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Abstract—In this paper the connection between the self-in-
formation of a source letter from a finite alphabet and its code-
word length in a Huffman code is investigated. Consider the set
of all independent finite alphabet sources which contain a
source letter a of probability p. The maximum over this set of
the length of a Huffman codeword for a is determined. This
maximum remains constant as p varies between the reciprocal
values of two consecutive Fibonacci numbers. For the small p
this maximum is approximately equal to

1++571
[logz 2 5] ~ 1.44

times the self-information.

1. INTRODUCTION

UPPOSE that a discrete memoryless source U has a

K letter alphabet ai, as, -, ag with probability dis-
tribution P = {P(a1), P(ag), -, P(ak)}. We shall consid-
er binary variable length codes satisfying the prefix con-
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dition. For concepts and notation not defined herein,
refer to Gallager [1, pp. 43-55]. The self-information
and the codeword length of a letter a; will be denoted,
respectively, by I(a;) = —logs P(a;) and n; = n(a;). For
the entropy of the source we use the notation H(P).

The major significance of the entropy comes from the
source coding theorem, see [1]. Roughly speaking, this
states that, if H(?P) is the entropy of a discrete memory-
less source, a sequence of source letters cannot be en-
coded using fewer than H(?) binary digits per source
letter on the average, but can be encoded by using an
average number of binary digits per source letter as
close as desired to H(?). Therefore, the entropy has an
operational meaning expressed by

B
H(®P)=n=3 P(a;))-n;
=1

for optimal codes.

Although the entropy, or average self-information,
has operational significance, it is hard to attribute com-
parable significance to the self-information of an indi-
vidual source letter. One might expect in a certain sense



Fig. 1. Code tree used in Lemmas 1 and 2.

that for optimal codes
I(a;) = n(a;).

Considering the source with probability distribution p;
= P(a1) = 1 — e and P2 = P(a3) = ¢, we have n(a;) =
n(az) = 1 for the only optimal code, showing that the
ratio of I(a;) to n(a;) may be arbitrarily large. On the
other hand, however, it is possible to derive a least
upper bound on n(a;) in terms of I(a;). It turns out that
this endeavor involves the Fibonacci numbers and that
the least upper bound is a constant times the self-infor-
mation for small P(a;).



We also determine the least upper bound to the dif-
ference n(a;) — n(ag;) for Huffman codes when P(a;)/
P(a;) = 11is fixed.

II. ANALYSIS AND RESULTS

Let us consider a discrete memoryless source, one let-
ter of which, say a, has probability p = P(a). Fig. 1
shows the path leading from the terminal node B; as-
signed to this letter a to the root B,, of the code tree of
a given binary Huffman code (cf. [1, pp. 52-55]). The in-
termediate nodes of this path are denoted by Bs, Bg, -,
Bpm-1. The node which is connected with B; but not on
this path is denoted by C;_o, i = 2, 3, -, m.

Each terminal node of the code tree corresponds to a
source letter. We assign to the terminal nodes the prob-
ability P(a;) of the corresponding letter a;. The proba-
bility assigned to other nodes N of the tree is the sum of
the probabilities of all terminal nodes which are con-
nected with the root through N. The probability as-
signed to B; (respectively, C;) is denoted by b; (respec-
tively, ¢;). In this notation b; = p and b,, = 1.

Obviously, n(a) = m — 1. Therefore, our aim is to de-
rive a bound on m in terms of p. Toward this end, we
establish the following two lemmas which concern ine-

qualities between the probabilities assigned to the
nodes of Fig. 1. '



Fig. 2. Detail of code tree used in proof of Lemma 2.

Lemma 1:
c;i = b;, i=1,eee,m—2, (1)
bi>fip, i1=2,.-,m, (2)
and
CGi-12fio1p,  i=2.ee,m -1, 3)

where f; if defined by the recursion firi=fi+fi-,fi=
fa=1,fori = 2. That is, f; is the ith Fibonacci number.

Proof: The essential part of our lemma is (1); (2)
and (3) follow by an easy induction over i as we shall
now show. Fori = 2,

ba=by+co>b1=p=fp,

while ¢; > p follows from (1). According to the induc-
tion procedure we assume, for i > 2, that b;_; > fi_ip



and c¢i—2 2 fi—2 p. Since b; = b1 + ci—2 > fi_1p + fi—op
= fip, (2) is proved for all i. Equation (3) follows from
(1) because ¢;—1 = b;—1 > fi—1p.

Let us now prove (1). Consider the instant in the
Huffman procedure when B;;; is introduced as a new
node. At this instant, b; and c¢;_; are the two smallest
probabilities assigned to nodes which had been intro-
duced earlier. Since C; will take part in the construction
of a future node,

c; = max(b;, c;—1) = b;
which proves (1).

In the following lemma we shall use the assumptions
and the notation of the previous lemma. D; denotes an
arbitrary node of the tree with code lengthm —i — 1, i
= 1, «», m — 2. This is the same code length as for C;. Its
probability is denoted by d;.

Lemma 2:

di=b, i=1,2:..,m—2, (4)

and
di>fip, i=2---,m-2. (5)

Proof: (5) follows from (4) and (2), so we only have
to prove (4). Denoting by r the distance of D; from the
nearest B;, we use induction over r. The case r = 0 is
trivial. If » = 1, D; = C;, and (1) gives the desired in-



equality. Suppose r > 1 and (4) is proved for the smaller
r. Let D;41 be the first node along the path leading from
D; to the root and let D;* be the other node of code
length m — i — 1 and connected with D;4; as in Fig. 2.

We continue the Huffman procedure until either B;+1
or D;+1 is formed as a new node. We have to distinguish
between two cases. 1) B;+1 is introduced earlier in the
code tree than D;; ;. This means that d; = max (b;, ¢;—1)
= b;. 2) The node D;;; has been formed before B;:i.
Then,

max(d;, d;*) < min (b;, ¢i—1) (6)
and it follows that
diy1 =d; + di* < b; + ci—1 = bi1. (7

The equality can hold in (7) if and only if
di=d;*=b;=ci-1. (8)
However, the inductional assumption implies that
div12 biv1

so (7) holds with equality. Thus (8) must be true, so (4)
is satisfied with equality and the lemma is proved. )

Theorem 1: If the probability p of a source letter a
satisfies
1 1
<p<-—, 2<s, )
fs
where f; is the sth Fibonacci number, then the code
length n(a) of a in a binary Huffman code satisfies




n@<s-1 (10)
and this is the best possible bound.

Proof: 1) First we prove the inequality (10) using
the left side of (9). Suppose n(a) = s — 1 = 1. Then, by
(2), we have

1=bn > fmp, ifm=2.
Comparing with the left side of (9), we obtain

e urae ]
fs+1— fm

which implies m < s+ 1,i.e.,m —1<s — 1, and (10) is
proved.
2) Let us now construct a probability distribution for

a source with P(a) = p satisfying (9) in which the code
length of @ can be s — 1. Let

p1 = fo—o/fs, P2 = fs—3/fs, -+, Ds—2 = f1/fs,

1
Ps-1=7—p,Ps =P
fs
By (9), ps—1 > 0 and the two smallest probabilities are
ps—1 and p,. Also, ps—1 + ps = 1/fs.
Continuing the Huffman procedure, we can choose
Ds—2 and ps; + ps—; as the two smallest probabilities.



Fig. 3. Code tree for Huffman code used in proof of Theorem 1.

Since

_ht1_fs

DPs—2t pDs—1+ ps = >&

fS f-‘i fs’

in the following step of the procedure one can consider
Ds—3 and ps—2 + ps—1 + ps as the smallest probabilities
and so on. In this way we get that one of the possible
Huffman codes which is illustrated in Fig. 3. Obviously,
the codeword length is s — 1 for this Huffman code.

Corollary:

limsupn(a) _ [l 1++5
< 2

-1
=~ 1.44042.
P(a)—0 I(a) 2 ]



Proof: It is well known that

1 (1+\/3)i 1 (1—«/3)=" oL, B

Rz )T ve\ 2
Substituting this into Theorem 1 and taking the limit,
the corollary follows.

Theorem 2: If the probabilities p and g of the source
letters a and b, respectively, satisfy

1
e Bl - oy (11)
fs+1 q fs

then the difference of the code lengths of a and b in a
Huffman code is at most s, i.e.,

n(a) —n() <s (12)
and this is the best possible bound.

Proof: Again the structure of Fig. 2 is used with a
associated with node B;. b is associated with D;, for i =
2, such that d; = q. Since n(a) =m — land n(b) =m —
i — 1, the difference of the code lengths of @ and b is .
From (5) and (11),

1 1
f s+1 f i
which implies i < s and thereby proves (12).
The probability distribution which gives equality in




Fig. 4. Variant of Huffman code used in proof of Theorem 2.

(12) is the following:

fs 1 fs fl
p1=p= yDea=_——t , D3 = ;
fs+2 fs+2 fs+2 fs+2

f2 fs—l fs
Pa= s, Ps+1 T L, Ps+2T 4= s
fs+2 fs+2 ¥ fs+2



where t = p/q. It is easy tosee that p; > 0,1 <i <s+ 2.
A variant of the Huffman codes of this distribution is il-
lustrated in Fig. 4 where the distance of the codes corre-

sponding to p and q is exactly s. This completes the
proof.

Remarks: 1) The difference of the code lengths of a
and b in Theorem 2 cannot be negative, because in an
optimal code a letter of smaller probability cannot be
assigned a shorter codeword. However, the difference
can be zero for any given t = p/q as demonstrated by
the probability distribution 1/(1 + ¢), ¢/(1 + t).

2) Theorem 2 does not say anything about the case p
= g. It is easy to see that in this case the best possible
bound for the code length difference is one. The distri-
bution {1/3, 1/3, 1/3} shows that equality can hold.

3) The connection between the self-information and
the codeword length of optimal codes is dealt with from
another point of view in [2].
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