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CONTINUOUS VERSIONS OF SOME EXTREMAL
HYPERGRAPH PROBLEMS
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INTRODUCTION

In [6] there is an application of the well-known graph-theorem of
Turédn [1] in the probability theory. As [6] is written in Hungarian, it is
wortwhile to repeat here briefly the statement and the idea of the proof.
Let us first repcat 1'urdn’s theorem in a special case:

If a graph (no loops or multiple edges) with vertices Vis--.,V, has

no empty triangle (for any 3 different vertices there is at least one edge

among them), then the number of edges is at Ieast g{g — 1].

We need it in a somewhat modified form, namely if the graph has no
empty triangle then the number of pairs (vi, V].) such that v, and v, are

2
connected or equal is at least %—. This follows easily from the theorem,
as this number is equal to the double of the number of edges + n.

Now the inequality from probability theory, what we want to prove:
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Let & and nm be independent and identically distributed random
variables in a d-dimensional Euclidean space.

Then
©  PUE+nI=x)>5PUE> 0

Observe that for any 3 vectors a,,a,,a, with |a;| > x (i=1,2,3)
there isa pair i#j suchthat |a,+ a}.l > x. Define a graph G with the
vertex-set {w: | §(w)| > x}, where w, and w, are connected iff
| §(w,) + E(w,)l = x. This graph, by the above remark, does not contain
an empty triangle. P(l§+n1=2x)=2P(E+nl=x, [E=x, Inl= x)
and this is the measure of the pairs (w,, w,) such that w, and w,
are connected. w; = w, is trivially counted. For the discrete case we
know that this number is at least the half of the total number of pairs.
Thus we may expect the same for the measure of the pairs (w,, w,) in
the direct product.

The aim of this paper is to investigate, under what conditions can we
transmit the Turdn-type discrete theorems to continuous cases. It is a very
easy task if we suppose that the set of edges in the product space is ”nice”
(e.g. its boundary is a Jordan-curve if the measure space is the [0, 1] in-
terval with the Lebesgue measure). However, our above example shows
that usually we cannot suppose anything else but measurability.

It should be remarked that [11] already contains theorems of this
type, but it is written in Russian and the results of the present paper go
much further.

The idea, that there is a need of continuous versions of combinatorial
results, is not new. E.g. Nash-Williams [9] suggested to explore this
field. Moshe Katz [3] worked out the continuous version of a certain
combinatorial result of himself. Vera T. Sés [2] and N. Sauer [7]
also have unpublished results of this kind. Very likely there are other simi-
lar papers and results producing the continuous versions of some given
discrete result, but — I think — up to now there is no systematic treatment
of this subject.
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RESULTS

Let X be a finite or infinite set. G = (X, E) is called a directed g-
graph (hypergraph), where E C X%, that is, £ consists of some ordered
sequences of form e = (xl.1 o s gy Iy x; € X (1<j<g). Theelements

g /)

of X and E are called vertices and edges, respectively. Multiple edges
are excluded. The edges having less than g different vertices are called
loops. If Y C X, then the spanned subgraph Gy = X,E), = (Y,E,)
consists of all those edges of G which satisfy xije Y for all j. If

X'CX, E'CE then (X',E'; is a subgraph of (X, E).

Let G be aset of finite graphs. G is symmetric if G is closed for
the permutations of the vertices. As the vertices are not numbered this
property automatically holds. It will be always supposed without saying
it. We say that we double a vertex x of G = ({x,x,,...}, E) if the new
graph G, = ({x', x”,xl, ...}1L,E;) contains the edges (...,x',...),
(...,x",...) if and omly if E contains the corresponding edge
(...,x,...). G is called doublable if for any member of G Gd €EG
holds.

G is called hereditary if for any spanned subgraph G, of GEG,
G, €G holds. If G is not hereditary, the hereditary kernel G of G
can be produced in the following way: G € G if and only if all the spanned
subgraphs (including G) are in G. It is easy to see that G is always
hereditary. On the other hand, if G is doublable, G is also doublable.

Example 1. Put g= 2. Let G, consist of the graphs G having
the property that G{xl xg%3} contains at least one non-loop edge for any

3 different vertices X13Xq5, X4 (Thus (or and?) G contains all the graphs
with 1 and 2 vertices.) It is easy to see that G, is hereditary. However it
is not doublable as the graph G = ({x;,x,,x,}, (x,,x,)) shows: Ge& G,
but if we double the vertex x5, the graph G, = ({x, X3 x'3, x'é ks
(x,,%,)) isnotin &, the subgraph spanned by x
tains no edge.

x; and XL cop-

e 3
Example 2. Put g=2 and let G, consist of the graphs G con-

taining all the possible loops and having the property that G{xl’x2 ]
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contains at least one non-loop edge for any 3 different vertices x,,x,,x
It is easy to see that G, is hereditary and doublable.

3-

Let M= (X, o0,un) bea measure space with a finite measure. (In this
paper we shall consider only finite measures.) Furthermore, let E C X% be
a measurable set in the product space (X, o, u)é = (X¢, Ogs Ky). We de-
fine the measure of a graph G = (X, E) in the following way: u(G) =
= ,ug(E). If G is a family of finite (directed) g-graphs then introduce
the notation

where the infimum is taken over all measurable E C X¢ satisfying the
condition

all the finite spanned subgraphs GY (YC X) of

2
@ G = (X, E) are isomorphic with some graphs in G.

It is easy to see that in condition (2) and in definition (1) G can be
used equivalently in place of G. Thus, in the future we can always assume
that G is hereditary without any loss of generality.

If there is no graph with | X| vertices containing all of its spanned
subgraphs from G, then H(M,G) is undefined. We assume in this paper,
that this is not the case; when H(M, é) is used, it is always understood
that there exists such a graph with vertex-set X.

If X is finite, ¢ will always be the family of all subsets of X.
Mn denotes the measure space ({x1 PRRPEN. 8 - W), where u(xi) = %
(1<i<n). M is called atomless if for any A€ g, u(4A)> 0 thereisa
set BC A, B€ ¢ such that 0 < u(B) < u(4).

Example 3. Let G, be as in Example 1. The theorem of Turédn
[1] says that if a non-directed 2-graph (without loops) with n vertices

contains no empty triangle then the minimal number of edges is % (—g -1 ]
— 12

for even n and ("_21] forodd n. Thus,if M=M, and G = (X,E)

is a graph satisfying (2), then
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nn
- 1, (E) n2 4 2n
m ==
E #2(X2) [?1-1]2
IR N - T
n? 4 2n 4un? '
Using our notation (1) we can write
1 R
2" n if n is even
3) HM,,G)=1 .
Z_E-'-W if n 1is odd.

Observe, that for the class G, of Example 2 we can write

1
4) HM,,G,)> % + o> 5.

The next lemma will express that if we identify elements in X,
H(M, G) is not decreased for doublable G’s. Let M= (X,0o,u) be an
arbitrary measure space and A € ¢ be a measurable set. Define M4 =
= (X4, g ,u1)  in the following way: XA =(X-A)VU{a }, where
a& X (a stands for symbolizing A), o, = {B: (BCX—-A and B€ o)
or (B=B'U{a} and BuAde€o forsome B'CX—A)} and u(B)=
=ud(B) if a¢ B, p?(B)= puB — A) + u(A) otherwise.

Lemma 1. Let G be a doublable class of directed g-graphs, M =
= (X, 0,un) be an arbitrary measure space and A € ad be a measurable
set. Then

(5) HMA,G)> HM, G).

Proof. Let E4 be a measurable set in (M4)% such that all the
spanned subgraphs of GA = (x4 )S,EA) are in G. Define the graph
G=(X%,E) in the following way: (x,,... ,xg)e E (x;€X) iff
b S ,yg)EEA, where y,=x;, when x,¢A and y,=a other-
wise. We prove that G also has the property that all of its finite spanned
subgraphs are in G.

Suppose, in the contrary, that G contains a (finite) spanned sub-
graph G, & G. There are two possibilities:
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(@) ITNAI< 1,
(b) ITNA|> 1.

In case (a) put T'= (T —~A)U {a}. Then (G4),. is isomorphic to
G, consequently G4 has a spanned subgraph not in G, what is a con-
tradiction. In case (b) we can obtain (G4 )y from G, by identifying
the vertices in 7N A. It means that G, can be obtained from (G4 )y
by repeated application of doubling the vertex a. As G is doublable
(G4 )+ & G follows from G, € G, and this is a contradiction again.

Choose any E“ satisfying (2) (in M4). We just proved that the
corresponding E satisfies (2) (in M), too. Consequently for such E’s
K (E)
K, (X¥)

(6) = HM, G)

holds by (1). It is easy to see, that u: (E4) = p (E) and ,u; (X4)8) =

= ug(Xg), thus we obtain by (6) that
pl (E4) Np——
Tt o

holds for any E4 satisfying (2). Hence (5) follows using (1), again. The
proof is completed.

Lemma 2. Let G be a doublable class of directed g-graphs. Then
the limit

(7 lim H(M,, G)

n—>co

exists. If furthermore M is an arbitrary measure space then

(8) HM,G)> lim HM,, G).

n—» oo

Proofs.

1. From Lemma 1 it follows by induction that
&) HM',G)=> HM_, G),
where
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M = (X', d',u), X' % aiakpls  HEY= &

d
(integers, 1< i< d), Z k;=n.

i=1
2. Let M= (X,o0,u) be an arbitrary measure space and G = (X, E)
be a graph satisfying (2) (E C X¢¥ measurable). The relation

nSHM, > G)u(X)" <
(10) ! n!
S =i KB + (n& W)M(X)"

will be proved soon. Define the function f on X" in the following way:

JOs:0.,0,)=
(11) = (the number of ordered sequences (yil e e ,y,.g) EE,
I<i<n, 1<I<yp) (s s ox ¥, ) E XY
Assume that Vis++-sy, are all different. In this case f(y1 L ,yn)
is simply the number of edges of G{J’l»----J’n}' The spanned subgraphs of
G{yl""’yn} are spanned subgraphs of G, consequently G{J’p---»J’n} sat-

isfies condition (2).

f(yl, o & 3yn)
(12) HM ,6)< ——————
n ng

follows from (1).
Assume now that there are only d different values among the »’s.
d
Let the multiplicity of the i-th value u, be k, (1<i<d, 21 ki=n)
1:

Let M' be defined in the following way: M'= (U, o,pu’), U= {ug,..
e s wyilia by u'(ul.) = k; (1<i<d). Consider the graph G, - Its spanned
subgraphs are all from G, therefore (1) implies that

W(EY)

(13) HM', G) < 7
n

It is easy to see that
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(14 HED =0y, 9,).

It means that (12) holds in this case, too; it follows from (9), (13)
and (14).

(12) yields
(15)  nEHM,, G)u(X)" < [ fry,...,»,)d.
Xn

We need some more functions;

1 if (yl.,...,yi)EE
I(il""’ig’yl""’yn):{ ! &
0 otherwise

The equality

f(yly"°:yn)_ Z I(l "-1ig’y1"--’yn

l<1<n
lgjég

is obvious and leads to

A6) [y, ydu= 2 My Yy ) dR
Xn

Ql <n xn
1<1<g

Assume that i,,..., ig are different. Then

[ (PP S8 R 8 T

Xn
(17) = [IQ,....8y,...,y,)du=
Xﬂ
= [ ldp=pE)uX""E.
Exxn=&

The inequality
(18) [ p,)dus
Xﬂ
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|
< Gt U E MO8 + (nf — ) wC)"

follows from (16), (17) and the trivial estimation f Idu<pu(XH". (10)
Xﬂ
is a consequence of (15) and (18).

3. As (10) holds for any E satisfying (2), the inequality

g | S | I
nfHM ,G) < G =5 HM, G) + (n® 5 ~g)!)
!
follows from (1). @ *ng.)'n 7 tends to 1, if n - e, consequently

(19) lim HM, , G) < HM, G).
n—> oo

If we prove (7), (19) is equivalent to (8). However (19) is valid for
M=M,, too:

lim HM,, G) < HM,, G).
Hence

lim HM,, G) < lim HM,, G)
and (7) holds. The lemma is proved.

Example 4. Let G, be chosen asin Examples 2 and 3. Choose M =
= (X, 0, ) to be the Lebesgue-measuie on the [0, 1] interval. Condition
(2) on EC X? can be interpreted as follows: any rectangle having one
corner on the diagonal of the unite square or its symmetric picture on the
diagonal must have another corner in E (see Fig. 1a), and E contains
the diagonal.

Fig. 1a Fig. 1b
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From (4) and Lemma 2 we obtain
1
HM,G)= 4
Fig. 1b shows that H(M, G) = %.

Example 5. If we use G, in the previous lemma, it gives the same
result. In general, we shall see that the condition of doublability is unnec-
essary when M is atomless. However, this is not the case when M con-
tains atoms. Let, for instance, M = (X, o, u) be defined in the following
way: X = {xl,xz,x3 1, u(x1)= ,u(x2) =&, f; = 1 — 2e, where € is a
small positive number. Choose the set E = ({x1 , xz}). Obviously FE sat-

isfies (2) with Gy, but p,(E)=¢? whatis <, when e< .

Consequently, if G is not doublable, we are not able to give such a
good-looking lower estimation for H(M, G) as (8). However, it is possible,
even in this case, to give a lower estimation by discrete M’s, where the u’s
are not uniform. First we present two easy lemmas, what we need later.

Lemma 3. Let M= (X,o,u) and M' = (X,0,u') be two measure
spaces, assume 2u'(X) = u(X) > u'(X) and suppose that

n
Q0) 2 1uA) - wA)I<e

Jor any collection of disjoint sets A;€ o. Then

1
uX)”

Proof. (Warning, it is easier to prove, than to read.)

2n |HM, G) — HM',G)| < 28+ 1ge

It follows from (1) that for any & > 0 there exists an E C X% sat-
isfying (2) and

K (E)
<
M (X¥)

22) — HM, G) < 6.

On the other hand there is a set E; which is a union of “rectangles”
A1 X ... X Ag (Al.e 0; 1 <i<g) and satisfies
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(see e.g. [8]), since w+ u' is also a measure on (X, ¢). This inequality
obviously implies

(23)  IuE) - u(EDI<8 and |4 (E) ~ w(EDI< 8.

Without any loss of generality we can suppose that there is a partition X =
=By Wy s U B, (B,n B]. =0, i#], B; € ) such that E, is a union

of rectangles of the form Bi X iaviX Bl. . Then we can write
1 g

L (E)) — p (E ) =
:! o (k,(B; X ...XB, )~
Bilx...xBich LIS ¢
_“g(Bt.1 ) G Bl.g)) <
£ o2 lw (B, X...XB. )—
Bz %K. X8y e "8 ‘g
Iy lg
—u(B; X ... X Bz.g)lé
g = TR S Y o
By ig

Bilx...xtifgc)(g

- .ug(BI.1 K g e K Big)i =

= B sew (B, ) - (B, ) -

1<ij<n  1<ig<n

— (B, ) ... WB, )=
1 g

= 2 ... 2 ImB;)...uB,B,) -
1<i,<n 1<ig<n 1 g

1 2 g 1 2 g
—W(B; )...u(B, )<
1 g

< 2 0 2 B ). . uB,
I<i;<n I<ig<n 1

RN
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< lu@B; ) - W(B )+
& g

v 2 2 MBI B ). B ) -
I1<ij<n lslgén 4 1 g1

—W®B; ). HB, )< e

) 2 . 2 uB)...uB, ) -
1<i;<n l<zg_l<n 1 g£—1

W B;) .. WB, II<...<geu(OF!
1 g— 1

using (20). Observe that this inequality holds for X¥ in place of E|

follows that
| g (E g (XB) — p (B (X5) | =

= |1 (E Dy (XE) — p (B, (X5) +

+ (B (XF) — (B R (X5)1 <

S Ipg(XE) - [ (E)) — p(E D+

(B - 1 (X5) — i (X5) 1 <

< u(X)Egep( X~ 1 + pi X )gep(X)8~ 1 =
= 2gep(X)® ! < 28%1ge (Y-) 1g(X®) 1, (X®),

that is

B (B p (k)
Ll B < e
TR0 9 LE (X u(X)

From this inequality, (22) and (23) we obtain

ug(E) p(E)  m(E))
—HM,G)|<| £ - £
| My (X%) ( )| I p (X&) (X5) |
‘u%(El)_ug(El)I ,i D BB 4
e (X))  p (X)® .u X% Mg (X)f
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M, (E)

g
+ —HM,G)| <
| M (X)E I
1 1
<81+ - + 28+ lge ——
U+ 0F ~ war) € uxy
consequently, tending to 0 with &,
| w, (E) 1
24 £ - HM,G)| < 28+1
(24) |#;(Xg) M,G) | g€ 20X

holds. We know from (1) that

as E satisfies (2). This implies by (24) that

1

4 e < g+1
(25a) HM ,G) —HM,G)< 2 g€ ()’

Similarly,

1
u(X)’

and (25a) with (25b) are equivalent to (21). The proof is completed.

(25b) HWM,G) —HWM' ,G)<28+lge

Lemma 4. Let M= (X,o0,u) be a measure space, where X =
= ) g} 2 (R, X i#]; x,¢ Z) the restriction of M on Z s
atomless. Let A denote the set of sequences (¥,,...,y,)€ X" con-
taining a pair (i,j) (i#]) such that y,= Y, € Z. Then p,(A4)=0.

If Z={z,,...,z} and u(z)=

1
< (Z]M(X)"_ 2S'n?.

L’i—\(léiés) then u (A)<

Proof. Let B denote the set of sequences (¥,,¥,,7;,...,¥,)€
€ X", where y, € Z. Obviously
n
() < (5) 1, (B)

holds; it is sufficient to prove u,, (B)=0. If C denotes the set of pairs
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(.Vl,yl) with V) €Z, then B=CX xn-2 and
un(B)zﬂz(Cr)“(X)n_z

holds. It is sufficient to prove un(C) = 0. The measure 4 on Z isan
atomless measure. It is known (e.g. [4]) that in an atomless measure space

there is a set with any prescribed measure between 0 and u(Z). Choose
U1 C Z in the following way: u(Ul) = H_ﬁz\%_)_ Continuing this method
we obtain a partition Z= Ul Uu...uU UN (Uiﬂ U].= ¢, i #j) with
F(U,-) = % (1 <i< N). It is clear, that

N
ce U @W,x o)
i=1
holds. Here

N N
'“2“:)1 (U; X Ui)] = izz; uy(U; X Uy =

N 2 2
> _ 2 _ w2

N
tends to O if N - e, consequently p,(C) (< Ky (_Ul (U, X U’.))) is 0.
,:
The first statement of the lemma is proved.
The second statement follows by the same argument.

Let a= (oz1 sy s s s ) be a sequence of real numbers,  a real num-
ber. Then M d (o, B) denotes the finite measure space with measures

1 1 |
R TR P where the number of E’S is [Bn], and a” de-
o’ g7 £ s
notes the sequence o ,...,q , 2, &, 6 Z o, is finite,
i=n+1 i=n+1

because the measure must be finite.

Lemma 5. Let M= (X,o,u) be a measure space, where X =
={X{,X5,...}V Z (x;# X i+, x,&2), p(x}=q, wZ)y=p>0
and the restriction of M on Z is atomless. If G is a class of directed
g-graphs, then the limit
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(26)  lim H(M,(a",p), G)
n~—> oo
exists and

27) HM,G)> lim HM, (a", B), G).

Proofs.

1. For sake of simplicity assume first that a,=0 when i>r for
some integer »>> 0. The first section of the proof of Lemma 2 does not
work here, because Lemma 2 holds only for doublable G’s. However, the
second section works with a modification. (15) does not hold, as (12) is
not true, when the values y ; are not necessarily different.

In this case we have to use the law of the large numbers. For any
€>0 and 8> 0 thereisan no(e 8) such that the numbers k () of

the X; ’s (of the elements of Z) in the sequence (y1 MR (W L= X” sat-
isfy the conditions
k; .
I;_ai|<€ (1<i<vr)
(28) ’
gl HET

with a measure

uX)" —

On the other hand the measure of the sequences (y1 R U5 yn) € X" hav-
ng y, = ¥ €Z (i#])) is O by Lemma 4. Thus, it holds with a measure
u(XH™ — 8§ that »y,...,y,)€ X" satisfies (28) and the / members
being in Z are different. It means that F500a »¥,) (see (11)) can be
bounded from below (apart from a set of measure & in X") by
min H(M, G), where M is a discrete measure space with measures
r
Kiyeuusk,,1,...,1 (the number of 1’sis /; of course Zl k,+ 1= n)
l:
satisfying (28). This is what we have instead of (12):
;RS

(29) min H(M, G) <
M né
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which holds with a measure u(X)" — &§. It is easy to see that
(30) HM',G)=HM,G)

if M' is the normalized version of M (divide the measures by n). So
we can write
b
(31) min HM', Gys —— "1
M’ né

k k

i : 1 1
if M’ runs over the measure spaces with measures e ~ p

LB )

1
n’n’"’
[z_:Zn; ki+ 1= n) satisfying (28). However, M’ differs from M, (a, f) on-
ly a little. It follows from (28) that (20) is satisfied with e(r + 2) (f
%se) for the spaces M' and M, (a, ). Using Lemma 3 we obtain
(2)  IHM',G) — HM, (@, B), G)| < 26+ ge(r + 2) ﬁ

(31) and (32) result in
fOs...52,)

(33) HM (o, ), G) — 28+ 1g(r + 2)e < 3

for a set A C X" with a measure at least u(X)" — & and hence

[ fy,-.. ,y,,)du>f{ftvl,. cy)de>
34 X

> (uX)" — 8)(HM, («, B), G) — 28+ g(r + 2)e)n®

follows. This is the substitute of (15). (18) remains unchanged. From (18)
and (34) we obtain now

(X" — 8)(HM, (, B), G) — 28+ 1g(r + 2)e) <

(3%5)
n!

_ n! n
< it gyt B B0 & (1L - ) D)

né(n —g)!
instead of (10). This inequality holds with arbitrary small € and & if

1
n>n (e, 5). Onthe other hand ——— - 1, thus
0 né(n —g)!
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(36) HM (a, f), G) < s
) > — € s
" D pne

holds for any € > 0 if n is large enough, and E satisfies (2).

follws from (1), consequently

(38) im HM, (a, B), G) < HM, G)
holds.

2. Repeat the proof with M, (o, 8) in place of M (n is fixed,

large, n<<m). M, (o, f)=(X,0,p), where X={x,...,x,,z,..

- 1
P b Z= 12z}, BE) = (1<I<R), )= (1<

< i< [pm]). (28) is valid, again. Lemma 4 implies that the measure of
the set of sequences »ys---,»,) with equal elements from Z is

< (5)un-2 %’%1 That is, (29), (30), (31) and (33) hold for a set of

sequences with measure u(X)" — § — (g]u(X)"‘ 2 ILH;I, consequently,
m

(34) and (35) are true with u(X)" — 6 — [;]M(X)"_ 2 I.@_"z_l on the place
m

of w(X)" — 6. Thus, (36) and (37) follow if n is large enough and m

is large enough relative to n:

HM, (e, B), G) — €, < HM, (e, B), G).
It is easy to see that this implies that
lim HM, (a, B), G)
exists. This case (when «, =0 if i>r) is proved.

3. Prove that the limit (26) exists in the general case, when o« has

infinitely many non-zero terms. Denote the sequence (al 2Oy,

Zl ai) by «™ . Prove first that klim HM, (o™, B), G) converges if
i=m+ - o
m=<. Fix an €>0 and choose m; = m,(e) so that PN R
i=mg+1
holds. Such an m, exists since the measure is finite. The measures used
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in Mn(ozm1 ,B) and Mn(amz, B) “differ” by at most 2¢ if m ,m,>
>m. Thus, we can use Lemma 3:

1
uXx)’

(where u(X)= Z; o + [Bn] ;1;). On the other hand choose an n =
1:

(39)  |HM (@™, B),G) — HM, (", ), G)| < 25 2eg

= n(e, m,,m,) so that

40) | lim HM, (@™, ), G) — HM, ("', p), G)| < €
and
@) 1 lim HOL@"2, B, 6) — HOM, @™, B, )1 <€

simultaneously hold. From (39), (40) and (41) it easily follows that

| lim H(M, ("%, 6),6) — lim HM, ("%, 8), 6)| <

k—boo
28+2¢
¢ 2es 2 2a
et Em

which is arbitrarily small if m is large enough. Consequently, the limit

h= lim (lim HWM, (™ B), G))

m—» oo

exists. By definition

(42) |h — klim HM, (a™ ,B),G)I < e

holds if m > m(e). On the other hand, the inequality

also holds if k> k,(e, m). Finally, the distributions of M, («™, () and
Mk(ak,ﬁ) differ by at most 2¢ if k,m>m, . Thus, we can use Lem-
ma 3:

1
u(X)

(44) | HM, (¥, B), G) — H(M, («™ , B), G) < 25* % eg

Summarizing (42), (43) and (44) we obtain
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1
u(X)

if m> mo(e), m>mg(e), k> mD(e) and k> ko(e, m3y. That is, (45)
is arbitrarily small if k is large,

(45) |HM (a*, B), G) — h| < 2e + 28+ 2¢g

46)  lim H(M(a*,0),6G) =1

4. Prove now (27) for the general case. Denote by M(n) the measure

which is identical to M on Z and has the measures 0 s 50,
i—§1 @;,0,... ontheelements of X — Z. It is easy to see, using Lem-
ma 3, that

47 lim HM(n), G) = HM, G).

n—> oo
Since M(n) has only finitely many atoms, we can state (27) for its case:

H(M(n), G) > Jm HM, (", B), G).

Here the left hand side converges to H(M, G) by (47), while limit of the
right hand side is A, what is equal to lim H(M, (a*,), G) from (46).
k> oo

(27) and the lemma is proved.

Remark 1. Lemma 2 is a special case of Lemma 5. We have proved
it separately to show the basic idea of the proof, which is confused with
technical details in case of Lemma 5.

Remark 2. It is easy to see that (27) is valid with M (af™ p)
where f(n) >  (n-> ). On the other hand M, (o, ) could have been

defined in a different way: The measures would be [ . %, 2 ,%
g

where the number of 5 s is n. (27) remains unchanged if we use this de-
finition in place of the original.

Remark 3. The existence of the limit (26) cannot be considered to
be new. Although it has never been formulated in such a general form, the

proof used in a very special case [5] can be essentially used here, too (see
also [10], [13]).

= L, =



To the applications (see [11] and a forthcoming paper) we need the
inequalities of type (8) and (27). All of our information concerning this is
included in Lemma 5. However, theoretically it is interesting when have
we equality in (27). I conjecture that it holds under the conditions of Lem-
ma 5, but I was not able to prove it.

Theorem 1. Let G be a doublable class of directed g-graphs and
M= (X, 0,u) bea measure space, where X ={x,,X%,,...}V Z (x, + X s
i#j; x; ¢ Z), p(x;}) = a, w(Z)= >0 and the restriction of M on
Z is atomless. Then

(48) HWM,G) = lim HM_ (a",p),G).

n—» oo

Proof. Lemma 5 gives one side of (48), thus we have to prove

(49) HM,G)< lim HM, (a",f), G),

n— eo

only. E.g. by [4] we know that there is a partition 4 U ... U A, 4,0
N A]. =¢, i#j) of Z suchthat A,.’s are measurable and u(4)) = % By
successive application of Lemma 1 we obtain

HM,G)< HM™',G) <
(50) <HM Y2 ¢)<...<HWM ) " 6) <
< H(M 1y mE 6,

A sl B . S .
where B={x  {,%X, 25" .}. Here (M71')""m) is a distribution

with probabilities o, ..., « >« B a3 % Consequently, by Re-

n’i—py+1 n
mark 3, the limit of (49) is

lim H(M, (@", ), G).

n— o

This proves (49) and the theorem.

I conjecture that the theorem holds for non-doublable graphs, too.
However I was not able to prove it in the general case. A very special case
follows from the following theorem of Brown, Erd6s and Simonovits
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[10]. A class G of directed G-graphs is called strongly hereditary if G € G
implies G'€ G for any G' (not necessarily spanned) subgraph of G.

Theorem BES. Let G be a strongly hereditary class of 2-graphs.
Then there exists an rXr 0,1 matrix A= (az.].) with the following
properties. For any n, let us construct graphs by taking (disjoint) parti-
tions C7 U...UC!" of the vertex-set, connect all the vertices of C ;
with all the vertices of C]f' i+ iff a;= 1 and form complete acyclic
graphs in C! iff a,;= 1, no other pairs are connected. Denote the edge
set of the graph having the minimal number of edges from the above con-
structed graphs by E, . Then all the spanned subgraphs of this graph be-
long to G and

|E |
(51) lim —3 = lim HM,, G).

n—rco n n—> oo

Theorem 2. Let G be a strongly hereditary class of directed 2-graphs
and M= (X, o0, u) be an atomless measure space. Then

HM,G)= lim HM,,G).

n—> co
Proof. We have to prove

(52) HM,G)< lim HM,, G),

n—» o

only. We do this by constructing a graph (X,E) on X. If B,,...,8,

r
are reals and 217 61' = p(X) then there is a partition X = C1 S R Cr
1=

(Ci N Cf =0, i#j) with u(CI.) = B;. This follows from the condition that
M is atomless (see [4]). Let E,(B,,...,B,) denote the edge set of the
graph in which all the vertices in C; are connected with all the vertices in
C]. (i+#]j) iff a; = 1 (see Theorem BES) the vertices x,y € C; are not

N
connected if a; = 0; if a;, =1 we use a disjoint partition Ci= _U1 Cil.,
]:

B.
w(C,) = N’ the vertices of C,; are connected with the vertices of C,. iff

j<j'. It follows from Theorem BES that all the finite spanned subgraphs
of E(,,...,B,) belong to G (using that it is strongly hereditary). On
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the other hand it is easy to see that En Byse--s B,) is measurable. Using
(1) we obtain

(EvBy,...,B)
(53) H(M,G)s‘uz v fnl)

o (X%)
1 CH L m(X)
Let now f; be equal to ———. hen
Hy(Eny@Bys...5B))  1E,I i % 1€FP* 4
oo |[RERe Dol SVE <
My (X ) n i=1 n

easily holds for any N. Suppose N - e. (52) and the theorem follows
from (53), (54) and (51). The proof is completed.

Remark 4. Let us define A(M,G) as H(M,G) in (1) but using sup
rather than inf. Let further G denote the set of complements of the ele-
ments of G. Obviously, all the spanned subgraphs of (X, E) belong to
G iff all the spanned subgraphs of (X, X% —E) belong to G. Conse-
quently,

AM,G)+ HM,G)= 1.

It follows that Theorems 1 and 2 hold for H(M,G) and Lemma 5 holds
with the opposite direction of the inequality sign. Lemma 1 also holds if
G is doublable.

Remark 5. Throughout, we considered the case of directed graphs.
In case of undirected graphs we simply substitute any undirected edge by
the set of all oriented variants of it. Let us see an example.

Example 5. We try to form the continuous version of a theorem of
Bollobés [12], asserting that in an undirected uniform 3-graph (no loops
are allowed) with 3z vertices and containing no 3 different edges a, b, ¢
with (@ — b) U (b — a) C ¢ the number of edges is < n3.

Let now G be the set of directed 3-graphs not containing edges
Byyeon ,aG,bl, ,b6, Cys-++3Cqs where the letters with the same in-
dices denote edges with identical (3 different) vertices but with different

B



directions, and these (3 different) sets satisfy (@ —b)U (b —a) C c. What
is ﬁ(Mn, G) in this case? Fixing any direction for all the 3-edges we ob-

tain from Bollobas’ theorem that we can choose at most [—'33] : edges from

these (g] This is true for all the 6 cases. On the other hand we can

choose all the 3['31] + n loops. That is,
3 2
’ % W 3_’21— il e 2
A, G)< : . limAM,G)< 3.
n

From Lemma 5 and Remark 5 H(M, G) < % for atomless measure spaces

M. 1t is easy to construct a graph (X, E) with measure % u(x?3 ). Divide

X into 3 disjoint classes X 10X, X 3 With equal measure and take all
the edges having their coordinates in different classes. This shows that

HM, G) = L;' for atomless measures.

Remark 7. In[13] Erd6s and Simonovits proved that

lim HM,,6)= 15

P 1’
where G is a class of undirected 2-graphs and p is the minimum of the
chromatic numbers of the graphs not contained in G and p> 2. (The
latter condition simply expresses that G contains all the complete graphs).

Lemma 5 and a trivial construction imply that H(M, G) = Ei—l for an

atomless measure M under the above conditions.

A GENERALIZATION

To some applications (see [11] and a forthcoming paper) we need a
generalization. It does not differ too much from the previous results,
neither in formulation nor in proving. Thus we give here briefly the neces-
sary definitions and completely omit the proof.

Let G(¢) denote a class of directed g-graphs, where the vertices of
the graphs are coloured by ¢ colours (no assumption on the colouring).
We say that G(z) is doublable if doubling any vertex of G € G(¢) and
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giving the same old colour to both then for the new graph G, € G(?),
again. '

Let M= (X,o0,u) be a measure space and X=X, U...U X, a
disjoint partition. Colour X; by the i-th colour. Then define
HWM, X X.; G(t)) = inf "‘&
s FEBEs > = mi—

1 ? p, (X¥)
where the infimum runs over all measurable E C X& such that every finite
spanned subgraph of G = (X, E) is isomorphic and coloured identically
with an element of G(#). M(nl I ) t) denotes the finite measure space

t
with n= 217 n; -elements, with uniform distribution u= % and with
1:
partition | X;| = n,.
Theorem 3. Let G(t) bea set of t-coloured directed g-graphs, and
M= (X,0,u) be a measure space with a disjoint partition X1 T .0

- sl
Suppose further that either G(t) is doublable or M is atomless. Then

HM,X,,...,X,; G)=limHWM(n,,...,n), G(1))
holds if n,,...,n, tend to infinity satisfying
':" N (1<i<n.
221. "f H(X)

Acknowledgement. I am indebted to Vera T. S6s and M.
Simonovits for their valuable remarks.

Remark added in August 1977. Recently B. Bollobas [14] in-

formed me that he can prove Lemma 2 much easier under the condition
that G is strongly hereditary.
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