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A conjecture of A. Ehrenfeucht and J. Mycielski concerning families of
subsets is established.

The aim of this note to prove the conjecture posed in [3] by the method
used in [1] and [2].

THEOREM. Let X = {1,2,...,n} be a finite set and A,, A,,..., A,, ,
B, ,..., B, be distinct subsets of X such that

|4l =k, |B;|=1 (A<i<m; k/lfixed 1<k, k+1<n)

and
A, N B; = &.
Then
_(k+1
m ¢Q( X ) (1)

Proof. 1. Define the subsets C;, D; of X in the following way.
Let C; U D; be an arbitrary (k + I)-tuple of X (1 =i << (,))), and let C,
consist of the first k elements of this (k -I- I)-tuple, D; the last /. Denote
this system by .#¢ = {C;, D,}.

2. Denote the maximal element of C; by e;. If e; < ¢, , then every
element of C; is < e; and every element of D;is > ¢; . Hence C; " D; = .
Similarly, if e; == ¢;, then C; N D, = @. We can conclude that either
Cl'ﬁDj: %] OerﬁDiZ C’j lloldSlf.r-/:}.
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3. Let #/,..., #, be the systems formed from % by permuting the
elements of X. Their elements are denoted by %, = {C;*, D,*}. From the
result of the previous section it follows that either C* N D* = &
or C;*N D* = @ holds (1 < u < n!).

4. Letuscountin two different ways the number of pairs(#,%,(4,, B,)),
where C* = A4,, D = B,. Fix first w. If C* = A,, D* = B,,
C*=A4,, D*=B, for some 1 <<v <w =_m, then C;*N D +#+ @
and C;* N D;* # @ by the suppositions of the theorem, and it contradicts
our result in Section 3. It means, to every u we can have at most one
(4, , B,) with the given property. The number of pairs (%, (4,, B,))
is at most n! .

On the other hand, fixing (4, , B,), we can choose (,%,) sets (C;, D)
to permute into (4, , B,). If we fix it, the number of such permutations is
k!'1'(n — k — I)! This means that the exact number of #,%’s is

(kn_l_i}k!!!(n—k—i)!

(not depending on v) and the number of pairs is
n Fdlm k<Y Lyl
m( L )R —k—Dr<al.

This inequality is equivalent to (1). The proof is completed.

It is easy to see that (1) is the best possible relation, because choosing
| X| = k + I and choosing all the k-tuples for C; (D; = X — C,), the
obtained system satisfies the conditions of the theorem, and the equality

in (1).
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