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EXTREMAL PROBLEMS FOR HYPERGRAPHS

G.0.H. KATONA

Hungarian Academy of Sciences, 1053 Budapest, Hungary

By a hypergraph we mean a pair (V,A), where V is a finite set, and
A={A1,...,Am} is a family of its different subsets. |V| means the number
of elements of V; this is usually denoted simply by n. Similarly, |A] =m.
The elements of V are called vertices, the elements of A are the edges.

We use the term hypergraph, because it becomes more and more familiar,
but the questions concerned here did not develop directly from the theory of
graphs (with some exceptions); the particular cases of these theorems give
usually trivialities for graphs.

A hypergraph is a k-graphk if |A| =k holds for all AecA. (V,A) is a
complete k-graph if A consists of all the k-tuples of V.

In this paper we try to give a survey of some extremal problems of
hypergraphs, namely, the problems developed from SPERNER's [74] theorem. We
shall mention briefly some other areas, too. On the other hand we give some
remarks on the possible generalizations for more general structures.

We have the feeling, that the classification of the problems in this
paper is not good. However, ‘the various questions are connected in many ways,
thus the only proper way of classification would be a graph whose vertices
are the problems and the "connected" problems are connected. (The most
interesting question concerning this graph would be "how to get nice new
vertices?")

For the interested readers it is suggested to read the survey paper
of ERDOS & KLEITMAN [21] on this subject, since our paper contains it only
partly.

1. |V| IS FIXED, MAXIMIZE |A]

The typical problem of this type: A set of conditions is given on A,

and we are interested in determining the maximum (minimum) of m= |A| if
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n=|V| is fixed and (V,A) runs over all the possible A's satisfying the
given conditions.

The origin of these theorems is the well-known theorem of SPERNER [74].

THEOREM 1. If (v,A) satisfies A ¢ Aj (i#5), then

n
0 = ([n/2]] *
where equality holds for the complete [n/23-graph.
The following beautiful Proof is due to LUBELL.

PROOF. C = {CO,...,Cn} is called a complete chain, if CycSCy ... cC_ .

(c denotes inclusion without = ); (fcil =1 follows). Let us count in two
different ways the number of pairs (C,Ai), where A, €A and Ai-=Cj e€C for
some j. For a given A, Cj must be equal to CIA-I' we have IAiII possibil-
ities in choosing CO'CI""'CIAiI-l' and (n —]Ail)l possibilities for
ClAii+1,...,Cn. The number of possible C's is IAiIE (n-fAiI)l, and the
total number of pairs (C,Ai) is X?zllAiI! hl—lAil)!.On the other hand,
fixing C, there is at most one Ai since Ai = Cjcck = Al would contradict
the condition given on A. Thus, the number of pairs (C,Ai) is at most n!,

the total number of C's. We obtain the inequality

m

i£1 la | (a=]a ) < n
or
m
1
(2) ] ——=<1.
i=1 ()
Ia, |
b

(1) follows from (2) easily, using

n n
(a,1) = (ap2) -
The proof is completed. []

Equation (2) (which was discovered by LUBELL [67], MESHALKIN [68] and
YamMaMoTo [77]) is perhaps more important than (1) itself. If ZT=1 f(]Ail),

where f is an arbitrary function, is maximized, then the maximum is attained
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by the complete k-graph, where k is defined by

£00 () = max £(i) s P

0<is<n

The proof of this statement (cf. [58,45]) easily follows from (2)

£(1a, 1) £(la, )
2] 2 - —— e [ i,
@ n .
i=1 (IAiI] i=1 f(iAiI)(lAiI] i=1 £00) (})

that is,

m
I ofdah s (P)ewo .

i=1

In some other cases LUBELL's method works again. In order to show,
what properties of C are used in general, (may be) it is worthwhile to
formulate the method as a separate lemma. (W',B') is called a sub-hypergraph
of (W,B) if W'cW and B' cB. (W',B) is a spanned sub-hypergraph if
B'={B: BcW', BeB). We say that U is an independent set in (W,B) if UcwW,
and there is no B €B such that Bcu.

LEMMA 1. Let (Wl'Bl)""' (Wz'Bz) be spanned sub-hypergraphs of (W,B), the
maximal number of independent elements being Epreeeif, and £, respectively.
Then

() fsm:Ln I{ : wew, }| °
weW
If, additionally, IW | = IW I (W1'B ),...,(w B ) are isomorphic,

and |{i: wew, 1 does not a"epend on w, then

£
@ Wl = Tw T

: 8

PROOF. Let FcW (|F| =£) be an independent set in (W,B). Let us count in
two different ways the number of pairs ((W B ) ,w) where weF and w ew . For
a given we F there are |{i: weW, }| sub- hypergraphs, thus the total number
is Z

— [{i: wewi}l On the other hand, fixing a sub-hypergraph (wi,Bi),
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the maximal number of w's satisfying w<sw can be fi' Thus the number of

pairs is at most Z fi' The resulting lnequality
Z
(5) I iz wew}l < J £ .
weF i=1

However, since

£min [{i: wew. }| < ] [{i: wew, }|,
i i
WEW weF

the inequality (3) follows from (5):
Using the additional suppositions

zZ
wgw 1{i: wewi}l = 1£ IWiI = lei!,

[{i: WEWi}' = ‘“IF’—.

On the other hand Z:_l £ =zf . Substituting this result into (3) the
= 1

inequality (4) is obtained, which completes the proof. [J

How to apply this lemma to our problems’ W equals 2 (the power set
of V) and B consists of the subsets of 2 which are excluded by the given
condition. If the conditions exclude only elements and pairs of elements
of 2v, then (W,B) is a simple graph. For instance, in the case of SPERNER':
theorem: two vertices A, ,Aj € W are connected iff Ai<:AJ or AJ CA . For
wl,...,w we choose all possible chains C given in LUBELL's proof. In
this case (5) leads to (2), and (3) leads to (1).

The next natural condition (see [19]) for A is
(6) A, n Aj # @,

This question is, however, trivial: A can contain at most one of the sets
A, V-a, thus |A| < half the number of all subsets of V:

n
(7) R
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(The application of lemma 1 gives the same if we take wi:={Ai,V-Ai} for all
Ai ezv; then (4) gives (7).) This is the best possible bound:
A= {a: VveA, veV, v fixed)l gives equality in (7).

The other classical theorem (ERDSS, KO & RADO [19]) solves the problem

for a combined condition, with a small modification.

THEOREM 2. If (V,A) Zs a hypergraph satisfying the condition
(8) A ¢ Ay rhy oKy #0, Ial <k if BB e A (i#9),
where k < g—, then

(9) = < (),

and this is the best possible bound.

PROOF. First the constructions concerning (9):

A = {a: |al=k, vea, veV, v fixed}.

In the proof lemma 1 is used again. W consists of all elements of 2V
having at-igg;g k elements. (w,B) is a simple graph. Two different vertices
A,A' are connected iff AcA', ASA' or AnA'= d. Wi's are defined in the
following way. Let us consider all possible cyclic orderings of V. W; con-
sists of all subsets of V with size < k, and with consecutive elements ac-
cording to the i-th ordering. The (Wi,Bi)'s are isomorphic, fi does not
depend on i.

We shall show that fi <k if k<n/2. Fix the i-th cyclic ordering
vl,...,vn (the indices are mod n), and suppose wI,...,wf‘ are independent
vertices in (wi'Bi)' By the symmetry we can suppose w, = {vl,...,y‘r}_. If

the first and last elements of a wj are outside w1 then either wj 3w1, or

1
an 1, (1<1<r), and consider all sets A ¢ W, the last element of which

wjnw1 = @ holds. Then the first or last element of each wj is in w,. Fix

is vl or the first element of which is Visr® These vertices are all con-
nected in (W,B) (or in (wi'Bi))' thus there is at most one wj among them.
Altogether, we have at most (r-1) wj's with last element from b o

or with first element from V2""'vr' v1 can be the first element of w1, only.

(Other A€ Wi with this property either contain or are contained in wl.)
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The same holds for the wj's having v, as a last element. We obtained

£f. sr<k.
)

We need |{i: Aewi}l = |al! (n-|al)!. This is simply the number of
cyclic orderings in which A has consecutive members. (5) gives the following
inequality:

m
1 k n
< = i < =2
(10) z n EksZ

! (IA )
and hence, using that in the case IAiI < k < n/2,
n n
() = )

holds, we obtain (9), and the proof is completed. []

This proof is a stronger version of the proof given in [42]. By (10) it
is also easy to determine max Zm f(A ) under (8).

An obvious question: what happens if the condition IA | <k is omitted
(or more generally, n/2 < k < n). If n is odd, then theorem 1 gives the
estimation ((n+1)/2)' and the complete x—.‘%-I-c;raph satisfies the conditions.
The case of even n is solved by BRACE & DAYKIN [2].

Another type of conditions is A, UAj # V. This does not seem to be a
new condition, since it is equivalent to (V-A ) n(V-A ) # @#. However, in
Some combinations of conditions we can not use the complement sets. For

instance if

Ai n Aj # 0 and Ai U Aj #V,

this is the case. Under this condition m < 2"72, as DAYKIN & LoVASz [12]
Proved; equality holds with A = {Aa: vea, wfA, where v#w are fixed elements
of V}.

' The next type of conditions is the constraint on the sizes of A n A, or
AiuAj (i#3) (perhaps of AifwAjt1Al, and so on). An example: in [19] the

following condition is considered
= > >
(11) a1l =k, lAinAjl 21, (k21).

The result [19]: if n is large enough (relatively to k and 1), then
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]
(12) ms (0],

where equality holds for A = {A: L ¢ A where |L| = 1, L a fixed subset of V}.
- The result does not hold for small n, as the following example shows (given
by MIN): n=8, k=4, 1=2, A={a: |al =4, |an{1,2,3,4}| =3}, m = 16> (5).

2
This result gives a good example for the case, that sometimes the exact

formulas are valid only for large values.

There is a large class of problems, where the solution (the extremal
hypergraph) can be constructed by finite geometries or block designs. We
shall not consider these problems, because their methods are completely
different from the problems treated here. Thus, we do not investigate (with
some exceptions) the conditions of such type, where [Ai NnA.| has to be small,
or IAi —Aj[ has to be large. However, the questions (11)-(12) give an oppor-
tunity for a glimpse at the connections between the two areas. Consider the
case k=3, 1=2 (in this simple case (12) holds if n>6 [39]). A Steiner
triple system is a 3-graph (V,C) with the property, that each pair v,weV
(v#w) is contained by exactly one CeC. It is well known [71], that such a
system exists iff n=1 or 3 (mod 6). Use lemma 1; W consists of all the
triples of V; w, and w, are connected in B iff len w2I 4 2 wi consists of
the triples arising from a fixed Steiner triple system by the i-th permuta-
tion of V. It is easy to see, that (W.,Bi) is a complete graph, so fi = 1.
Trivially, IW | = (3)/3, 1wl = (3), thus (4) gives £ < n-2, and this is
(12) for k=3, 1=2.

By the combinations of the above conditions we obtain a lot of prob-
lems. We try to list some of them.

If

(13) A1¢Aj, AinAj;éQ, AiUAj#v,

then [2] (see alsc [45,59]) gives

n-1
< o
(14) m ([(n-Z)/Z:I)
if
(15) la, na,| =21,
i 73

then [39] gives
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0 n
(16) m < Z (i) if n+l is even
j= Lo
2
and
n-1 t: n
(17) m < [ ] + I () if n+1 is oaq.
n+l-1 2 i
D i=l‘l+].+1
2
If
(18) Ai¢Aj. IAinAjJ 21,

then [69] gives

n
(19) 3 [[(n+1+1)/2]] ¢

Let 1 <k < n and 1 £ h < min(k,n-k), and Suppose
< <
(20) AyNAy#8, hs a1l <k,

then [36] gives

~

(21) ms §J (@1

.

If 1 <k <n, and there is no pair i#j such that

(22) A, oA and lAi-Ajl 2 k,

chen [17] gives

(23) m < (the sum of k largest binomial coefficients of order n).
Conversely, if there is no pair satisfying

(24) A, > A, and lAi—Ajl <K
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then [43] gives

(25) m < i) M.

iz[n/21(moa x) %

Concerning the combinations which are missing, three cases can happen.
1) It is an easy consequence of another one.
2) The author of this paper does not know the result.

3) It is a nice open problem.

An example for case 3):

If IA.nAJI z 1 but there is no pair with A, UA:| = V, then probably the
inequalities (16) and (17) hold with n -1 rather than n. (We can not

give examples for case 2).)

2. CONDITIONS VARYING ON A WIDER SCALE

In this section we consider the same kind of problems as in section 1,
but the conditions vary on a wider scale.

The most general form of theorem 2 (and (11)-(12)) is the following
theorem of HAJNAL & ROTHSCHILD [29].

If
53 lAil =k, and for any Lpeeeerd o
there are 1 and i with |a, na, | 2 1,
1., 4
3 h
then
(27) o ; (-l)i+1 (;.'][n—ill
= k-il/*

i=1
provided n is large enough (n 2n(k,r,1)).

What are the best values for n(k,r,1)? By theorem 2,n(k,1,1) = 2k. For
the cases of n(k,1,1) we can not expect a nice smallest value. The estima-
tions of [19] are improved in [37]. The hopeful case is n(k,r,1). For
instance, n(k,2,1) = 3k+1 might be true.

The same question without IA | =k, and only for 1=1 is solved by
KLEITMAN [55]. So, if for any ].1,...,J.r+1 there is a pair ij’ih such that
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(28) A, nA # ¢
i, i
3j h

and n = (r+l1l)g, then

(r+1)q
(29) ms ] (UYL (Thy
i=qg+1

If n = (r+l1)g-1, another exact estimation is given. For other n's there is
a small gap between the estimations and the constructions [557.

An obvious open question is the case 1> 1 (!Ai n Ai | 2 1). This is
solved only for r=1 (see (15)-(17)). J R

A third variant of these questions was posed by D. PETZ and solved by
P. FRANKL [27] (students in Budapest) :

If

(30) A, X Aj and IAi U--JJAiI < gr+s
1

where 0 < s < r, then

min(g,s/2)
(31) m <

N | o0
provided n is large enough depending on r and qr+s. The construction: let
ccv, Icl=s, then A = {a: |a|=q+[s/2], [an(v-c)| < g}. The cases s=0 and
s =1 are solved independently by E. BOROS. Observe that (30)-(31) is a
generalization of (18)-(19) ‘using the complement set. In (18)-(19) r=2,
s=0 or 1.

It seems that in (9) equality can hold (k < n/2) only for the given
extremal hypergraph (all the A's containing a given veV). In [19] it is
asked, what happens, if we exclude this extremal hypergraph, or suppose
151 Ai = @. HILTON & MILNER [33] have given the answer:

n-1 m-k-1
<
(32) m< 1+ (k—l + [ k-1 ).
They have more general theorems, too: If 1 < min(3,s+1) < k < n/2, and
z -
|Ai| <k, A& Ay (i#3), A A, # 2,

(33) Ai Nl Ai =g
1 m-s+1
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for any different indices il""'i  then

m-s+1

(“kj] - (‘12:1;‘) +nk if 2 < k < s+2,

IA

(34) m

s + [i:i] = 2:? + [E:Z:?] if ks2 or k = s+2.

A combination of (32) and (20)-(21) is given in [361]:
Let 1 <k £<n-1, 1 £ h < min(k,n-k). If

< =
(35) AinAj # @, h < IAiI < k and igl a, 2,
then
k
-1 n-k-1
(36) m< 1+ .Eh[(i-l + (i ]

The following three results [36] are modifications of the above ones,
when besidesAl,...,Am there is an additional edge B of our hypergraph with
slightly different conditions. Let h and k satisfy 1 < k £ n/2, 1 £ h £ n-1.

< = 3
If A, nA, # @, anB # @, IAil <k, IBl =n, Ai?:Aj, A, 5B (BcA, is not
excluded), then

G - P ifnznse,

n-1 h-1 X
(k—l] - (k-l] if h<n/2.
< = =
1f AinAj # 8, ANB # 4, |Ai| < k; IBl = n; Ait; Ags BNAN...NA @, then
n-1 n-h-1 -
bt = b iy if k <h,

if h<k.

Finally, if Ainp‘j # 0, A nB £8, g< |Ai| <k, |B|=n, BNA N...NA = P, then
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k
R B | I

1+ 12; [[m'lj - "k' )J if h<k.

In a paper of HILTON [35] the concept of the simultaneously disjoint
pairs of edges is defineq by

Let 2S2k€m and s < e 1) - 1. 1f

A, | <k, &, 8A.  ana there are no s+1
(37) i i7j

simultaneonsly disjoint pairs of edges,

then (cf. [35])
n-1
(38) m s (1 J o+ s
If A < Aj is allowed, then we obtain (cf.[35])
s T
< + s,
i=1 i-1
Or more generally [32], if h < IAiI < k, then

k
m< § [n-l) + s.
i=h

For a recent result of this type see [11].)
Similar results are obtained in [32] in case we exclude the exisg-

tence of s+1 simultaneously disjoint r-tuples of edges. For s = 0 it was

for k-graphs. ERrpds: caseis also included by (26)-(27), but the common
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generalization of HAJNAL & ROTHSCHILD [29] and HILTON [32] is still open.

3. WEAKENING THE CONDITIONS

Could we weaken the conditions of our theorems with the same conclusions?
In this section we give examples for that.

First KLEITMAN [49] and KATONA [40] independently observed, that if
we fix a partition VOUV =V, (VOnV1 = @) of V and we exclude the edges

1
satisfying

(39) A, NV = Aj n v and A, n V5 € Aj nv_s

(instead of Ai c Aj), then under this weaker condition the conclusion

Ll e ([n;2]]
remains the same.

A natural question: what happens for the partition VOUVIUVZ =V
(VO'VI'VZ are pairwise disjoint), if we exclude edges equal in two Vi's
and containing each other in the third? The answer is disappointing: m can
be larger than ([ngz])' In [47] an additional condition is given, under
which (40) remains true. This additional condition is rather complicated.
It excludes some 4-tuples of edges of the hypergraph. Recently, GREENE &
KLEITMAN [28] determined weak conditions from the symmetric chain method
(see [3]).

A combination of (39) and (22) is given in [44], and a combination of
(39) and (24) in [43]. Recent generalizations of this type can be found in
(60].

A question: how could we weaken the conditions of theorem 2 with the

same conclusion?

4. ONE CONDITION CONTAINING MORE OPERATIONS OR RELATIONS

In this section we treat the problems where one condition containg more
operations or relations.

Probably the oldest result of this type is due to KLEITMAN [56]. If
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there is no triple satisfying

simultaneously, then

2r+1 B
m < Z {i)'
i=r+1
provided n = 3r+l, and this is the best estimation. For n = 3r and n = 3r+2
the results are near best possible.
Another problem: there are no 4 different edges in the hypergraph
satisfying both

n
ERDOS & KLEITMAN [24] have constructed c1 ET edges with this condition and
n

they proved that

but <y < Cye

Many obvious general questions can be asked.

In the next problem |V| is not fixed, but we list it here, because its
character is similar to the other problems treated here. Now [Al = m is
fixed and £(m) is the largest number such that there are always f(m) edges

in the hypergraph no three different ones of them having the property

The first result is given by KLEITMAN [50]:
f(m) < cm/log m .
J. RIDDEL proved vm < £(m), and finally ERDOS & KoMLS [22] determined

£(m) < 2V/2n+4.
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BOLLOBAS proved for 3-graphs that if
(41) there are no three different edges Ahg (Ai—Aj) U (Aj—Ai),

then

m < (%)3

if 3|n. The hypergraph with equality: V is divided into 3 equal parts,
and we choose the edges having exactly one vertex from each part.

It is conjectured also by BOLLOBAS, that a similar
for k-graphs. For 2-graphs it is a particular case of TURAN's graph theorem
[76]. A conjecture of ERDOS & KATONA: Under the condition (41) (without
size restrictions) the best hypergraph can be constructed in the following
way. Divide V into [%] classes of 3 and 2 elements, and choose those edges

which contain exactly one vertex from each class.

5. MISCELLANY

We will treat three further problems which do not really fit into any
of these sections. The first question was proposed by RENYI [70]. The edges
of the hypergraph are called qualitatively independent if

(42) Ai nAaAa, A, NnA

are all non-empty. What is the maximum of m under this condition? The

answer is

ms( =t ).

[ (n-2)/2]
This is an easy consequence of theorems 1 and 2, as it is pointed out by
KLEITMAN & SPENCER [59] and independently in [45]. (Observe, that (13) and
(42) are equivalent, thus [2] also gives the solution.) In [59] a harder

problem is also considered. We say, the edges are k—qualitatively indepen—

dent if
§ [
A.l Neoan Aik #0

*q
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: 5 § ; =
for any different 11....,ik, where A" is either A or A = V-A. Under this

condition

and a hypergraph is constructed with

ety
2 k2
edges, where c and d are constants, k fixed and n -+,

An unsolved question: maximize m under the condition that any of (42)
has a size >r.

The density of a hypergraph was defined by ERDOS. It is the largest
§ such that there is a U ¢ V such that Ul = s and |A n U] = 25, SAUER [72]

bproved, that supposing
s < k,

we obtain

¥ n
m < igo (i)

A similar problem of ERDOS & KATONA: what is the maximum of m under
the condition that lAinAj] are all different (1<i<j<m)?

A new area of problems is considered in [2]. The valency v=v((V,A))
of a hypergraph is the minimal valency of its vertices. In [2] the maximum
of v is asked for under several conditions.

It AinAj # 0, then

-2 -1 ¢ "
2™ 5((n?1)/2) if n is odd,
v <
i [*(n72}] if n is even.
If A, § A,, then
i J

n-1
vis ([ (n—l)/2]J
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and if Ai & Aj, AinAj = @, then the same holds.

6. THE PROBELMS WE SHALL NOT CONSIDER HERE

These problems -although they have many points in common with our sub-
ject- require different methods, and are approached from various points of
view. These problems are also extremal problems for hypergraphs, but this

concept is too wide.

1) 1f A_ nAj is small, Ai = AJ or (A —A &) U (AJ-A ) are large, the problems
are usually coding problems. Thelr methods are closer to block designs

and finite geometries.

2

Covering problems. Usually a smallest family of edges is sought under
some conditions, covering all the edges of a given hypergraph. In 1) and
2) the solutions give hypergraphs where the edges are "far" from each

other, in our cases they are "close".

3

—

Ramsey type theorems. See the paper of GRAHAM & ROTHSCHILD in this
tract (pp. 61-76).

4) Turén type theorems. Certain generalizations are very near (see [46]).

5

Combinatorial search problems. They are closely related to the coding
problems (see [46]).

6) We did not touch the question of the number of optimal hypergraphs.
In many cases there is only one. In some other cases it is an open
problem how many of them exist. A closely related problem: how many

hypergraphs do we have under several conditions? For these questions see

[21].

7

—

A-systems and B-property. A hypergraph is a strong A-system if A NAa,

(i#j) does not depend on i and j. In the case of a weak A—system [A na,|
(i#3) is independent of i and j. £, (k,1) denotes the minimum of |A| with
the property that in the case IAiI =k, (1<i<m), there are always 1

Ai's forming a strong A-system. f (k,1) denotes the same for weak
A-systems. There are lower and upper estimations forf (k,1) and f (k,1).
We say that (V,A) has property B, if there is a set BCV such that

|BnAi] 2 1 but BDAi (1 <i<m). The questions concerning A-systems and the
B-property are closely related to our problems; however, ERDOS [25] has

recently published a survey paper on this subject.
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7. |A| 1Is FIXED

Perhaps, the main feature of the problems in this section is not [A]
being fixed, because in many cases we obtain an inequality and in an in-
equality usually it is not important, which variable is fixed and which one
is not. However, the problems treated here -as we shall see- have a definite-
ly different character.

SPERNER's theorem says, if we have ([n;2]) +1 edges in a hypergraph
{(with |V| =n), then there is a pair of different edges Ai(:Aj. Observe,
however, that adding one edge to the complete [n/2]-graph there are always
more pairs with A, cA.,. What is the minimum? More generally, if m and n

i 73
are fixed, what is the minimal number of pairs Ai=:A ? The solution is given

by KLEITMAN [51]. The optimal hypergraph is construcged easily. Order all
subsets of V, first take all [n/2]-tuples, then all [n/2]+1-tuples, all
[n/2]-1-tuples, all [n/2]+2-tuples, and so on. The edges of the optimal hy-
pergraph are the first m subsets according to this order.

The corresponding question is not solved yet, not even for the case of
(15)-(16). This latter one can not be too hard for 1=1. The optimal hyper-
graph could be constructed by taking the subsets of Vv according to their
sizes, starting from n. (For the case of theorem 2 see later in this section.)

Let (V,A) now be a k-graph, and let C(A) denote the family of subsets
C:CcAfor an AcA and Ic| =k-1. SPERNER [74] used in his proof the easy
fact

Al -k
IC(A)| 2 -y

The question arises, what is min|C(A)| if n,k,m are fixed (m < (:)). The
construction of the optimal k-graph is as follows. Fix an order Vl""'vn
of the vertices in V. Form a sequence of 0's and 1's in the usual way from
each k-set of V. The first m Sequences in the lexicographic order give the
optimal k-graph. A formula can also be given for min|C(A)|. There is a

unique expression of the form

(43) m= [a]:‘}+(a]:‘_'11]+...+[at) -

t

> > B ian > 21,
where t 21, ak ak_1 at and ai i. Then
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a
(44) min|C(A) | = (ka_]‘l]+...+(t_tl] = £, (m).

The result is more clear if m has the form (?:) . Then we have for the
optimum a complete k-graph in V' cV where |v'| = a - An interesting thing:
(44) does not depend on n. (44) was first proved by KRUSKAL [63]. Some
years later it was rediscovered in [41]. Then CLEMENTS & LINDSTREM [4]
proved a more general theorem by a different method. They also proved the
theorem independently, but they found [41] and [63] before publishing it.
HANSEL [30] also has a paper, and recently DAYKIN [13] found a relatively
short proof.

A similar result was found earlier by KLEITMAN [52]: If (v,A) is a
hypergraph with A, ivAj and |A| = [D then the number of different sets C for

which there exists an A €A with CEAi is at least
¥ n

(45) ().
d i
i=0

This question was solved for any m by CLEMENTS [9], using (44). In this
solution only an algorithm is given determining the optimal A, no formula
of type (45) is given for the minimum in general. This remains open. [9]
also contains useful inequalities concerning (44).

There are alot of other consequences of (44). E.g., recently DAYKIN
[14] observed that theorem 2 (ERDOS, KO & RADO) follows from (44). Now we
give some examples, where (44) is used in the proof.

Let (V,A) be a k-graph. A (k-1) -representation of (V,A) is a set
{Bi....,Bm} of (k-1)-tuples such that B, <A, (1<is<m). ERDSS asked what

is the maximal m for which any (V,A) with |A| =m has a (k-1) -representation.

The answer [41] is

2k-1 2(k-1)-1 1
m = ( k ]+( k‘]. ]+"'+[1)'
From inequality (2) it is trivial that if we modify the conditions of
theorem 1 in such a way that ]Ail = n/2 (let n be even) is excluded, then
< [(n/ZI;—I] and this is the best. However, if we describe the number of
edges Ai with IAiI =n/2 (and this number is > 0, but < [n[/lz)) , then usually

we do not obtain an exact estimation for m. This question was solved in
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[10] more generally: p [{a: aeA,|al=3}| are called the parameters of a

j=
hypergraph. Let 0O $iO <n and the parameters pl # 0, p10+1,....p be fixed.
max|A| is determined under this condition, prov1ded A XA,

Another formulation is given independently by DAYKIN, GODFREY & HILTON
[15]: 1f po-0, pl,...,pg3>0 are given integers, then the least integer n
such that there exists a hypergraph (V,A) with |v] =n, Ai ﬁAj and with the
parameters pO'Pi""'Pg is

= + ceet wrers
n p1+f2(p2 f3(p3+ fg(pg) Y

where fi is defined in (44).
[15] solves a conjecture of KLEITMAN & MILNER, too: If (V,A) satisfies
IL hA, and has the parameters po,pl,...,p » then there is an other hyper-

graph (v,A") satisfying A ¢Aﬂ and with parameters 0'""O'Pn/2'pn/2+1+Pn/2—f

eae,P +p0 (if n is odq, then the middle 1s....,O,O,pi(n+1)+p£(n_1), Pi(n+3)+
B} (n-3) 7" >

Let the parameters pl,...,pl+r be fixed. what is the minimal number of
(1-1)-tuples contained in any edge A €A? This is answered in [8].

CLEMENTS [11] dealt with the problem what happens in theorem 2 if we
::i). However, he did not minimize the number of dis-
joint pairs, but maximized the number of edges meeting all other edges of

(v,A).

As is clear from the examples, (44) is almost necessary if contain-

take more edges than (

ment is involved and the optimal arrangement does not consist of complete
i-graphs. We had to write "élmost“, because KLEITMAN's result in [51] is an
exception.

Another type of problems where |A| is fixed: what is the maximal number
of pairs Ai DAj, IAi—AjI =12 An extremal hypergraph can be constructed by
choosing the first m = |A| edges according to the lexicographic order. This
is proved in [1,31,65]. However, as CLEMENTS [6] pointed out it is an eésy
consequence of (44).

min|C(A) | can be asked for under several conditions. For instance in [39]
it is tried to do this supposing |A, nAjl > 1 (IA | = k remains true, 1<k).
However, only lﬁ%é%l is minimized. The optimal hypergraph is a complete k-
graph on a (2k-1)-element subset of V. For fixed IAl, the hypergraph mini-
mizing |C(A)| seems rather complicated, but it is regular enough to have
some hope for the solution.

P. FRANKL asked the following question of similar type. If |A| is fixed,
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|al =k for A €A, what is the minimum of (2k-1)-tuples contained in a union
A, UA, (A,,A ecA)?
- i loas B

8. MORE HYPERGRAPHS

In these problems we have more hypergraphs with the same vertex set.
Usually it is supposed that the hypergraphs do not have common edges. The
conditions and the questions are usually similar to those in the above
sections.

The first result was achieved by ERDOS [17]. If the hypergraphs
(V,Al),...,(V,Ad) satisfy the condition

<£h <
A % Byr BjoRy € Ah (1<h<4)
(and AinAj =@ (i#j)), then
d
(46) ) IAiI < (the sum of the d largest binomial coefficients
i=1

of order n).

By the same proof as in the case of theorem 1 we obtain the inequality

d
n
(47) I 3 Y (ja) =@
i=1 RAeA,
. d
where simply the hypergraph'(v,iylAi) was considered; thus one chain C can
i [] . £ n n
contain at most d A's. (47) is equivalent to zk=0 xk/(k] < d, where X
denotes the number of A's with |A| =k. It is clear, that under this
inequality Z:=0 xk is maximal if we take the maximal values of the xk's with
minimal coefficients, thus xk = (2} for the d middle k's and 0 otherwise.
The next question, what is max Zg_llAiI, if the Ai‘s are disjoint -and

Ajrm.h # @ Aj.Ah € Ai (1<i<d). The answer was found by KLEITMAN [53]:

d
LR i

The corresponding question for theorem 2 is unsolved. A problem of
RNESER [62] is the following. If (v.Al),...,(v,Ad) are k-graphs (k <n/2)
Agmj # @ for Ai,Aj eAh, AinAj = @ and (V,hulAh) is the complete k-graph,
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what is the minimum of d under these conditions?
Another line was started by HILTON & MILNER [33]. Let (v,A) and (v,B)
be two hypergraphs such that

= s ’ 5 S
a1 < x, IBiI L Bj 0, A, ¢ Aj B, ¢ 13J

then supposing p < |A|,|B| and 1 < min(2,p) < k < n/2,

(]'(‘)-(’"]]:+1]+n—k+1 if 1 < k < p+l,
[Al+]B] <

p+ (:J' (n-t+1)+ [n-]]::g*i) otherwise,

holds. HILTON [34] generalized, for the case IB;| <1 # k, KLEITMAN's
result [57] on the same subject: (V,A) and (v,B) are hypergraphs satisfying

A, 1 =Xk, IB,l =1, k#1 <n, A, nB. # ¢
i i i 3

then either

Al (27])

or
n-1 n-1-k
18] < (1-1 (1-1 ]
EHRENFEUCHT & MYCIELSKI [16] conjectured that if the hypergraphs

satisfy

IAiI =k (a €A, IBiI =1(B;eB), |A] = |B| =m
and

Ai n Bj # 0 1L 1 5% 5§
then

k+1

(48) m < ( 1)

It is proved in [48]. T. TARJAN [75] modified the proof yielding a

stronger result:
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Let (V,A) and (V,B) be two hypergraphs with |A| = |B| ang
(49) Aj N By £ P Lff 17 5.

Lemma 1 will be applied for the following graph. W consists of all
pairs (s,T) where S,T SV, SNT = @, and two distinct vertices (S e )'(SZ'TZ)
are connected iff one of the sets SInT2 SznT1 is empty. Fix an order on the
elements in V. Let Wi consist of those vertices (S,T) in which all elements
of S precede all elements of T according to the i-th permutation of the

elements of V. Observe that Wi Spans a complete graph. That means f_.1 = 1.
We need the number

. . s G 3 - [T
Hi: (s,mew }| = [ISrZITl)Isl.ITI.(n—IsI-ITI)- T (IsT+Tthz -

From inequality (5) we obtain

m
(50) 'Z (TK:TiTE:Tj < 1.
A, |

1f IA.' c k, ’B.[

a d

E.g. if |A_[+|B,| < k then
a b 1

1, (48) trivially follows. Other variants follow, too.

k
m = {[k/2]}'

9. n-DIMENSIONAL LATTICE-POINTS

SPERNER's qguestion can be formulated in the following way. A square-
free integer N = Plp2"'P is given; what is the maximal number of its
divisors not dividing each other? After answerlng this question it is a must
to answer the same for ;rbltrary N p1 Wiee pn » too. The divisors of N
have the form p sws P N, where 0 < xi < o, (1 £i < n). Thus, with the
divisors we can associate the lattice-points of an (a +1)><...><(an+1)
n-dimensional parallelotope. All questions can be extended to n-dimensional
parallelotopes in this way. Some of these extensions are motivated by other

applications.
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If the character of the problem is such that in the parallelotopes there
do not appear new phenomena (compared to the hypergraphs), then it is easier
to start making a conjecture and proof for the 2- and 3-dimensional parallel-
otopes, since they are more graphic.

We briefly list the results which are generalizations of this type.

SPERNER's theorem was generalized in [28]. The bound for m is the
maximal number of lattice-points with a fixed coordinate sum ( =[Zu /21).

SCHONHEIM [ 73] generalized (46) and (39)-(40). In [44] the common
generalization is given. (25) is generalized in [43].

ERDOS & SCHONHEIM [26], further ERDOS, HERZOG & SCHONHEIM [23] have
investigated the generalization of (6). The max of m is not equal to the
minimal m for which there exists an m-element set of divisors such that
any other divisor is coprime to one of them. Both values are determined.

An analogue of (15)-(16) is generalized in [54].

The analogue of (44) is proved in [4]. Of course, there are no
formulas, but it is proved that one of the optimal sets of lattice-points
gives the first m in the lexicographic order. Other results concerning this
theorem can be found in [7]. [5] gives the generalization of ERDSS' problem
of (k-1)-representation of k-edges. [8] also concerns this generalization.

In [6] CLEMENTS shows, that the theorem of LINDSEY [65] (which maximizes
the pairs of neighbouring lattice-points if their number is given) is an
easy consequence of the generalized formula (44). Recently KLEITMAN, KRIEGER &
ROTHSCHILD [61] determined the maximal number of such pairs which differ
only in one coordinate.

LINDSTROM [66] solved an interesting question of KRUSKAL [64], which
is an analogue of (44). A hypergraph can be imagined as a set of certain
faces of an (n-1)-dimensional simplex. Thus, if we fix the number of (k-1) -
dimensional faces, then (44) gives the minimal number of (k-2)-dimensional

subfaces. LINDSTROM solved the same question for more-dimensional cubes.

10. FURTHER ANALOGUES AND GENERALIZATIONS

There is an attempt to put these combinatorial theorems in a more gen-
eral -algebraic- form. Most results concern SPERNER's theorem and close mod-
ifications. All these papers state the theorems for certain partial orders.
We do not even give the list of these papers because KLEITMAN's paper in

this tract contains it. The results contain all important combinatorial ana-
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logues of SPERNER's theorem with one exception: the partitions of a finite
set under refinement.

For generalizing other problems, there is only one result by HSIEH
[38]. It solves an analogue of theorem 2: what is the maximal number of
k-dimensional non-disjoint subspaces? And what is interesting, the harder
problem, when the subspaces must have l-dimensional common subspaces, is
also solved for small n's. Compare this with (11)-(12) which is true only
for large n's. The reason for the difference is, that the middle levels of
the partial order of the subspaces are much larger than those of the sub-
sets of a set.

It would be nice to have an algebraic generalization of (44). However,
it seems to be hard, because besides the partial order we need an ordering

in the levels of the elements of the same rank.
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