[g] /5. Hence

(29) im f(a—e, %, 0, M,) = lim B(x, %, ¢, M,,).

Denote the interval [lim (x, 4, @, M,), im B(x, 4, ¢, M,)] by I,. 1t follows by (29)
that these intervals are disjoint (and, of course, they lie in [0, 1]), therefore the
length of I, is positive only for a countable set of values «. For the other values
of a, I, is a single point, that is [im=lim; the limit Jim B(o, %, ¢, M,) exists. The

function f,(a, ¢, @) is defined in all but countably many places. Note that f; is
monotonically increasing. An increasing function is continuous with countably
many exceptions. Thus f;(x, 4, ¢) is defined and continuous on a set [0, 1]—A4
where A4 is a countable set. The left hand side of (28) equals

lim lim B(x—e¢, 9, @, M,) (x—e€[0, 1]—A) for any «€]0, 1],

£—0 n—co

that is, lil’{)l Bi(x—e, %, @) (for a«—e€[0, 1]—A). This is, by definition, equal to

Ba(at, %, ). The inequality of the theorem follows from (28).
4. The case a=0 can be settled by an easy modification of sections 2 and 3.
The proof is complete.
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Open problems

1. Is equality in the theorem?
2. What happens if we allow the existence of ‘“atoms”?

3. For what general class of ¢@’s can a similar theorem be proved?
(See Remark 4.)

4. Under what conditions on ¢ and ¢ can we state that f,(a, ¥, @) is a) con-
tinuous, b) continuous from left (right) hand side, c) defined everywhere?

5. The papers [4] and [5], where the product of the volumes of the different
projections is considered, suggest a more general concept of our function ¢. It would
be nice to work out the right concept and prove a more general theorem.
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