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SEARCH USING SETS WITH SMALL INTERSECTION
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We consider the following type of questionnaires. Let X be a set of cardinality #, and x
an unknown element of X. Let &« = {A;,..., Ay, } a family of subsets of X. The informations
relative to the belonging of x to A; (1 < 1 < m) are given. These informations must be suffi-
cient to identify an unknown element of X. The aim of the work is to determine the minimum
of m if we impose different conditions on @ . The case [A;l < kis solved in [1]. In this paper,
we consider the case |A; N Ajl < k,for every A;, Aje a.

Recherches utilisant des codes de petite intersection

On considere le type suivantde questionnaire. Soit X un ensemble de cardinalité 7 et x un
¢lément inconnu de X. Soit & = {A,..., A, } une famille de parties de X. Les informations
concernant I'appartenance de x a A; (1 < i < m) sont a notre disposition. La famille & doit
posséder la propriété que ces informations suffisent a identifier un élément quelconque de X.
L’objet de I'examen est de déterminer le minimum de i si on pose sur & différentes conditions.
Le cas 1A;l < k est résolu dans [1]. Dans le présent article on considére le cas 1A; N A <k
(pour chaque A; A ea).

INTRODUCTION

Let X be a finite set of # elements and x be an unknown element of X. We can
have the following type of information on x. For some subsets A C X we may ask
if x € A or not. Using this type of information we have to determine uniquely the
unknown element x. There are many practical situations where this model is more
or less correct. We say that the search is sequential if the choice of the next question
(subset) can depend on the answers of the previous questions.

Otherwise the search is called unsequential. In this paper we shall consider the
latter type, only. In this case the search is simply a family @ = {Agyeoas)of
subsets with the property that the information “x € A; or x E A, (1 i < m)”
determines x uniquely. The mathematical problem is to minimize m under some
constrains on (. In [1] this problem has been solved when the constrain is A<k
(1 <i<m;k<n/2fixed;| | denotes the number of elements. In the present paper
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the following constrain is considered:
|A; DA< kK A<i,j<n,i#J], k<n/4).
3
The case k = 1 is completely solved. If & < c+/n we have fairly good lower and
upper estimation. The other cases are practically unsolved.

It is worth-while to mention that under the constrain A; < k the best sequen-
tial search (minimizing the maximum number of necessary questions) is determined
in [2]. However it is an open question under the present constrain (|A; N Al <k
can be assumed either for all the possible questions or only for the questions occu-
ring at a given x).

LOWER ESTIMATIONS

Let X be a finite set and A be a subset of X. We say that A separates two
elements x and y of X if A contains exactly one of them. The family
& = {A,,...,A,} of subsets of X is called a separating system if any pair x,
¥y € X (x # y) is separated by some A, (1 <i < m). It is easy to see tha the informa-
tion “x € A; or x € A; (1 <i<m)” determines x uniquely iff @& is a separating
system. Consequently, our aim is to minimize m under the conditions that

a) (& is a separating system on an n-element set X,
b) 1A, N A<k (I1<i,j<m,i#], k < n/4).

LEMMA 1 — Let & = {A,,...,A,,}bea family of subsets of the set
R =L IR )
(n = 1), satisfying (a) and (b). Then m is not smaller than the minimal m satisfying

MG -G o

§ (Men<t ()

1=0

and

m m
for some r (1 <r<m; for r = m (2) should be understood as Z ( ) )= n .
i=o !

Proof. 1) Let B = (b;) be the incidence matrix of &, that is, b; = 1
if x; € A; and 0 otherwise. Denote by s; the number of columns of B having exactly

i I’s (0 < i < m). Then the next inequalities can be verified:
m
o<s<() 3)
i

3 s;=n 4

(=]
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(3) follows from (a): Since any two elements of X are separated by an A;, to any
two columns there is a row (the ith) what contains 1 in exactly one of these
columns. It means that the columns are different. The maximum number of different

m
columns with 7 1°s is ( : )
i

(4) is obvious. (5) follows from (b): The number of pairs b;; = by; = 1 can
not exceed k for any fixed (i, i"). Consequently, their total number (left hand side of

m
(5)) can not exceed k ( 5 )

m
2) Let m, 54,5, . - . ,S,, satisfy (3)-(5) and suppose s; <( ) ), S;4+q - 0 for
i

some 0 <i <m. We shall prove that m, s,s,,...,5; + 1,5,,, —1,...,s,, also
satisfy (3)-(5). (3) and (4) are satisfied trivially. The left hand side of (5) is increased

) (-1

3) By repeated application of the previous result we arrive at the situation

when
m .
s,.=(_) 1<i<r
i

that is, it remains true.

r

m

sr+1 =n72 (l)
i=0

and 5;,=0,r + 1 <i<m for some r. For these numbers (3)-(5) is equivalent to

(1)-2).

LEMMA 2 — The minimal m of the solution of (1) and (2) is attained for the
maximal r for which there is a solution in m at all.

Proof. At a fixed r the set of solutions of (1)-(2) is contained in the set of
m's satisfying (2). However, this is an interval of integers and moreover these inter-
vals are disjoint for different r’s. Finally if » > r’ then the corresponding intervals
are ordered in the opposite way. The statement of the lemma immediately follows.

2
LEMMA 3 - If 1 <k <3—36 \Bfn— then the minimal m satisfying (1) and (2) is the

T

minimal m satisfying (m )

n<1+m+(';)+(k—1)—§- (6)
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Proof. 1) Let us verify that
m
n<k ( ) 7
5 )
follows form (1) and (2) if # = 3 and m = 4. Indeed, the left hand side of (2) implies
(r +1 ) ( i )
r /m 2 2
Z ( ) P TR <n
- r
i=o ! ( ) =9
2

(supposing r = 3, m = 4). Hence we obtain

<2 (G-

and (7) follows from (1). (The case r = 3, m = 3 can be checked by easy computa-
tions).

2) From (7) we have \/2n/k < m, that is, by the supposition on k,
m>3/6n. (8)

m m m>
Ifr=3,thenn=>1+m+ (2 )+ (3 ) ?6— follows from (2) and this contra-

dicts (8). We have proved that under the conditions of the lemma r < 2 must hold
for any solutions of (1)-(2).

3) Forr = 2 (1) and (2) are of the from

k+2/m
ALY ( ) )
3 2
and
m m m
1+m+( )<n<1+m+( )+( ) (10)
2 2 3
Let us verify that
k+2/m m m
14+m+ ( )<1+m+( )+( ) (11)
3 3 2 3
2
for any solution of (9)-(10), supposing & <% 3/17 (11) holdsiffk — 1 <m — 2.

Assume, in the contrary that £ + 1 = m. Hence and from (10) we have

m my m>*+5m+6 (k+1P+5(+1)+6
n<1+m+(2)+(3)= 5 < 2 .

9
The supposition of the lemma is ~2~ k® < n. Comparing it with the above inequality
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we obtain
k® +3k2+ 8k + 12

6

9

3

and this is a contradiction for any k£ > 0.
Thus we have proved that we have to consider

m k+2,/m
1+m+( )<n<l+m+ ( )
2 3 2

rather than (9)-(10)

4) We prove now that (12) always have a (n integer) solution in m (supposing

2 3
1 < k<5= +/n).
,_36\/_)

m k+2 /m
For agivenm,1 + m + (2)and 1+m +?(2)determjne an inter-

val. We have to see that these intervals cover all the natural numbers. Indeed, it is
easy to see that

m+1 k+2 /m
1+(m+1)+( )<1+m+ ()
2 3 2

holds if kK > 2 and m > 8. However, the beginning of the interval corresponding
to m = 8 is 37. The intervals cover all the integers n > 37. If n < 36 there

isno k satisfying 1 < k < 32 ,S/n_

Vv 36
We have proved that (1)-(2) has no solution for r = 3, and it has a solu-
tion for r = 2. On the other hand (1)-(2) is equivalent to (12). By lemma 2 this
means that we have to consider the minimal m, satisfying (12). Our lemma is
proved.

Case k = 1
m 2
The left hand side of (1) > (2 ) (2) if r = 3. For kK = 1 this contra-

m
dicts (1). If » = 2, the contradiction is avoided only in thecasen =1 +m + (2 )

m
It means that if n can be written in the form 1 + m + (2 ) for some integer
m, then this m is the minimal solution of (1)-(2) by lemma 2. Otherwise there

m

is no solution for r =2 2, and for r =1 we obtain <1 + m +(2),
m

1+m<n<1l1+m+ (2) from (1) and (2). The minimal m in this case

m
is the minimal m satisfying n <1 + m + (2 ) ;
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Summarizing the two cases: the minimal m satisfying (1) and (2) is the
m
minimal m satisfying n <1 + m + (2 ) By lemma 1 this is a lower esti-

mation. This lower estimation is exact. It is easy to construct &L = {A,,..., A}
by constructing the corresponding incidence matrix B. Let B consist of the
column containing m 0's, all the different columns containing one 1 and m — 1
0's and n —1 —m different columns with two 1's. Here 0 <n — 1 —m

m
follows from the minimality of m (in n <1 +m + (2) . The matrix ob-

tained in this way obviously satisfies the conditions that it has different columns
and any two rows have at least one place with 1 — 1. The corresponding system
@ satisfies (¢) and (b). We have proved the following.

THEOREM 1 — If & = {A,,..., A} is a separating system on an n-element
setand |A;N A< 1 (1 <i, jsm, i#])), then

vy, g {
§ e T,
( 2
(where {a} denotes the least integer = a) and this is the best possible estima-
tion.
Case k = 2

Using the theory of Steiner-triple systems we obtain an almost complete
solution here.

THEOREM 2 — If = {A,,...,A,} is a separating system on an n-element
setand |A;N Ai' <2 (1 <i j<m, iFj) then the minimumof m is

?m_lz
4

(13)
" | VIR DB 1)
i 4 \

Proof. 1) It follows from lemma 3 that (13) gives a lower estimation for
m, if n 2 37. For n < 36 it can be shown by more or less clever computation.

+1

m
2) Prove now that if s < (2 ) / 3, then there is a system of s different

triples on m elements, such that any pair is contained in at most 1 triple.

It is known (e.g. [3]) that for one of the numbers my=m — 1, m, m + 1
m
and m + 2 there is a Steiner triple system,that is, a system of ( 20 ) / 3

such that any pair is contained in exactly 1 triples.
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If there is a Steiner triple system for m — 1, let us arbitrarily delete
m — 1
( 5 ) / 3 — s triples and add an isolated point. This construction proves
the statement in this case.

m
If there is a Steiner triple system for m, delete (2) 3 — s arbitrarily
chosen triples.

If there is a Steiner triple system for m + 1, delete a point with the m/2

m + 1
triples containing it. Thus we have ( 5 ) 3 — m/2 triples on m points

m — 1
with the desired property. However, as this number = ( g ) 3 we can

delete some more triples until we have only s.

Finally, if there is a Steiner triple system for m + 2 we have to delete 2

m + 2
points with the triples containing them. In this way we obtain ( 5 ) / 3-m
m + 2 m — 1
triples on m point. As ( 3 ) 3—-m= ( ) 3 this case is also

2
settled.
{ v24n —23 —1 )

3) Let m = ‘ q S + 1. We shall construct the incidence

matrix B by its columns. It will have one column full with Q's, m columns

m
with one and (2 ) columns with two 1's. It is easy to see, that the number

of remaining columns

one (e () < (7Y

Choose now s different columns with three 1's in each, according to the previous
result (section 2 of this proof). It is easy to see that B satisfies the conditions. The
theorem is proved.

Case | <k<c~n

The same proof works for the following more general case.

THEOREM — \3/? Let @ = {A,,...,A,} be a separating system on an
n-element set and
A, NA;l <k (I<ij<m, i #7)

Jn

where 1 <k < =

V36

Then the minimum of m is between
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(k-4+VE—aF+28C T @D

( 20k +2)
and
(—3M +u+1+vVBM—u— 1)+ 8Mu|
Mt : |

where M + u is the first integer = M such that there is a system of triples on
an M + u -element set containing each pair exactly k — 1 -times.

Open problems

The problem of the paper can be formulated in the following way :

Problem 1 — Let Y be a set of m elements. What is the maximum number
of different subsets of Y, such that any pair of elements is contained in at most
k subsets?

Another, more hopeful problem needed to the solution of the case \3/ n:

Problem 2 — The number n of triples in an m-element set is given. Mini-
mize the maximal valency of the pairs. (The valency of a pair is the number of
triples containing it.)

Problem 2a — 1s it true that for any m and n, the n triples can be chosen
s0, taht the valencies differ at most by 2?
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