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A THREE PART SPERNER THEOREM

by
G. KATONA

Introduction

Let X be a finite set of n elements, and let o/={4,, ..., 4,,} be a family of
different subsets of X such that A; D A; for i=/. SPERNER [1] proved that in this case

"l

KLEITMAN [2] and KATONA [3] independently proved, that if we divide X into
two disjoint parts (X=X;UX,, X;NX,=0) and the family «/ satisfies the property
that for any different i and j

A,ﬂX]_: AJﬂXl imp]leS A,szjDAJﬂXZ

IA

and
A,ngzAijg lmplles A,ﬂXlﬁAijl,

then (1) holds again. Here, the conditions are weaker, because A; D A; is excluded
only in some particular cases, when A; and A jare equal in X, or in X,, respectively.
However, the maximal m under this weaker condition is the same as in the Sperner
theorem.

The question arises if the conditions of this result can be still weakened. The
natural way would be to divide X into 3 disjoint parts and to exclude the inclusion
A;D A only if A;and 4; are equal in two of the parts. However, under this condition

it is possible to choose m = o as it is shown by an example in [3]. The main aim
n
o

of this paper is to give an additional condition which ensures (1).

We treat the problem in a more general context which is described in [4] and [5],
but the definitions and the basic idea are briefly restated here.

Using the method of these papers Sperner type theorems can be reduced to
problems of determining a set of points maximal with respect to certain conditions

in a two or three dimensional lattice-configuration. We think that these problems
are of independent interest.

Definitions and the Theorem

We say that the finite set is a partially ordered set if a relation < is defined
on G with the following properties: a) at most one of the relations 81<8:,81=8>,
g><g; holds; (We say that g, and g, are comparable if one of them is true.) b) if
g1<g: and gy<g; then g, <g;.
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380 G. KATONA

g, covers g if g, =g, and there is no g, satisfying g, <g;=g», that is, if g, is
the immediate successor of g;. Assume that there is a rank function r(g) which
makes correspond a nonnegative integer to every element of G, so that if g, covers
g, then r(g,) = r(g,)+1 and there is at least one element g € G for which r(g)=0.
We say in this case that G is a partially ordered set with a rank function.

A chain of length | is a sequence g, ..., 8 €G, where g, covers g,-4, & -1

COVETS Zj_a, -..» &2 COVETS g4. A chain is symmetrical if r(g,)+r(gs) = n, where
n= max r(g). A partially ordered set is a symmetrical chain set if it can be divided
gel

into disjoint symmetrical chains.

If G and H are partially ordered sets, then the direct sum G+ H is the set of
ordered pairs (g, h), g€G, h€H with the ordering (g:, M) =(g., 1) iff g;=g, and
h=hs.

If the rank functions of G and H are r and s, respectively then we can define
a rank function on G+ H as follows:

1((g, ) = r(g)+sh).

For example, the subsets of a finite set X of n elements form a partially ordered
set with rank function r(4)=|4/, (that is the number of elements) if we order them
by inclusion. 4 covers B(A4, BCX) iff AoB and |A—B|=1. By a theorem of
pE BrunyN, KRusyswik and TENGEBERGEN [6] we know that this is a symmetrical
chain set. (More generally this is proved for the set of points of an n-dimensional
rectangle with integer coordinates.)

If G is the partially ordered set of the subsets of a set X, and H is the same for
X, (X,NX,=0), then G+ H is the partially ordered set of the subsets of X;UX,.
The same is true for the disjoint sets X;, X5, X3.

Now, we can formulate our theorem.

Tueorem. Let F, G and H be symmetrical chain sets with respective rank
functions p, r and s
max p(f)+ max r(g) +maxs(h) = n.
fEF geG hCH
Assume (fy, 81+ 11)s s (fons &ms ) are different elements of F+G+H, such that
there are no two different triples among them Jfor which

) ' (fi> &> ) < (15> &> 1)
and two of the corresponding components are equal and there are no four different
triples for which
fi=fi, f=n
3) g & > 8> & g, g are comparable

g, g are comparable
hiy by = hi, by h;, h, are comparable
h;, h, are comparable
holds for any permutation of the letters f, g, h. Then m is maximal if we choose all

the elements of F+G+ H with rank [%] :
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A THREE PART SPERNER THEOREM 381

Applying the theorem for the partially ordered sets of the subsets of the disjoint
sets X;, X;, X; we obtain a Sperner type theorem, where we exclude some pairs
and 4-tuples of subsets and the maximal size of the family under these condi-

tions is

We formulate another particular case of the theorem as a separate lemma.
The proof of the theorem is based on it.

LEMMA. Let T be the direct sum of the chains 0<1<...<a,, O<l=<...<a,
and 0<1<...<ay, (a3=a,=a, are integers). Assume (xy,y,,z,), ..., (s Vs 2)
are different elements of T (0=x;=a,,0=y,=a,, 0=z,=a, integers; (1=i=m)
such that there are no two different triples with the property,

(4) two corresponding components are equal,
and there are no 4 different triples for which

X = xj', X = X

(5) Yis Vi = Vis Vis
Ziy Zp = jo Zk
holds.
Then m is maximal if we choose all the elements of rank
a,+a,+a, ]

x+y+2=[ >

Here it is not necessary to assume (5) for the other permutations of x, y and z.

ProoF of the theorem. From the fact that F, G and H can be split into disjoint
symmetrical chains it follows that F+G+ H can be split into disjoint symmetrical
3-dimensional parallelotopes of type 7. The word “symmetrical” means that the
sum of the minimal and maximal rank in 7 is n. Assuming the lemma is true, we
obtain the maximal number of elements of 7 satisfying conditions (2) and 3) (@
and (5) follow from them) by choosing all the elements of “middle rank”. By the

symmetry of T they have rank [—;1] So, under conditions (2) and (3) the maximal
set of points consists of all the elements of rank [%] The proof is completed. We

have to prove only our lemma.

The proof of the lemma

Before starting the proof let us consider a simple example: a,=a,=a,=1.
Here [W] = 1, the number of points with x+y+z =1 is 3: (0,0, 1),
(0,1,0), (1,0,0). If we add the point (1, 1, 1), we have 4 points and there are no
two of them satisfying (4). Thus we really need some additional conditions excluding
the 4-tuples similar to (0,0, 1), (0, 1,0), (1,0, 0), (1, 1, 1). Similar examples show
that we have to exclude somewhat more general 4-tuples. One possibility is (5).
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382 G. KATONA

An x-plane is the subset of 7 contamning the points with first component equal
to x. In (5) x;=x; means that the points P;=(x;, yi, Z)) and P;=(x;, y;, z;) are
in the same x-plane. The same is true for Py=(xy, ¥, 2) and Pi=(x;, ¥, 2)-

y;i=y; and z;>z; mean that these two points form an increasing function
(as a function z()). On the other hand y, >y, z, >z, mean that these points form
a decreasing function. (5) contains the further (y;=y, W>w. z=zZ, z>Z)
conditions, which mean that the intervals (y;, »;) and (), y;) are not disjoint, and
similarly, (z;, z;) and (z, z)) are not disjoint.

1. First let us investigate the points in one x-plane. A row is a set of points
in an x-plane with a fixed z-component. (The column is defined similarly.) By (4)
there are no two points in one row or column. So we can consider the points as
a function. We shall prove that this function is essentially monotonically increasing
or decreasing.

Define p by y,=min {y;:x;=x} and g by y,=max {y;x;=x}. If p=q, there
is only one point in the plane, we have no problem. Otherwise y, =y, holds. Assume
Fozs

i lqa. There are no two points (x;, y;, z;) and (x;, ;. z;) satisfying x;=x;=x,
Vi<V, Zi» 21>2,, because otherwise (5) holds with p=j and g=k. Similarly, there
are no two points (x;, ¥;,z) and (x;, y;, z) with x;=x;=x, y=y. Zi, 3=,
changing the role of / and i. Summarizing, there are no two different points (x;, y;, ;)
and (x;, y;, z;) with x;=x;,=x and z;, z;>z,. It means, the function z(y) has no
two different values >z,. We can see in a similar way that there are no two different
values =z,. :

Ib. On the other hand, assume that we have the different points (xg, Vi, Zi)
and (x,, y, z,) satisfying the conditions k#p, g, I#p, 4, X,=X=X, Vi=V1, Z1=Z.
If z, <=z, =<z, (or z,<z,=z) this case is settled above. If z;>z, (or z;<z,) then we
obtain a contradiction. The points with i=g, j=p satisfy (5). That means, there are
no two values of z(y) different from z, and z, which are in decreasing position.

lc. Finally, if (x;,).,z) satisfies x,=x and z;>z,, then there is no point
(Xs Yk z) With x,=x and y, =y, <y,, because otherwise these points satisfy (5)
choosing i=p, j=q. (If z;=z,, it belongs to the case la, thus we can assume Z,<1Z))-

Summarizing our results, if we assume z,<z,, then the function z(y) almost
monotonically increasing; the exceptional pairs have either (x,, y,, z,) or (Xg, V> Z,)
as a member (by 1b.).

To both (x,, ¥,, 2,) and (x,, ¥;, z,) we can have at most one exceptional pair
(by 1a). If (x,.¥,, z,) and (x;, ;, z;)) form such an exceptional pair, then y; is the
second value of the domain of z(y) (That is, there is no (xy, yi, Zi) with x,=x,
Vp=Ye=yi). Similarly, if (x;, i, 2) and (xg, vy, 25) is an exceptional pair, then

I T

.
| = e

.
L

Fig. I
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¥; is the last but one element of the domain of z(y). We call such a function essentially
monotonically increasing function. Figure 1 gives the typical diagrams of such functions.

Of course, if we assume z,>z, we obtain essentially monotonically decreasing
Sfunctions.

2. If (x4, 33, z) and (x;, y;, z;) are two points with Xi=Xpy Vi<Vjs Zi<2zj,
then the rectangle y;=y=y;, zi=z=z;is called a red rectangle. On the |other hand,
if x;=x;,v;=y; and z;>z; hold, then the rectangle Yi=Y=y;, z;=z=z; is called
a blue rectangle. A red rectangle of a plane cannot contain an inner point of a blue
rectangle of another plane (and vice versa), because otherwise the 4 points determinin g
them satisfy (5).

3. We say that an x-plane is increasing (decreasing) if z,<2, (z,<z,). We
now prove that if a plane is increasing, then the union of the red rectangles (determined
by its c(x) points) covers a e(x) X ¢(x) square possibly without its two opposite corners.

If the points of the plane are of form a, then the rectangle determined by
(x,, ¥, z,) and (x,, y,, z,) has sizes =c(x), thus the statement is proved in this case.

If the points are of form b, then (X,, Vps 2,) and (x,, y,, z,) determine a rectangle
with at least c¢(x) columns and at least ¢(x)— 1 rows. In this case, however, there is
a point (x,, v, z,) (x,=x) satisfying z,<z,. Thus, (x,, y,, z,) and (x45 ¥4 2z,) deter-
mine a rectangle with at least ¢(x)— 1 columns and at least ¢(x) rows. The union of
these two rectangles cover a ¢(x) X e(x) square possibly except one corner.

The same holds for the case c.

In the case d, by similar arguments, we obtain the c(x)X c¢(x) square without
two corners. In the case b the lowest point of the first column can be missing from
the square, in the case ¢ the topmost point of the last column, and in the case ¢ both
of them. We call these figures incomplete squares.

The same holds, of course, with blue rectangles for decreasing planes.

4. If an increasing x-plane contains c(x)=0 points and a decreasing x'-plane
contains ¢(x")=0 points then

(6) c(xX)+e(x) = ay,+3

with equality only if a;=as,.

It is easy to see that any inner point of a blue incomplete square is an inner
point of some blue rectangle of the same plane. Using this fact and the statement
of section 2 we obtain that the red incomplete square in the plane x cannot contain
any inner point of the blue incomplete square in the plane x’. Of course, they can
touch each other.

If none of the two squares contains an inner point [
of the other one, including now the missing corners, [
then one of the sizes of the rectangle (a,+ 1) (ay+1) is
=c(x)+e(x)—1. Using ay=a,, (6) follows. [

On the other hand, if a complete and an incomplete F_J
corners of the two squares are touching each other, then
both i

‘ X
(7) ag+1 = c(x)+e(x)—2 ' '
and IZL., -__]L
(8) a+1=ce(x)+e(x)—2 Fig. 2
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hold. If (7) is satisfied with equality, then (8) results in @,=a,. Using a;=a, the
statement of this section is proved.

5. We try now count the number of points contained in the plane x from the
optimal system given by the lemma. In other words, what is the number of solutions
in y, z (0=y=a,, 0=z=aj,) of the equation

x+y+z= [____a1+c;J+a3]

for a fixed x?
Assume

oo a; +dy, —dg
0=x= [———2 ]

= a; +ds—4a ]
If y < I_LTZ-_S.] — x, then obviously

a, +a. + a. ay+ds+d dy +da— a;
Z:[—l—zz——f‘]‘—x-—.l.’:-[ ! ) 3]—-[ 2 5 1]':03

holds, y, z is not a good solution. We may assume

a,+a,—as |
e~ S -_x 1‘: } ':f_:—‘: a;)‘
[ 2 ] T

In this case we have always exactly one z satisfying 0 =z=ay:

0= ay—a, = [al+§3+03]—[a’+;3—a3]—a2 2er

_|aita+as W a+ds+ay | | ditdsTay
2 #= 2 2

The number of points is
aﬂ_[ggﬂfs_]Jr'\.M = {1+2L+_ﬂ_}++1

({a) denotes the smallest integer =a).
It is easy to determine the number of points in the plane x for the remaining
values of x:

as.

{M&}HH % g;x_[iﬂ.;a_]
2 2
© ) =dat if [ﬂ_ﬂi]fx{[ﬂ_:a_ﬂ_]
2 2
[a_1+_t;a_+a_s]_x+1 if [f_—“TJf_"_]_l-:a
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Obviously
(10) min ¢*(x) =

0=x=a,

2

holds if ay=a,+a,. If ay=a,;+a,, then c¢*(x) = a,+1 (0=x=aq,).

6. Let us prove the lemma for the case a,+a,=a,. In a fixed x-plane every
column contains at most one point, hence c¢(x)=a,+1. However, in this case
¢'(x) = a,+1. The construction given in the lemma is the best possible in every
x-plane.

7. Now, let us investigate the case a,=a, (a, +a,=a;). We fix a, and a,, and
prove the statement by induction over a,. If @; = a;—a., then the statement holds
by section 6. Assume now a,=a;—a,, but the statement is true for smaller a,.
We have to prove

|_a1+az‘f"aa]4_l

(1) zl_' c(x) = fl ¢ (x).

x=0 x=0

7a. Assume there exist both increasing (say x’) and decreasing (say x) x-planes*
By section 4 and by a,=a, we have

c(x)+c(x) =az+2.

.+ 2 ) ; <
Hence either ¢(x) or e(x’) = [%_-—] holds, that is, a term (say ¢(x”)) in the left
a;+2

hand side of (11) = ] Omitting this plane we obtain a new 3-dimensional

2
parallelotope with sizes a,—1, a,, a;. We can use the induction hypothesis:
a; ) a;—1 ) ap—1
(12) 2ex)= 2 )= 3 (x),
x=0 x=0 x=0
x#=x'

where ¢’(x) is the number of points in the plane x after omitting the x’-plane,
and ¢"’(x) is the same number for the optimal system in the new parallelotope. What
is the connection between the numbers ¢*(x) and ¢*(x)? It is easy to see from (9)

i Ay
that ¢*(0), ..., ¢"(a,) is a sequence of integers starting with {—M} +1,

)
increasing | by I up to a,+1 (it is really larger, since a,<a, +a,), there are a,—a, +1
(=2) numbers a,+1 and decreasing 1 by 1 up to [L_‘_;iﬂ] +1. Hence, it is

clear, that the sequence ¢*'(0), ..., ¢*’(g,—1) consists of the same numbers with
the only difference that either the first or the last number is missing, depending
on the parity of —a,+a,+a,. If —a,+a,+a, is even, then the missing first term is
—a;t+a,+a. Ve, I i i = 2

a'—,,i—"’a.—l if it is odd, then the missing last term is [—E%]-I—I.

In both cases the missing term-is a minimal one.

a; ay;—1 . La,
(13) S = c*’(x)-l—[——aL;—M]+l.
x=0 x=0
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However, a,=a, results in

(14) l“3:2]

&

(A

— @+ ds 1+ a;
tgetal,

a;+2

and (11) follows from (12), c(x) = [ ] (13) and (14).

7b. If all the x-planes are increasing or if all of them are decreasing we have
to find in a different way an x” for which

(15) o(x) = [ﬂi‘ul +1

holds. For sake of simplicity, let us assume, all the x-planes are decreasing.
7ba. Assume, there is a point (x;, y;, z;) satisfying

—y+as-+a
(16) Yitz = [—122—3]*1.

There are at most y; points (x;, v;, z;) such that x;=x;, y;=;, since every column
contains at most one point. On the othel hand, the number of points (x;, y;,z;)

satisfying x;=x;, y;=; is at most z;+ 1, because the plane x; is decreasing, thus
zJ =z holds‘. for all but possibly one pomls Hence we have

— sy .
(17) cx)=l1+yi+z+1 = [—%] +1

by (16). (15) is satisfied with x"=x;, the proof of section 7a can be repeated here, too.
7bb. Assume, now there 1s a point (x;, y;, z;) satisfying

a8) o {%}

The number of points (x;, ¥;, z;) such that x;=x;, y;=y; is at most a,—y;. On the
other hand x;=x;, y;=y; results in z;>z wﬂh at most one exception (z; ﬁzf)
7bba. If there is no exception, then the number of points of the latter type is

al most a;— z;; the total number of points in the plane is at most 14a,—y;+a;—z;, or
= a
(19) c(x) = 1+a,— y1+a3—ziglﬁ7)w_3]+l

by (18). (15) is satisfied by x;=x"; this case is settled,

7bbb. If there is an exceptional point (x;, y;, z;) with x;=x;, yj<y;, 2;=2;,
then, by section 1b, either j=p or i=g holds (but not both of them, since z ::zq)

7bbba. j=p. Then by section la (x;, y;, z;) is the only point in the plane X;
such that z;=z,. We distinguish two cases.

7bbbaa. z;—=a,. If there is at least one z=>z; for which we cannot find (x;, y,, z;)
such that x;=x;, z;=z, then the number of points satisfying y,<y; is at most,
a;—z}'; (19) holds, again. On the other hand, if for any z there exists such an (x;, y;, ;)
then z, = a;—1, and z,=z;=a,. This contradicts our supposition.
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7bbbab. z;=a,. If strict equality holds in (18) then (19) follows despite the
existence of the exceptional point. Thus we may suppose y;+z; = {i'j'zz—m}.

Our point has the coordinates

Zp = ds, }’i:{ 2 5

7bbbaba. There is a point (x;, y;, z,) with z;, = a3, y, = {ﬂ%ﬂ}— 1.
In this case we cannot find a point (x;, yy, z;) such that x,=x,, y,=y (z,=2z)
because otherwise (Xi, yi, 21, (X,, Vps 2)=(x;, ¥j» 2;)s (X4, Vin z) and (xp, ¥y, 2))
satisfy (5), a contradiction. On the other hand, if the point (x, ., z,) possesses
the properties x,=x,;, y,<); and z, <z, then using the assumption that the plane
is decreasing we obtain either k=p” or I=¢’ (p” and ¢’ are p and g of this plane).
In both cases there are at most two points in the plane x,=Xx;, they are in increasing

position, which is a contradiction. It follows ¢(x;)=1, and (15) trivially holds for
=

7bbbabb. There is no point (x;, 3, z) with z;=a,, y, = {ﬁ_l—a;—_a“}— 1
We have proved earlier that if there is any point satisfying (18) with strict inequality
(7bbbab), or with equality but with z;<a, (7bbbaa) then the statement is true.

The same holds, if some point satisfies (16). Thus we may suppose, that all
of our points (x,, y,, z,) satisfy

(20) [———w_“‘ +2“2+“3] =ytz, = {——“ﬁ‘;ﬁ"“}vl

a1+a2+a3} g o {a1+az—a3}
fo Bl e L BN B BB (L 2, B

ata,+a <

L22—3-}—&3. If we fix
a pair y,, z, there is at most one point (x,, »,, z,) with these second and third coordi-
nates, by the supposition of the lemma. The maximal number od points is the number
of solutions of (20) in 0=y,=a,, 0=z,=a,, since we have an additional point

(X;, ¥i» z;) but the solution y, = {%_—ai} —1, z,=a, is omitted by the suppositions

with the exception of (x;, y;, z;), where z;=a,, y; :{

of this (7bbbabb) case. However, the number of solutions of (20) is not larger than
the expected optimum of the lemma. We will see this in the case 7bc.
7bbbb. i=gq.

7bbbba. y,<a,. The number of points in the plane is ¢(x) = 2+a,—z;.
Using (18) and y;=a, we obtain

c(x) =2+a,— {L;“’i—ai} +y =

=24a-fautatal,, [;ﬁfﬂb ¥

that is, (15) and the statement holds in this case.
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7bbbbb. y; = a.. Like in case 7bbbab we may assume

d,+a,+4a
D

@ a a_ a a
Zi:{al+a_+ 3}_.92:{ i a__+ 3}‘

Thus,

2 2

7bbbbba. There is a point (x,. . z) with z :{al—_%j&}—l, Vi =05.

In this case we cannot find a point (x;, ;, z,) such that case we cannot find a point
(x1, 71, 2) such that x,=x;, z>z/(y<)y), because otherwise  (x;, yi, 2))=
=(%g, V> Zg)» (X5 Vs 2)s (Xues Yies Z) and (xy, Vi, 21) satisfy (5), which contradiction
(i and j defined in 7bb and 7bbb). On the other hand, if (x;, y;, z,) possesses the
properties x,=x,, z;=z, then similarly to the case 7. bbbaba we have c(x)=1,
which proves the statement.

7bbbbbb. There is no point (x;, ¥y, z,) with

anggﬂqq,h:%

The proof of this case is the same as in the case 7bbbabb.

7bc. All the points (x,, y,. z,) satisfy (20). », and z, uniquely determine x,;
it is sufficient to count the number of solutions of (20), and to see that this number
= the number of points of the construction given in the lemma.

The number of solutions of

—a; +das+da; 3 . | a+a,+a
@1 PAT_JFqﬁLEPLT_q

is not smaller than that of (20). Define x, by
F aa +’ a
(22) X, +y 4z, = [-"-LJ’—ZJ—]

To every solution of (21) (0=y,=a,, 0=z,=aj,) there is a solution of (22) with
0=x’=a,, and vice versa. Thus the number of solution of (20) and (21) the number
of solution of (22). However, (22) defines the construction of the optimal system.
The proof in case 7 is completed.

8. Let us prove the case a,=a,. We prove this case by induction on a, for
fixed ay=a,. If a,=0, the statement follows from section 6. Assume a,>0 and
suppose it is proved for smaller a;. We can repeat the proof of case 7. The only
place where we used the assumption a,=a;, is the case 7a. There we showed that
a,+2

2
We have to investigate, how can it happen that such a plane does not exist.

there is a plane x’ satisfying ¢(x) = [ . If such a plane exists, we are done.
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We have an increasing plane x and a decreasing plane x’. By section 4 we can
state only ¢(x)+c(x") = a;+3 if ay=a,.
a,+3
5
It can happen only if in the proof of section 4 the incomplete squares touch each

None of ¢(x) and ¢(x’) = IEL;_"E] only if a;+3 is even and ¢(x)=¢(x") =

other at the missing point like on the figure. We have used ¢(x’) = a‘"‘;Z]in (14),
only; thus if

az+3 P [—a1+a1+a3]+l
2 2

holds, we are done. Using a,=a,, it does not hold only if a;=a, (=a,;). Hence,

it is sufficient to investigate the case, when there are a,+ 1 x-planes and every one

a;+3
2

is increasing or decreasing, thus we can use it instead of x or x’. This shows that

a:!+3
7)

contains at least points. They cannot have more points because each of them

the number of points is =

Hence
| as+3

(23) > ec(x) =(az+1) 5

x=0

We are going to prove that Za' c*(x) is not smaller than (23). Using (9) we have
x=0

Q4 >ty = "‘“;3 +"“;5 F oot (@ 1)+ g+ e +

a3+3_+_ as+ 1

2 2
The number of terms in (23) and (24) are the same. There is only one term in

3
(24) smaller than by (1). Two terms are equal, all the other terms are = 03; g

a,+3

2
If there are at least 4 terms in (24) that is if a;=3, then (24) = (23). However, the
statement of the lemma is trivial for ¢,=a,=a,=1. The lemma is proved.

Problems

Probably, both the Theorem and the lemma can be strengthened. We only
formulate a possible generalization of the lemma.

Conjecture. The conclusion of the lemma holds under the following condition
weaker than (5)
X = x_f X = X;
YVi=DYis Vi=M
) ) Zp =2 <= Zjy %
provided (4) is true.
A further problem is to find an n-part Sperner theorem with weak enough
conditions.
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