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CHAPTER 23

Combinatorial Search Problems

G. O. H. KATONA

Mathematical Institute, Hungarian Academy of Sciences, Budapest, Hungary

1. Introduction

The basic problem is the following: We have a finite set X = [ m—
and we want to identify an unknown element x; of X testing some subsets A of
X whether A contains x; or not.

There are many practical problems of this type. The first one (known
from mathematical problems) is the following (see Dorfmann [1943] and
Sterrett [1953]):

1. “Wasserman-type” blood test of a large population. X is the set of some
men. The test may be divided conveniently into two parts: (1) A sample of
blood is drawn from every man. (2) The blood sample is subjected to a labora-
tory analysis which reveals the presence or absence of “syphilitic antigen”.
The presence of syphilitic antigen is a good indication of infection; for the
second step, instead of carrying out the test individually we can pour together
some samples. Carrying out the second step on the mixture we may determine
whether the given subset of men contains an infected man or not.

2. Diagnosis of a sick TV set. X is the set of parts of the TV set. First we
see that there is a good picture. The trouble must be in the “sound-channel”,
which is a subset of the set of parts of the TV set. Similarly, by different
tests we can determine whether certain subsets contain the ill part or not.

3. Chemical analysis. Assume we have an unknown chemical element and
we want to identify it. X is the set of chemical elements. We pour some
chemical to the unknown one; if its colour turns red, we know that it belongs
to a subset of the set of chemical elements; in the contrary case, it does not.
After carrying out some such tests, we can identify the unknown element.

4. Defective coin problem. X consists of 27 coins, one of them is defective.
The defective coin is heavier than the good ones. We have an equal arm
balance, and we want to identify the defective coin by weighings. If we put
on the balance two sets of coins of equal size, then we can see which one
contains the defective coin, and if they are equally heavy then the remainin g
set must contain it. In the previous examples we divided the set X into two
subsets (4 and its complement X— A4). However, in this case we divide X
into three disjoint subsets, and after the weighing we know which one
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contains the unknown defective coin. Thus, this problem is generalization of
the original problem.

The above examples differ in many things.

(A) («) In the 3rd and 4th (and probably in the 2nd) example there is
exactly one unknown defectivet element.

() In the 1st example the elements may be infected independently with
equal probability. It may occur that all the persons are infected or that all
of them are healthy.

(B) In these examples the next subset may be («) dependent or (f) indepen-
dent on the answers of the previous tests. If the person or the machine per-
forming the tests has a sufficiently large memory, then it may depend on
the answers; in the contrary case it may not.

(C) («) In the Ist example we may choose any subsets for test. () However,
in the cases of the 2nd, 3rd and 4th examples, the electrical construction, the
chemical properties and the condition that two subsets of three parts are
equally sized produce restrictions for choosing sets.

(D) () In the 1st, 2nd and 3rd example we test a subset of X; in other
words, we divide X into two subsets (4 and X—A4). The answer says
which one contains the (or an) unknown element.

(f) In the 4th example we divide into three parts. Practically, in the 3rd
example we always divide into many parts; pouring the testing chemical
we can get many different colours. From the colour we may determine to
which subset the unknown element belongs. The number of subsets may
change from step to step.

(E) Our aim (in all the cases) is to minimize either («) the averAge number of
tests, or (ff) the maximal number of tests.

There are many other different questions. We do not want to list all of them
in order not to frighten away the reader. We shall investigate some of them
later. There is one more reassuring fact: We do not know the solutions of
all the problems obtained by combination of the cases (A), (B), (C) and (D).

We shall not investigate three kinds of problems: (1) the method “element
by element”; p; is the probability of x; being wrong, c; is the cost of testing
x;, determine the optimal order of the tests; (2) the case in which X is
infinite; (3) sequential decoding of information theory. Problem 1 has no
combinatorial aspects, problem 2 has some, but its methods are rather
analytical. Finally, problem 3 has some connections with problems treated
in this survey paper; however, these problems are very involved and the
connections are not clear yet.

Let us first. examine (for warming up) a trivial case: (Aa), (Bf), (Ca),
(Da), (Ex) = (Eff). We have a finite set X = {x,,..., x,} and exactly one

T Sometimes we say briefly “unknown element™ or “unknown”.
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unknown element x;. We have to determine a family 4, .. ., 4,, of subsets
in such a way, that

after knowing whether 4,, . . ., 4,, contains x; or not we can determine x;.
(1.1)

(Bff) means that we test all 4;’s independently of the answers; (Ca) means
that we can use any subset of X for A4;’s. The number of tests does not depend
on the unknown element x;; it is m. Thus, we have to minimize m under the
condition (1.1), where the 4;’s run over all the subsets of X.

Put B} = A; and B} = X—A4; (1 <j<m). If we know whether A;
(I </ < m) contains x; or not, we also know whether B} B%:-- B
(iy, ..., I, = 1 or 2) contains x; or rot. These sets are disjoint for different
sequences iy, . . ., i,. Conversely, if we know which B{' - - - B contains x;,,
then we know whether A4; (1 < j < m) contains x; or not (depending on J).
Thus, (1.1) is equivalent with the condition that

By B% - -+ Bi» contains at most 1 element for each iy, ..., i,, (1.2)

and if we write i; = 1 if x;e 4; and i; = 2 if x; ¢ A; then B - - - Bi» is the
unknown element.

Moreover, (1.2) is equivalent to the following condition:

For each pair x;, x; (j # k) there is an A, such that

x;eAd; and x, ¢ A,
or (1.3)
x;¢ A and x e A,

Indeed, if (1.3) does not hold, then x; € Bf and x, € Bj are satisfied at the same
time (i = 1 or 2). Choosing i), ..., i, in such a way that x;€ By -+ - B,
it has another element x;, in contradiction with (1.2). Conversely, if (1.2) does
not hold, then for some x;, x; (j # :{{) and iy, . . ., i, we have x;, x, € Bir. ..
B, In this case, x; € B}’ and x, € B, that is, x;€ A;and x, € A, hold at the
same time (1 < / < m) in contradiction with (1.3).

We call a family of subsets 4,, .. ., 4,, a separating system if they satisfy
either (1.1) or (1.2) or (1.3).

There is a 4th characterization of separating systems. Define the 0, 1
matrix M = (a;;) in the following way:

a; =1 Iff x;ed, (1 <i<m 1<j<n).
Then (1.3) is equivalent to:
M has different columns. (1.4)

After these preliminary remarks, our first mathematical problem becomes very
easy: Given n, determine the minimal m such that there exists an m % n matrix
with different columns. The number of different columns is 2™, thus 2™ > n
necessarily holds. In other words m > log n (we shall always use logarithms
with basis 2) or m = {log n}, where {x} denotes the least integer > x. This
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estimation is best possible: choosing s columns arbitrarily from the
different 2418 (, | sequences, we obtain a good matrix M.

Theorem 1.1. If X is a finite set of n elements, then the minimal separating
system consists of {log n} elements.

2. Connections with noiseless encoding

Let us restrict ourselves now to the case (Aw), (Ba), (Cx), (Da), (Ex).
We have again a finite set X = {x,, ..., x,}; exactly one element x; of X
is defective (wrong, unknown) with probabilities p,, ..., p,. Further, there
are subsets 4,, A,(ey, . . ., ¢;_,) where A, is the first test, and A (e, . . ., €i_1)
(1<j<m;e,...,e;_y =0orl)is the j-th test when the answer of the
previous tests were e,, . . ., ¢;_; (¢, = 1 means: it contains x;; ¢, = 0 means:
it does not contain x;).
If A,1(ey, . - ., ;) is not defined, but A(e, ..., e,_;) s
then the answers e,, . . ., ¢,_;, €, (together with the subsets 2.1)
Ay, Asxey), ..., Aley, . . ., e,_1)) uniquely determine x;.

We call such a family of subsets a strategy.

If we fix x; for a moment, then the sequence e, (i), . . ., e, (i) of answers is
uniquely determined ((A4i,+1(e (), . . ., e (i))) is not defined). The number of
necessary tests is /.. The average number of tests is

'Zl pil;. (2.2)
We have to minimize (2.2) over the strategies, where the A’s run over all the
subsets of X.

Observe that in this way we corresponded a 0, 1 sequence e,(i), . . -, e (i)
with every x;. This is a code in the language of information theory. The
sequences are called codewords. This code has a simple property: There are
no two different 7 and j such that /; > /; and

e (i) = e (J), . . ., en(i) = en))-
In other words, no codeword is a segment of another one. We say that itis a
prefix code.

This definition is adopted for the case when we use codewords formed
from r different symbols yy, . . ., yr instead of 0 and 1.

Conversely, if we have a prefix code x; — e,(i), . . ., (i) formed from
0’s and 1’s, then we can define a strategy in the following way

Ay = {x;:e,()) = 1} (2.3)

Afess - epy) = {x;:e5() = ey, ..., €4()) = e;_y, e()) = 1}

(j=>1
where ey, . . ., e;_; isa fixed sequence of 0’sand 1's. If the set on the right hand
side is empty, we do not define 4(e, . . ., ¢;-;). For any fixed x; we get the
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results ¢,(7), . . ., e (i), writing 1 if the testing subset contains x; and 0 if not.
(Itis easy to see by induction.) After these /; tests, x;is uniquely defined by the
prefix property of the code. Thus (2.3) is a strategy and we found a corres-
pondence between the prefix codes and the strategies; moreover, this corres-
pondence is length-preserving: the length of the codeword of x; is equal to
the number of tests necessary to identify x;. '

This correspondence was described by Sobel [1960] (cf. Section 12), by
Picard [1965] and by Campbell [1968], and it may also have been known to
earlier authors. However, the optimal prefix codes and optimal strategies do
not coincide, as Sobel [1967] has noticed in his Appendix. He also investigated
this connection in another paper (Sobel [1970]).

This correspondence allows us to use the following well known theorem
of information theory:

Noiseless Coding Theorem. If the symbols x,, . .., X, are encoded by the
symbols y,, . . ., ¥, in a prefix way, then

e i 2l - 2?=1 Pi log p; = H(P)

ol log m log m

where P = (py, - - »Ps) (pi > 0, Y.p; = 1) is the vector of probabilities of the
symbols X, . . ., X, and I, is the length of the codeword of x;.

On the other hand, we can always find a prefix code satisfying the inequality

L< H(P)

log m

We do not prove it here. The reader can find it in any information-
theoretical book (e.g. Feinstein [1958]).

Substituting m = 2, this theorem gives us good estimates for the minimum
of the average test-number:

H(P) < L < HP)+1. (2.6)

However, it remains an open question what is the exact minimum. To
answer this question let us examine some simple properties of the (in average
sense) shortest code. Assume py 2 *** 2 Py

Lemma 2.1. For the optimal prefix code, |, < *+-'< .

Proof. If there is a pair i, j such that p; > p; and /; > [;, then changing the
code words of x; and x; the average increases by pi/;+p;li—pi; —pili =
(pi—p;)(l;—1;) and this is negative. The lemma 1s proved.

Lemma 2.2. If [; = 1,, then e,(i), . . ., ei,—1(i), 1 —ei(i) is also a code word
together with e,(i), . . ., e,,-1(i), e ().

Proof. In the contrary case change the code word e;(i), .. ., er (i) for
e,(1), . . ., ey,—1(i). The new word can not be a segment of another one (the
only possibilities e,(i), ..., e;()) and e (i), ... 1—e (i) are excluded).
Conversely, any segment of the new code word is a segment of e, (D), - . -, en(i)

(2.4)

(2.5)



290 G. 0. H. KATONA CH. 23

and this is impossible by the prefix property. Thus, the new code is prefix,
too. The average code length is smaller; this is a contradiction. The proof is
completed.

Denote by L(p,, - . ., p,) the average code length ) p/; for a given code
and by Luin(py, - « -» p,) its minimum for prefix codes. Let us consider a code
with average code length Lmin(py, - . -, p,)- By Lemma 2.1, x, has a code of
maximal length: e;(n), . . ., er,(n). If we change its last element, then the new
sequence is also a codc word :

(ex(n), ..., 1—en(m) = (e,(0), .. , e, (D)) (0 # m).
Here /; = 1, thus, again by Lemma 2.1, /; = [,_, = [, Changing the code
words of x; and x,_,, the average code length does not change; we may
assume i = n—1. Let us omit the code words of x,_; and x, and take a new
one for both of them: e (n), .. ., e,—1(n). This code is prefix again, and its
average code length is smaller by p,_; +p,.

Luia(P1s - - s Pu) = L(P1s < « +s PasFPa) +Pr-1+ Do
Hence

Luin(Pys « + +» Pu) Z Lein(Pss -« o Pae1 +P0) FPns +Pn 2.7)
follows. On the other hand, given a code with average code length
Luin(pys « « oy Pa—y +p,) then we can form a new prefix code writing 0 and |

at the end of the code word with probability p,_,+p,. The average code
length is enlarged by p,_, +p,:

Lmln(p.'i) Rt pn) "‘{'~ Lmin(Pls < Pua +pu) +pn-—1 +P.-| (2'8)
(2.7) and (2.8) result in
Lmin(Pl; aw g pn) = Lmil’l(.pla o oy pu—I +Pn)+pn—l +pn' (2'9)

We have the following important result:

Theorem 2.1. We reach the optimal code with the following Huffman
procedure: Assume that a code with average code length Lyin(py, . . ., Ppey +Pn)
is determined, where p,_, and p, are the two smallest probabilities. Write O
and 1 at the end of the code word with probability p,_, + p,. This is the optimal
code for P = (py, . .., p,). The optimal code for P = (1) is the void sequence.

This theorem was first proved by Huffman [1952], but it was independently

found by Zimmerman [1959] in the language of search.
A simple example: P = (0. 4' 0 2530.2; 0:15)

0.4 —3. 06 —_ 1
0.25 - | 035] ‘ 0.4]

0.2 0.25

0.5

The code for (0.6; 0.4) is 0, 1.
The code for (0.4; 0.35; 0.25) is 1, 00, 1.
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The code for (0.4; 0.25; 0.2; 0.15) is 1, 01, 000, 001.

Theorem 2.1 gives us the answer to our question. The next question
arises: Is there any difference between search theory and noiseless code theory ?
The answer is clear: there are many differences.

1. Code theory does not give solutions for the problems of type (Af) or,
in general, for the problems where there are two unknown elements with
positive probability.

2. In case (CB) the possible restrictions for the testing subsets give
restrictions for the corresponding codes. However, these restrictions are
different from the usual restrictions of code theory.

3. Perhaps the most important difference is that at a noiseless channel we
have many symbols to transmit. Thus, we consider the sequences of length N
formed from xy, ..., x, and we transmit these sequences as new symbols.
By this method we may approximate the lower bound of (2.6) arbitrarily
good. The Huffman procedure has less interest in this case. However, in the
case of search we have usually only one set and one unknown. Here the
Huffman procedure has a great interest.

In any case, if the code theorems do not give the exact solution of a search
problem, they give (sometimes good) estimates.

We have to mention that in the case when we can divide the set by one
test into m subsets, then we can also use the noiseless coding theorem and
a modified form of the Huffman procedure.

3. Results

3.1. Case (Ax), (Bx), (Ca), (Dz), (Ex)

After these long preliminaries we start the real survey of results.

First consider the following problem: Just one of the elements x,, . . ., x,
is defective with equal probability; what is the minimum of the average
number of tests necessary to identify the defective element ? This problem is
obviously a particular case of the problem treated in the previous section.
Theorem 2.1 gives an algorithm to determine Lumia(1/n, . . ., 1/n); however, in
this special case we may determine the exact value.

Lemma 3.1. The code words of the code having average length Lyi(1/n, . . .,
1/n) can have just two different lengths, which are consecutive integers.

Proof. Assume /, < -+ < /,. If I, < I,—2 then consider the code word
e(n), . . ., e, (n). By Lemma 2.1 there exists a code word of the form e, (n),
.., 1—e(n). Change the code words

ey(n), . . ., e,-1(n), er(n) ey(n), ..., e,-1(n)
e(n), ... e,-1(n), l—e,m) - for {e(l),...,e,(1),0
e (l),..., en(1) lel(l),...,e;,(l), 1.
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It is easy to see that the new code is prefix. However, the average code
length is increased by 2(/, +1)+1I,—1)/n—Q2[,+1))/n = (I;—1,+ 1)/n, which
is negative by the assumption /; = /,—2. The new code has a smaller average
length. This is a contradiction. We proved /, = [,— 1. The proofis completed.

Choosing an arbitrary 0, 1 sequence c,, ..., c,—1 of length /,—1, either
it is a code word or one of the sequences

C], ok ay ct’,,'—ls 09
€1y 00 Cl—1, 1

G.1)

is a code word. In the contrary case we would change a code word of length
I, for ey, ..., c,-1 preserving the prefix property and decreasing the average
length. This is a contradiction. However, by Lemma 2.1 if one of the
sequences (3.1) is a code word then the second one is also a code word.
Thus either ey, ..., e,-1 or both of (3.2) are code words. Denoting by s
the number of code words of length /,—1 we have

s+i(n—s) =21, (3.2)
Here 0 < s < n, and 4n < {(n+s5). Using (3.2), we obtain the inequality
In g2t <,

or logn < [, < logn+1. It results in /, = {log n}, where {x} denotes the
least integer = x. On the other hand, we may count s from (3.2):

§ = 2dogn_p,
The average is

s({logn}—=1)+(n —s){log.jrj - {log ”}u(z_ilos n} s 1)
n n

] 1 2{105; n!
o) = o (221)
hn n n

This theorem was first proved by Sandelius [1961]. Sobel [1968b] has it also
as a by-product. The proof published here is different from both that of
Sandelius and that of Sobel.

By this method it is easy to see the following generalizations (Katona and
Lee):

Theorem 3.1.

Theorem 3.2. Let p, = -+ = p, be given probabilities, where p,_,+
Pn =2 P1- Then

Lmin(pln ey Pn) = {IOg JI}— X Pis
i=1
where s = 2008 — p,
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Theorem 3.3. If p, = -+ = p, and p,+kp,_, > p, then
L=, <k;
that is, the number of different code lengths is at most k+1.
Sobel [1968b] determined another special case:
Theorem 3.4, If
1
In(n+1)
thent for 2losnl < p < 3-20esml—1
Loia(P1s - - o Pa) = ([log n]+2)+4n(n+1)(3:22U0em =3 _3.0eenl=2(5, 1+ 1))

and for 3-2Ueem1 =1 g p < 2Mlognl+ 1

LuiaP1> - - - Pa) = ([log n]+2)+in(n+1)(3-2708 =1 _3.2Ue =1 (2 4 1)),

P = (l<i<n)

3.2. Case (Aa)a (BZ), (CC{), (D:{), (Eﬁ)

In this case the probabilities do not play any role. We may choose them
py = 1/n (1l = i = n), and use Theorem 3.1:

] l 2{I0g n}
L'min T e {log ﬁ}——- = _1)
It n n

However, the maximum = the average. Denote by / the minimum of the
maximal test number. Thus

ollog n}
1 = {log u}—(-—}—-——]). (3.3)
1
Here
{log n}
< : - < 2
n
and

{log n}

{log n} — (,. -
From (3.3) and (3.4) we obtain
[ = {log n}.

However, by Theorem 1.1 we can construct a strategy even by independent
tests (case (Bf)) with test length {log n}.

—]) > {logn}—1. (3.4)

Theorem 3.5. Assume we have strategies for X = {xy, . . ., x,}. The minimum
(runs over strategies) of the maximal number of tests is

! = {log n}.

T [x] denotes the largest integer < x,
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It is quite interesting that in the case (Aa)(Co)(Ef) the optimality problems
are equivalent for (Bx) and (Bff); we do not obtain anything if we choose the
next test depending on the answers of the previous tests.

3.3. Case (Ad), (BF), (Cx), (D), (Ex) = (E).
Theorem 1.1 gives answer for this case.

3.4. Case (Ax), (Bx), (Ch), (Da), (Ea).

It is a very natural assumption that a linear order x; < - -+ < Xx, is given
in X, and the admissible subsets are of type {x;,..., x;} or {x; ..., x,}
(1<j<n).

For example, we want to classify apples according to their sizes; x, . . ., X,
are the classes, and the unknown x; is the class of the given apple. We carry
out the tests by holes. If the given apple falls through the hole then its class
x; belongs to {x,, . . ., x,} for some j depending on the hole. Conversely, if it
does not fall through, then x; belongs to {x;,,, ..., X,}.

What does this restriction mean on the language of codes? The tests
{x,,..,x;} and {x;;,,..., X,} are equivalent; assume we use always the
type {Xji1s .« - Xpf- If Ay = {Xj41, . .+, X,}, then for the corresponding code
we have

e()=-=¢()=0, e@(+tl)=-=¢M@ =1
Similarly, if Ay(ey, ... ;) = {x,41,..., X,} then considering the set
T={t:e,(t) =ey, ..., e_1(t) = e_,} we have again
() =0 if 1<, teT
and
e(t) = 1 if ¢t>1 reT.
Reformulating, it means that for any pair (¢, ),
(’1(1) e el(u)s . ek—l(t) = ek—l(”)a Ek(f) = 0’ ‘(Jk(u) =}
for some k; that is, the code words are in lexicographic order. We say that the
code is alphabetical if it possesses this property.

Our problem is to determine the prefix alphabetical code with minimal
average length. Denote this average by Amin(py, - - ., p,).

Gilbert and Moore [1959] gave an efficient construction for alphabetical
codes, which ensures the following estimation:

Theorem 3.6.

H(P) € Aninlpy, . . o py) < HP)+2, (3.5)
where P = (py, .. ., Do)

Proof. The left hand side is a consequence of the left hand side of (2.6) and
of the trivial inequality

me(p;. E P.,) = Amiu(f)i; sy Pn) (36)
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We prove the right hand side of (3.5) by a construction. Define the numbers

qi,-.»q,and ly, ..., 1, as follows:
ot |

4= "3 pitips (3.7)

l; = {—log p;} +1.
Let the first /; digits of the binary expansion of the number ¢; be the code of
x;. If the prefix property does not hold, then the code of some x; is a segment
of the code of another x;. It means that g; and g; have the same binary digits
on the first /; places. In other words,

I

1
19:=a;1 < 5 < S = 1P

and this contradicts (3.7), since

19:i—q,l = tpi+ip; > pi
The constructed code is prefix, indeed. The alphabetical property is trivially
satisfied. The average length is

Zi pil; < '21 pi({—log p;}+1) < 'Zx p(—log p;+2) = H(P)+2.
J= =3

i=

The proof 1s completed.

Knuth [1971] and further Hu and Tucker [1970] worked out algorithms to
determine a good alphabetical code.

In the paper of Hu and Tucker the tentative-connecting algorithm is written
down. This need not be directly associated with an alphabetical code, but it is
proved that there exists an alphabetical code with the same code word lengths
as the code generated by the tentative-connecting algorithm.

A code is equivalent to the following tree: The nodes are the different
possible segments of the code words (including the void sequence, which is
called root), and two nodes are connected if one of therln is a segment of the
other and their lengths differ one. The ferminal nodes are the code words.
The tentative-connecting algorithm determines the tree rather than the code.

We start the algorithm with the subtree consisting of the terminal nodes
¢y, .. . €, with the given order (no edges). Every terminal node has weight
p;- We take the minimal sum of the form p;+p;.; (1 <j < n), we draw a
new node d with weight p;+p;., and we connect d with ¢; and ¢;, ;. We have
a new subtree and a new construction sequence: Cy, ..., Ci_y, d, Ciray . .y Cpe
In general, assume we have a subtree and its roots and terminal nodes form
a construction sequence d,, . . ., d, (some of the d’s are ¢’s); they have weights
Gis .G diand d; (i < j) are tentative connected if thereisno d; (i < k <j)
such that d; = ¢, for some /. We form the minimal sum ¢;+¢q; where d; and d;
are tentative connected (i < j). We connect the new code e with d; and d‘_,‘.
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d,

ke

The new construction sequence 18 dy, .. ., di_1, € divyy oo dimys diys - -
The corresponding weights are gy, . .+, §im1s Gi G Gigrs + - o3 Gjm1s Gjits + - =
q;. We continue this procedure until the construction sequence consists of
one element.

Observe that in this language, the Huffman algorithm means that we choose
the minimal sum ¢;+¢; without any restriction.

Notice that
1 1 1 1
Amin Ty ) = Lmin e P Ll
n n n n

This is a consequence of the fact that in this case the average does not depend
on the order.

By the methods of Lemma 3.1, the following theorem is easy to verify
(Katona and Lee).

Theorem 3.7. If pi+pii > p;, A <i<n, 1 <j<n) then the minimal
alphabetic code can have only two different code word lengths, which are
consecutive integers.

Itis aninteresting question how the Huffman algorithm is modified if we have
a prescribed bound b for the code lengths (b > {log n})

L <b (L4 n)y
but we are interested in the minimal average length. Cesari [1968] has a
partial solution for the problem.

3.5. Case (Aw), (Bx), (Cf), (Dx), (Ef).

In this case the solutions of the problems of the preceding section are
trivial and identical to Theorem 3.5.

However, there are other problems which are too difficult in the case of (E«).

Suppose we have n coins xy, . . ., X, one of them being defective (say x;).
The weight w; of a non-defective coin is

I<w; <140
and w; = 1+¢ (¢ > d). We can use scales (not equal arm balance), thus by
one test we may determine the weight of a subset 4 of {x,, ..., x,}. If the
number | 4| of elements of A is less than [¢/d], then x; € A if and only if the
weight of the subset 4 is = |A4|+¢, because in the contrary case its weight is
less than | 4| +0[e/d] < |4]+e.

This example raises the following problem. Suppose a finite set X =
{xy, ... x,} is given. Determine the minimum of the maximal test number
for strategies consisting of subsets of at most &k elements (k is fixed < n).

Denote this minimum by fi(n). We know from Theorem 3.5 that

fi(n) = {log n}.
If k& = 1n, we do not have an essential restriction by

A| < k, for instead of
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|4] > k we can use the complement X—A4, where |[X—4| < n—k < k.
Thus, by Theorem 3.5

fu(n) = {log n} if [4n] <k (3.8)
Assume now 4n > k. It is clear that f(») is a monotonically increasing
function of n. Suppose for the optimal strategy |4;| = [ (1 < [ < k) holds.
If the subsets A;(ey, . .., e;—;) form a strategy, then 4, N Ajey, ..., €;_1)
and (X—A4,) n Ajey, ..., ¢;_,) form a strategy on 4, and X—4,, respec-
tively. Similarly, |4;(ey, . . ., €;-,)| < k resultsin |4, 0 Ajes, ..., ;)| < k
and
[(X—=Ay) nAfey; . - cj—l.)l < k.

For these strategies the maximal number of test is at least f,(!) and fi(n—1),
respectively. We have the following inequality

S = 1+ max (fy(D+fi(n—=D). (3.9)

Here ] < n—1I by I < k and k < in. Applying the monotonicity of f,(n) we
have

max (fi(), fi(n—=1)) = filln—1) (3.10)
and
Sln—=1) = filn—k). (3.11)
Substitute (3.10) and (3.11) into (3.9):
fil(n) = 1+fi(n—=Kk). (3.12)

Applying v = {n/k}—2 times (3.12),

fil(n) = v+ fi(n—kv)
follows. Here n—kv < 2k is trivial; for the last term we can apply (3.8)
fi(n) = v+ {log (n—kv)}.

However, it is easy to construct a strategy with this maximal test number;
Ay = {xu s xk}’ A, = {xk-+v1: s xzk}a vouyilly = {x(u—k‘lk—ls s ka} are
the first v tests. They are independent from the previous answers. After these
tests we know that either x; € A; forsome j (1 < j < v) or X; € {Xgi15 - - +» Xu}
In the first case we have a strategy with maximal length {log k} to identify x;
by Theorem 3.5. In the second case we have a strategy with {log (n—kv)}.

Here n—kv > k, and the maximal length is v+ {log (n—kv)}. The conjecture
of Vigassy is proved:

Theorem 3.8. The minimum of the maximal test number of a strategy given

to identify one of the n elements is v+ {log (n—kv)} if .the subsets used on the
strategy can have at most k elements (k < n).

The next problem is a typical problem of computers: Suppose there are
given n numbers y,, . . ., y, whose values are unknown and pairwise unequal.
We wish to order them using only binary comparisons.
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In other words we have an unknown permutation x; from all the permuta-
tions xy, . . ., X, of yy, . . ., ¥,. The subsets we can use for tests consist of the
permutations where y; precedes y; (for some fixed i and j (i # j). There are n!
permutations, thus by Theorem 3.5 the minimum of the maximal test numberis

I > log (n!). (3.13)

Steinhaus [1950] proposed the following algorithm: Assume we have already
ordered y,, ..., y. We compare y,., first with yg/2;, secondly with yu4 or
Va4 depending on the answer of the first test, and so on . . . . The number of
tests is maximally

1 < {log2}+{log3}+---+{log(n—1)} < log (n—1))+n—3. (3.14)

Steinhaus conjectured in [1950] this procedure to be optimal, however, in
[1958] he disproved the conjecture. Asymptotically, the lower (3.13) and the
upper (3.14) bounds are equivalent, but we do not know the best algorithm
up to now. Ford and Johnson [1959] determined an algorithm better than
Steinhaus’ one. (See also Wells [1965], and Cesari [1968].)

A generalization of the above problem is to find and order the ¢ largest y’s.
This generalization does not belong to the general search problem treated
here. But we can generalize it toward this direction: The n objects x4, . . ., X,
are divided into disjoint classes. We wish to determine just the class to which
the unknown x; belongs.

In our case: Xxy,..., X, are the permutations of y, ..., y,. The classes
consist of the permutations where the last 7 elements are fixed. The number of
classes is n(n—1) - - (n—t+1).

If ¢t = 1, it is easy to see that

l=n-1.

The case ¢ = 2 has been solved by Schreier [1932], Slupecki [1949-51]
and Sobel [1968a]. The case of general ¢ is obviously unsolved. For estimations
see Hadian and Sobel [1970]. A further considered but unsolved problem is to
determine the minimax of binary comparisons sufficient to identify the tth
largest element from yy, ..., y,. Kislicyn [1964], Hadian and Sobel [1969],
and Hadian [1969] worked out algorithms.

R. C. Bose and Nelson [1961] modified Steinhaus’ problem: We wish
to determine the natural order of the given (pairwise different) numbers
Y15+ ¥, by binary changes instead of binary comparisons. That is, if
y; < y; (i # j) there is no change, if y; > y;, we use the order yy, ..., yi_1,
Vis Viets 5 Yjm1> Voo Vjs1s -  » Yo What is the minimum of the maximal
number of steps needed to determine the natural order?

The minimum is not known, but a good algorithm is given by R. C. Bose
and Nelson [1961]. About the ordering problems see also David [1959] and
Moon [1968].
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3.6. Case (Aa), (Bp), (CP), (Da), (Ex) = (Ep)

We have to determine the minimal m for which there exist subsets 4, . . .,
Ap of X = {x,,...,x,} constituting a strategy and satisfying |4, < k
(k < in). If the subsets of a strategy do not depend on the previous answers,
then they form simply a separating system (see the Introduction), Itis proved by
Katona [1966] that this minimal m is equal to the minimal m such that there

exist non-negative integers sq, . . ., 5,, satisfying
mk = ) Jsjs
i=0
n= >3 s, (3.15)
i=0
m
ng(j) O<jgsm

By this fact, the next theorem was proved.

Theorem 3.9. Suppose that A, ..., A, < X = {x,,...,x,} satisfy the
condition |A;| < k (1 < j < m) (k is given < 4n) and constitute a separating
system. Under this condition, for the minimum of m the inequalities

logn n Bt e log 2n }f
log (en/k) k = \log (n/k) [k
hold.

Dickson [1969] introduced the concept of the completely separating system.
(It does not have, probably, a nice interpretation in search theory, but it is
interesting in itself): A4,, ..., 4,, is a completely separating system if for any
pair x;, x; (i # j) there is a k such that x; € 4,, x; ¢ A4,.

What is the minimum of m such that there exists a completely separating
system A, ..., 4, for {xy, ..., x,} ? This is solved asymptotically by Dickson
[1969] and Spencer [1970] proved

Theorem 3.10. The minimal m for which a completely separating system

A, ..., A, exists is
” m
min <4 m:. = ne.
[4m]

Two subsets A, and A, of X are said to be qualitative independent if none
of the sets 4,, 4,, A,4,, A;A,, A, A, is empty, where A denotes the comple-
ment X—A. In other words, testing first by 4,, we obtain some informa-
.tion by testing A4,, independently of the answer of the first test. For instance
if 4,4, = 0 then after the answer x;e€ A, the test 4, does not give any
information. Rényi[1971] asked what is the maximum of the pairwise qualita-
-tive independent sets. He solved the problem for even # in the following way:
IfA4,,..., A, are qualitative independent, then it is easy to sec that 4, Ay

. vy
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A, A, form such a system that none of them is contained in another one.
By Sperner’s theorem [1928] we obtain

2m < ({;]) and m < -5(;1 )

This estimation is the best possible because we can choose 4(J;) pairwise
disjoint subsets of 1in elements. For odd » this estimation is not the best

possible. The right value is
n—1
(-}_-(n — 1))

(see Rényi [1971]). The maximal number of r-wise qualitative independent
sets is not yet determined. An estimation is given in Rényi’s book [1971].

3.7. Case (Af), (Bx), (Ca), (Da), (Ex)

Each of the elements x,..., x, can be defective independently with
probability p. We can not use the results of encoding type for this model,
but it can be done for a transformed variant: Let x, . . ., x3. be the subsets of
X = {x;,...,x,}. Exactly one x] of the elements of X = {x}, ..., X3} is
“defective” (it is the subset of all defective elements). However, the testing
subsets 4 = X are also transformed. 4 has a defective element if and only
if A = x} has a common element with the set x; of defective clements. It is
equivalent to x} € A’ where 4’ is the set of x;’s non-disjoint to x}. However,
since such subsets A’ are very special, we reduced our problem to a problem of
type (A), (Ba), (C), (D), (Ea).

The restrictions for the testing subsets are very particular. We can not solve
the problem, but an easy lower bound for the average number of tests follows
from (2.6):

Lmin(P) ‘; H(P)y
where P = (p",p""'q, p"'q,...,q"). It is well known (see e.g. Feinstein
[1958]) that H(P) = n(—p log p—(1—p) log (1 —p)) holds in this case. We
obtain for the average test number

L = n(plog p—(1—p) log (1 —p)). (3.16)
However, it is not the best possible lower bound. For example, Ungar
[1960] proved the following
Theorem 3.11. If p = 3(3—/5) then
L=n
and for 0 < p < 3(3—./5) there is a strategy with
Lo 1

For large P, L = n is obviously a better estimate than (3.16), and it is
exact in this case, since for the strategy “element by element” L = n. In this
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case the combinatorial search fails. However, Ungar’s theorem ensures that
for small P it is a good method. Sobel [1960] and Sobel and Groll [1959]
worked out good strategies for searching. These procedures give upper
estimates for the optimal average test number Lyin(n). For example, Sobel
[1960] (partly personal communication) has proved

< —plog p—q log g+ ——

Ry
x
n=+co 1— q

L.
fim Lmin®)
n

where x is the smallest integer such that 1 —g*—¢**' = 0. The right hand side
is < plogp—glogg+1,or,ifpis small, thenitis € — plogp—gqlogg+2p.
The next problem does not belong formally to this section, but it is a very
closed generalization of the problem treated here. We have three types of
elements in X: good, mediocre and defective ones. Testing a subset 4 of X it
shows the “minimum’’ of its elements: The test says “good” if all the elements
of A4 are good; it says “mediocre” if there is at least one mediocre element
in A, but none of them is defective; it says “defective” if there is at least one
defective element in A. The elements of X are good, mediocre and defective
independently with probabilities g,, ¢, and g3 (¢, +¢,+q5 = 1), respectively.
Kumar [1970] has a result analogous to Ungar’s theorem: If ¢, = 4(g,— 1+
(53 —6g,+5)*) then L = n;thatis, the test “element by element” is the best
possible. On the other hand, if ¢, < 1(g,—1+4(5¢% — 64, + 5)%) then there is
a better strategy satisfying L < n. Similarly, Kumar [1970] gives a good
strategy, which is a generalization of Sobel [1960] and Sobel-Groll [1959].

3.8. Cases (Aa), (Ba), (Ca), (Do), (Ef) and (Ap), (Bf), (Cw), (Da), (Ex) = (Ep)
These cases are uninteresting, because for p = 4, (3.16) gives L = n, and

this is a lower bound for these cases. The strategy “clement by element” is
the best one.

3.9. Case (Af), . . ., (Cp), (Da), . ..

These problems are not considered in the literature. Sobel [1960] is the only
author that points out that his strategy is alphabetical in the sense that the
testing subsets are “intervals” in the ordered set {x;, . . ., x,}.

3.10. Case (Ay)

We did not introduce this case in Section 1. The common generalization
of the cases (A«) and (Af) is the case when the probabilities p(4) of 4
(c X) being the set of defective elements are given for all A.

In this generality the problem is too hard to solve. A very particular case
is when p(A) = 1/(3) for |A| = 2 and p(4) = 0 otherwise. (Assume (Bux),
(Ca), (D), (E«)). It is easy to transform it into a problem of type (A«), (Bx),
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(CP), (D), (Ex) considering the set of unordered pairs (x;, x;) (i # j). For
this modified problem we may apply Theorem 3. More exactly, the formula
of Theorem 3 gives a lower bound for the minimum of the average test
number. Moreover, Sobel (1968b) proved that we can reach this lower
bound for infinitely many »n’s.

Theorem 3.12. There are exactly two defective elements in the set {x,, . . .,
x,}, all possibilities with equal probabilities. For the optimal strategy the
average test length is denoted by L,(n). Then

Ly(n) = {log (3)} — (2" @}/(3)~1),
if
n = 23D L 1422 = D _ 4] for some odd m > 1,

n =24 [1(2¥™ D —4)] for some even m = 0.

or

For the remaining »’s there is a small difference between the lower bound
and the average of the strategy worked out by Sobel [1968].

Sobel and Groll [1966] investigated the problem (Aff) in the case when we do
not know the exact value of p and we use an a priori distribution by the test
as well as tests to get a Bayes solution of the problem. This problem is more
statistical than combinatorial.

3.11. Case (Df)

In this case at each test we divide X into disjoint subsets and the result of
the test shows us which one (or which ones) includes the unknown element(s).
If the number of disjoint subsets is at each test a constant (say r), then many
problems can be solved (and they are) in the same way as for (Dx). We
do not want to repeat them. '

It may occur that the number r of subsets depends on the situation, that is,
on the previous tests and previous results. Picard [1965] generalized Theorem
2.1 (Huffman algorithm) toward this case.

There is one classical problem which belongs typically to this case: the
so called “defective coin problem”. The basic situation is the following: We
have n coins, and one of them is defective, with probability 1. The good coins
weigh 1 and the defective one weighs 1+¢ (0 < ¢ < 1). We wish to find the
defective coin using an equal arm balance. Let X be the set of coins. Taking a
subset 4 and a subset B (4 n B = 0) on the right and left hand side of the
balance, respectively, we may obtain three results: balance and unbalance in -
two ways. In the first case we know that the defective coin x;isin X—A4—B
and in the second case we know which one of 4 and B includes x,. One test
divides X into three parts, and says which one includes x;. However, there is a
restriction: |4| = |B|. If we try to weigh subsets with different cardinalities,
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no information is obtained. (The problem belongs to case (Aw), (Ba), (Cf),
(D), (Ex) or (EB).) Let us generalize our Theorem 3.1:

Lﬁ,in(i, T %) = {logs n}—[4 - 3"®" —in]/n. 3.17)
It gives a lower bound for the average test number. This lower bound is
attainable even under the condition |4| = |B] (see Cairns [1963] and Baranyai
(a)) except for n = 6, when the minimum of the average is 2. On the other
hand, the last term in (3.17) is less than 1 (if {/ogs n} = log, n then 0), thus
{L3..(1/n, ..., 1/n)} = {logs n} gives a lower bound for the maximal number
of tests sufficient to identify the defective coin.

A different problem is if in a test we can use only the elements of the subset
containing the defective one according to the last test (that is we cannot
weigh the coins proved to be good). Equation (3.17) is again a lower bound.

However, because of the restrictions we can not reach (3.17) for every n
(for we can not reach 303" —p = 3 (mod 4)). Cairns [1963] (for a new
simpler proof see Baranyai (a)) determined the optimal strategy which is
optimal for both cases (Ex) and (Ef):

Theorem 3.13. The optimal strategy is the following: If we know that the
defective coin is an element of an n’ element subset, then let us weigh m coins
against m other ones from this subset, where m is the odd one of the numbers
[ +1)] and [(n’+4)). The maximum test number is {logs n} for this
strategy, and the average test number is also optimal.T

The case when there are more (but fixed number /) defective coins is more
complicated, if we assume that we are not able to determine the number of
defectives in a subset by one test because the weights w; of the defectives are
different (but 1 < w; < 141/h). For particular results see Cairns (4 = 2)
[1963], Bellmann and Gluss [1961] and Smith [1947].

A different problem is proposed by Shapiro [1960] and Fine [1960]. Again,
we have n coins, some of them being defective. The weights of good and defec-
tive coins are a and b, respectively. We may use for tests scales (not equal arm
balance). Thus, by one test we are able to determine the number of defective
coins in the tested subset. Determine /(n), the minimum of the maximal test
number needed to determine all the defectives. Many authors (Cantor [1964],
Shapiro and Soderberg [1963], Erdds and Rényi [1963]) have asymptotical
results for /(n). Finally, Lindstrom [1964, 1965, 1966] proved

. I(n)logn
lim ————

n—+*ow

= 2.

+ Baranyai noticed that this is not true if n’ = 32, and the right m = 3°7",
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4. Random search

Let us go back to the simplest case: exactly one of the elements x4, . . ., X, is
defective, x; is defective with probability p;. Again, subsets are used to test
(any subset). Rényi proposed to choose the subsets randomly, with probability
1/27. Is the number of tests much larger than in the traditional case? The
answer is definitely “no” (Rényi [1962a, 1961a]):

Theorem 4.1. If the subsets Ay, ..., A, of X = {x,,..., x,} are chosen
independently with probability 1/2", and P(n, m) denotes the probability of the
event that A,, . . ., A,, constitute a separating system then

1 if ¢c=o
lim P(n,2log n+c) = {e_”z”' if c is finite
T 0 if ¢c= —o0.

It means that if we choose e.g. m = 2 log n+ 6, then for sufficiently large n
the system A, .. ., 4, is a separating system with probability e~ ~ 0.99.
Comparing with Theorem 1, choosing randomly the subsets, we have to test
roughly twice as many as the minimal number of systematically selected
subsets which determine uniquely the unknown element. If the costs of the
tests are small and the costs of working out a systematical plan are large, then
it is better to use the random search. '

However, we do not need a separating system to identify the unknown x;.
It is sufficient if A,, ..., 4,, separates x; from the other elements, that is, if
they satisfy (1.3) for x; and for an arbitrary x;, (1 < k < m, i # k). Denote
by S(n, m) the probability of the event that 4,, .. ., 4,, separates x; (it does
not depend on i).

Theorem 4.2. (Rényi [1962b]). If ¢ > 0, then
S(n,logn+c) = e '1*.

It means that if we use seven more questions than at the systematical
search, then we find the unknown element with probability e ~ 0.99.
This is very surprising.

The random choice of the subsets with probability means that we choose
subsets with sizes about n/2. If the probability of choice of a subset |A] is
p'Al g~ 141 then the chosen subsets have about p" elements. A generalization
(Rényi [1961b]) of Theorem 4.2 says that in this case we need about
m = log n/[H(p, 1—p)] tests. (Compare with Theorem 3.9.)

Again, the next problem was proposed and solved by Rényi [1961b]:
It may occur that our tests are not reliable. The result of a test is right and
false with probabilities f and 1—f, respectively (obviously these cases are
independent from the results of the other tests). In this case we need about
log n/[1—H(B, 1—P)] tests to identify the unknown element. (There are
strong connections with Gallager’s random coding [1968].)
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For further generalizations see Rényi [1961b] and [1965].

Finally, we wish to mention a result of Rényi [1970] which appeared after
his tragic death. A g-regular strategy is a strategy which divides into exactly ¢
parts the subset which is known to include the unknown element (case
(A%), (B), (Ca), (Dat)). It is easy to see that in this case n = 1 (mod ¢— 157
Rényi determined the number Cq(n) of different (they are not different if they

differ only in the permutations of the elements x;, . . ., X,) g-regular strategies:
kg)!
Cn) = kel crsw wmRG-ayHL
k!n!

Similarly, the total number D(n) of different strategies for X' = £ X1y e Xa} I8
D) = 1 E (n—z)(n-i-k— 1) p 3272 (3+2/2)
n= \k—1 k 4/n ni
(see also Rényi [1969]). Recently, Chorneyko and Mohanty have a generaliza-
tion of these results.

5. Open problems

Comparing the several sections and combining their conditions it is easy to
obtain a large number of open problems. We want to emphasize some of them
(it does not mean that they are the most important ones, they are the most
interesting only to the author):

1. Generalize the Huffman algorithm for the case (Ay). More exactly:
Probabilities p(4) are given for any 4 = X = {x,, ..., x,} of the event that
A is the set of defective elements.

A general strategy is a strategy which is able to determine all the defective
elements. Find an algorithm which determines the general strategy with the
minimal average number. (See Theorem 2.1, case (Ay) and the beginning of
(Af).)

2. Find the conditions under which it is possible to determine the optimal
average length (see Theorems 3.1, 3.2, 3.3 and 3.4).

3. Generalize the results for alphabetical codes (see Theorems 3.7, 3.1,
3.2, 3.3 and 3.4).

4. Generalize the Huffman algorithm for the case if we can use only
subsets with size < k (k < 4n) (see Theorems 3.8 and 3.9).

5. Determine the best strategy for Steinhaus’ problem, or at least give
a better lower bound (see (3.13)).

6. Determine the minimal number m for which there exists a separating
system Ay, ..., A, satisfying |4, <k (i=1...,m, k fixed < in).
Theorem 3.9 gives good estimates for this minimum. Generalize (3.15)
for the case (D) when A, . . ., A4,, are partitions into r parts and the sizes
of the first r—1 parts are bounded.}

+ Very recently it is solved by Zs. Baranyai (b). (Added in December, 1971.)

11
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7. Determine the minimal number m for which there exists a completely
separating system Ay, ..., A, satisfying |4, <k (i=1,...,m, k fixed
< 4n). (See Theorem 3.10.)

8. Determine the minimal number m for which there exists a system 4,,

» A,y (= X) such that for any x;, x; (i # ) there are disjoint A, and 4,
(A, N A, = 0) with x; € A, x;€ A,

9. Determine the maximal m for which there are subsets 4,, . . ., 4,, such
that any r different of them are qualitative independent (none of the sets of
type A;, A, * * = 4;, are empty). (Sec the end of section 3.6.)

10. Find a better estimate than (3.16) (see also problem 1).

11. Generalize Theorem 3.13 for a “rhree-arm balance” which has three
equally sized arms (with angles 4r), and which is balanced only if three
equal weights are weighed.

12. X = {x,,...,Xx,}. There is exactly one defective element. It is x; with
probability p,;. We can test any subset 4 < X whether x; € A or not. The next
test may depend on the results of the previous tests (case (Ax),(Ba),(Cu),(Da)).
However, the tests are noisy, that is, we received the contrary results with
probability ¢. Find an algorithm which determines the strategy which has
the minimal average length, but discovers the defective element with given
probability 1 —e. (In the language of codes: variable length (not black) code
with minimal code length with error probability &.)

13. There are exactly one defective element and one mediocre element in
the set X, with probabilities py, .. ., p, and q, - . ., ¢,. Which strategy mini-
mize the maximal number of tests needed to identify both elements (see the
end of section 3.1 and Theorem 3.12).
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