ON A CONJECTURE OF ERDŐS AND A STRONGER FORM OF SPERNER'S THEOREM

by
GY. KATONA¹

Introduction. A theorem of P. Erdős [1] states as follows: Let $|x_i| \ge 1$ $(1 \le i \le n)$ be real numbers, and $\varepsilon_i = \pm 1$ $(1 \le i \le n)$, then the number of sums $\sum_{i=1}^{n} \varepsilon_i x_i$

lying in the interior of an arbitrary interval of length 2 is at most $\left(\left\lceil \frac{n}{2} \right\rceil \right)$. Erdős

conjectured in the same paper, that this statement is true if the x_i are vectors in a Hilbert space, satisfying $||x_i|| \ge 1$. In the present paper we prove the two-dimensional case. P. Erdős used a well known theorem of Sperner [2], we need a stronger form of it which is of independent interest.

THEOREM 1. Let H_1 and H_2 be disjoint sets with finite cardinal numbers n_1 and n_2 $(n_1 \ge n_2)$. If $a_1, ..., a_s$ is a system of subsets of $H = H_1 \cup H_2$, such that no two sets a_i and a_j $(i \ne j)$ satisfy the relations

(1)
$$a_i \cap H_1 = a_j \cap H_1$$
 and $a_i \cap H_2 \supset a_j \cap H_2$ or

$$(1') a_i \cap H_1 \supset a_j \cap H_1 \quad and \quad a_i \cap H_2 = a_i \cap H_2,$$

then

$$s \le \left(\left[\frac{n_1 + n_2}{2} \right] \right),$$

and this is the best upper limitation.

REMARKS. 1. This theorem gives for the case $n_2=0$ Sperner's theorem. Indeed, then $a_i\cap H_2=a_j\cap H_2$ and so because of $a_i\cap H_1=a_i$ and $a_j\cap H_1=a_j$ the inclusion $a_i\supset a_j$ can not hold.

2. If $n_1 > 0$, $n_2 > 0$, this theorem is a stronger form of Sperner's theorem. The conditions of this theorem are weaker, but the statement is the same.

PROOF OF THEOREM 1. Let us consider a set $b \subset H_2$. Let $a_{i_1}, a_{i_2}, ..., a_{i_p}$ be those sets a_i for which $a_{i_j} \cap H_2 = b$. Then $H_1 \cap a_{i_j} \supset H_1 \cap a_{i_k}$ can not hold $(1 \le j \le k \le p)$ because of (1'), that is, $a_{i_1} \cap H_1, a_{i_2} \cap H_1, ..., a_{i_p} \cap H_1$ is a Sperner system. Further let $b_1 \subset H_2, b_2 \subset H_2, b_l \subset H_2$ and $b_1 \supset b_2 \supset ... \supset b_l$. Now

¹ Research Institute for Telecommunications, Budapest.

consider all those sets a_j for which $a_j \cap H_2 = b_i$, and denote the system of $a_j \cap H_1$ for the above-mentioned a_j 's by $A(b_i)$.

Thus $A(b_i)$ $(1 \le i \le l)$ is a Sperner system of subsets of the set H_1 , further if $i \ne j$, then $A(b_i) \cap A(b_j) = \emptyset$, since from $c \in A(b_i)$, $c \in A(b_j)$ it follows, that (1) holds for $c \cup b_i$ and $c \cup b_j$, which contradicts our supposition.

Clearly the system $B = \bigcup_{i=1}^{l} A(b_i)$ can not include a "chain of length l+1", that is there is no system $c_1, c_2, ..., c_{l+1} \in B$, such that $c_1 \supset c_2 \supset ... \supset c_{l+1}$. Otherwise one of the $A(b_i)$'s would contain at least two of the c_j 's, which is a contradiction, since $A(b_i)$ must be a Sperner system. (It is easy to see, that the converse of this statement holds too, namely if B is a system of subsets not containing chains of length l+1 then it can be divided into l disjoint Sperner system. But this is not necessary here.) We now apply a theorem of Erdős ([1] Theorem 5.) asserting, that if B is a system of subsets of a set having n elements, and B does not include any chain of length l+1, then the cardinal number of B less then or equal to the sum of the l largest binomial coefficients (belonging to n). That is, denoting the cardinal number of B by |B|, and assuming for the sake of simplicity that $n_1 = 2m_1$ is even, but $l = 2j_l + 1$ is odd,

$$|B| \leq \sum_{i=-j_l}^{j_l} \binom{n_1}{m_1+i}.$$

The following lemma, guaranteeing many long chains, makes as efficient utilization of (3) as possible.

LEMMA. Let $a_1, a_2, ..., a_{2^n}$ be all subsets of a set H of n elements, and G_n a directed graph with the vertices $a_1, a_2, ..., a_{2^n}$. Two vertices a_i and a_j are joined if and only if $a_i \supset a_j$ or $a_j \supset a_i$ $(i \neq j)$, and the edge is oriented from a_j toward a_i ,

when $a_i \supset a_j$. Then there exist $\binom{n}{\left\lfloor \frac{n}{2} \right\rfloor}$ disjoint directed paths, one of length n+1

and
$$\binom{n}{n+1-l} - \binom{n}{n-1-l}$$
 of length l $(l=n-1, n-3, ... l>0)$. (The length

of a path is the number of its vertices, that is the number of the edges plus one.) If n=1, then the statement is trivial. Now let n>1 and use induction over n. Namely, suppose that there exist the directed paths $U_1^n, U_2^n, \dots, U_{\lfloor \frac{n}{2} \rfloor}^n$. It is easy

to see, that all the vertices are included exactly in one of these paths, since the sum of lengths is exactly 2^n . Now consider the case of n+1 elements. The paths $U_1^n, U_2^n, \ldots, U_{\lfloor \frac{n}{2} \rfloor}^n$ exist in G_{n+1} too. From any of these we form new paths in two

different ways:

1. Consider for $1 \le i \le \binom{n}{\left\lfloor \frac{n}{2} \right\rfloor}$ the vertex corresponding to the largest subset

in U_i^n . We add to this subset the new (n+1)-st element, and let the vertex corresponding to this new subset be placed at the end of U_i^n . Thus we have a path U_i^{n+1} in

$$G_{n+1}$$
, and U_1^{n+1} is longer by one than U_1^n for $1 \le i \le \binom{n}{\lfloor \frac{n}{2} \rfloor}$.

2. Omit the vertex corresponding to the largest subset from U_i^n , if the length of U_i^n is larger than $1 \left\{ 1 \le i \le \binom{n}{\left\lfloor \frac{n}{2} \right\rfloor} \right\}$. Consider the remaining vertices, and add

to the corresponding subsets the (n+1)-st element. The corresponding vertices form a path in G_{n+1} . Thus we have the paths U_1^{n+1} , ..., U_1^{n+1} , ..., U_1^{n+1} . These paths U_1^{n+1} , ..., U_1^{n+1} are again disjoint, since in the first case we add $\binom{n+1}{2}$

the (n+1)-st element to the subset representing the last vertex of $U_i^n \left(1 \le i \le \left[\frac{n}{2}\right]\right)$,

but in the second case we add the (n+1)-st element to all the other subsets. Clearly the number of the paths of length l is (l>0, l=n+2, n, n-2, ...)

$$\left[\left(\frac{n}{n+1-(l-1)} - \left(\frac{n}{n-1-(l-1)} \right) \right] + \left[\left(\frac{n}{n+1-(l+1)} - \left(\frac{n}{n-1-(l+1)} \right) \right] = \left[\frac{n+1}{n+2-l} - \left(\frac{n+1}{2} \right) \right]$$

since we obtain paths of length l in the first case from the ones of length l-1, and in the second case from the ones of length l+1. This completes the proof of our lemma.

Let us return to the proof of Theorem 1, and apply the lemma for the set H_2 . Suppose for the sake of simplicity, that $n_2 = 2m_2$ is even. Obviously $s = \sum_{b \in H_2} |A(b)|$, thus supposing that the subset of H_2 are ordered in chains according to the lemma, and using (3) for all the paths,

$$s = \sum_{b \subset H_2} |A(b)| \le \binom{n_2}{0} \sum_{i=-m_2}^{m_2} \binom{n_1}{m_1 + i} + \left[\binom{n_2}{1} - \binom{n_2}{0} \right] \sum_{i=-m_2+1}^{m_2-1} \binom{n_1}{m_1 + i} + \dots + \left[\binom{n_2}{m_2} - \binom{n_2}{m_2 - 1} \right] \binom{n_1}{m_1} = \binom{n_2}{0} \binom{n_1}{m_1 - m_2} + \binom{n_2}{0} \binom{n_1}{m_1 + m_2} + \binom{n_2}{1} \binom{n_1}{m_1 - m_2 + 1} + \left[\binom{n_2}{1} \binom{n_1}{m_1 + m_2 - 1} + \dots + \binom{n_2}{m_2} \binom{n_1}{m_1} \right] = \sum_{i=0}^{n_2} \binom{n_2}{i} \binom{n_1}{m_1 - m_2 + i} = \binom{n_1 + n_2}{\frac{n_1 + n_2}{2}}.$$

If n_1 and n_2 are not both even, the proof is similar. This completes the proof of Theorem 1.

THEOREM 2. If $x_1, x_2, ..., x_n$ are complex numbers, $|x_i| \ge 1$ and $\varepsilon_i = \pm 1$, then the number of sums $\sum_{i=1}^{n} \varepsilon_i x_i$ lying in the interior of an arbitrary circle of radius 1 is at most $\binom{n}{\lfloor \frac{n}{2} \rfloor}$.

PROOF. We may assume $\operatorname{Rex}_i \geq 0$ $(1 \leq i \leq n)$, since multiplying by (-1) one of x_i 's, the set of sums does not change. Let $x_1, x_2, ..., x_n$ be ordered in such way, that $\operatorname{Im} x_i \geq 0$ $(1 \leq i \leq n_1)$ and $\operatorname{Im} x_i < 0$ $(n_1 < i \leq n)$ and $n_2 = n - n_1$. We may assume in addition $n_1 \geq n_2$ since the set of sums $\sum_{i=1}^n \varepsilon_i \bar{x}_i$ is equal to the set of $\sum_{i=1}^n \varepsilon_i x_i$'s.

Let K be a fixed circle of radius 1, and consider the subsets $a = \{x_{i_1}, x_{i_2}, ..., x_{i_r}\}$ of the set $\{x_1, x_2 ... x_n\}$, for which the sum $\sum_{x_j \in a} x_j - \sum_{x_j \notin a} x_j$ is in the interior of K. The system of these subsets, of $\{x_1, x_2, ..., x_n\}$ satisfies the condition of Theorem 1, if $H_1 = \{x_1, x_2, ..., x_{n_1}\}$ and $H_2 = \{x_{n_1+1}, ..., x_n\}$. Indeed, if we have two sums $\sum_{k=1}^n \varepsilon_k x_k$ and $\sum_{k=1}^n \varepsilon_k' x_k$ such that $\varepsilon = \varepsilon_k'$ $(1 \le k \le n_1)$ and $\varepsilon_k' = 1$ always holds if $\varepsilon_k = 1$, then

(4)
$$\sum_{k=1}^{n} \varepsilon_k' x_k - \sum_{k=1}^{n} \varepsilon_k x_k = \sum_{k=1}^{n} (\varepsilon_k' - \varepsilon_k) x_k = \sum_{n+1}^{n} (\varepsilon_k' - \varepsilon_k) x_k,$$

where $\varepsilon'_k - \varepsilon_k$ is 0 or 2. Moreover, if u and v are complex numbers, such that Re $u \ge 0$, Re $v \ge 0$, Im v < 0, then obviously

$$|u+v| \ge \min\{|u|, |v|\}.$$

Thus applying (4)

$$\left|\sum_{k=1}^n \varepsilon_k' x_k - \sum_{k=1}^n \varepsilon_k x_k\right| = \left|\sum_{n_1+1}^n (\varepsilon_k' - \varepsilon_k) x_k\right| \ge \min_{k=n_1+1,\ldots,n} \{|2x_k|\} \ge 2,$$

that is $\sum_{k=1}^{n} \varepsilon_k' x_k$ and $\sum_{k=1}^{n} \varepsilon_k x_k$ can not be in K. Consequently we may use Theorem 1, and this completes our proof.

It is easy to see, that Theorem 1 does not remain true if we divide the set H into three or more parts. For example, if $H_1 = \{1, 2, ..., n-2\}H_2 = \{n-1\}$, $H_3 = \{n\}$, and n is odd, let the system A consist of the subsets a's, b's, c's, d's such that

$$|a \cap H_1| = \frac{n-3}{2}$$
 $|a \cap H_2| = 0$ $|a \cap H_3| = 0$

$$|b \cap H_1| = \frac{n-3}{2}$$
 $|b \cap H_2| = 1$ $|b \cap H_3| = 1$

$$|c \cap H_1| = \frac{n-1}{2}$$
 $|c \cap H_2| = 0$ $|c \cap H_3| = 1$ $|d \cap H_1| = \frac{n-1}{2}$ $|d \cap H_2| = 1$ $|d \cap H_3| = 0$.

This system does not have two elements e and f, satisfying

or
$$e \cap H_1 = f \cap H_1 \quad e \cap H_2 = f \cap H_2 \quad e \cap H_3 \supset f \cap H_3$$
 or
$$e \cap H_1 = f \cap H_1 \quad e \cap H_2 \supset f \cap H_2 \quad e \cap H_3 = f \cap H_3$$
 or
$$e \cap H_1 \supset f \cap H_1 \quad e \cap H_2 = f \cap H_2 \quad e \cap H_3 = f \cap H_3,$$
 moreover
$$|A| = 4 \begin{pmatrix} n-2 \\ \frac{n-3}{2} \end{pmatrix} = 2 \begin{pmatrix} n-1 \\ \frac{n-1}{2} \end{pmatrix} > \begin{pmatrix} n \\ \frac{n-1}{2} \end{pmatrix}.$$

Thus A is an example, that the generalization of Theorem 1. is not true, and this explains why it is not possible to prove ERDŐS's conjecture for the n-dimensional space in the same way, as for n=2.

(Received October 30, 1964.)

REFERENCES

- [1] Erdős, P.: On a lemma of Littlewood and Offord, Bulletin of the American Mathematical Society 51 (1945) 898—902,
- [2] SPERNER, E.: Ein Satz über Untermengen einer endlichen Menge, Mathematische Zeitschrift 27 (1928) 544—548.