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TWO APPLICATIONS (FOR SEARCH THEORY AND
TRUTH FUNCTIONS) OF SPERNER TYPE THEOREMS

by

G. O. H. KATONA (Budapest)
To the memory of A. RENYI

“I am constantly pondering what kind of knowledge
I should try to acquire. Recently, Theaitetos told me that
certainty exists only in mathematics and suggested that
I learn mathematics from his master, Theodoros who is
the leading expert on numbers and geometry in Athens.”
From R¥NYI's “Dialogues on
Mathematics”

§ 1

Assume a finite set X = {x), ..., x,} is given and we are looking for
an unknown z € X. We have informations of type

x€A;, or z¢ A
where A4/s are subsets of X. If one of the sets

(1) BC, BC, BC, BC

is empty, then after knowing x € Bor « ¢ B it may occur that x € C or x § C
does not contain any new information. For example, if BC = @, then = ¢ B
contains the information x ¢ C. In the contrary case, if none of the sets (1)
is @, then we need the information “xz€C or x ¢ C”, independently of the
answer of the question “o € B or x ¢ B”. We say, following Marczewskr [1]
that B and C are qualitatively independent, if none of the sets (1) is g. RENYI [2]
asked what is the maximal number of pairwise qualitatively independent
subsets B, ..., By of an n-element set X. He solved in [2] the question for
even n in the following way: The statement ‘‘none of BC, BC, BC, BC is
empty”’ is equivalent to the statement “none of B, B, O, C' is contained in
an other one”. That means, if B,, . . ., B, are pairwise qualitatively independ-
ent, then none of B,,..., B,, B, ..., B, is contained in another one.
The well-known theorem of SPERNER [8] says that the maximal number of

such subsets is ( i . It follows 2m << 1 ) and
3] ]

=
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If n is even, this is the best possible upper estimation, since we can choose

(n)'ﬁ 2 qualitatively independent sets, taking arbitrary one of each comple-
2,

mentary pair uf%-tuples.

In this paper we solve the case of odd n.

Turorem 1. If B, . .., By are paurwise qualilatively independent subsets

of a set of n elements, then
n—1
(2] )
2 y

and this is the best possible estimation.

Proor. 1. If B and C are qualitatively independent, then B and C are

qualitatively independent, too. If |B;| > gwe may change B; for B

By, ..., B, ..., By are qualitatively independent. Thus we may assume
B,, ..., By are chosen in such a way that
@) Bi<[5| azism.
2
2. Define & — min | B;|. Assume B/s are indexed in such a way
1sism
that for some p
k=|B|=...=|B,| <|Bil (p<i<m).

Denote by ¢(B,, . . ., Bp) the family {C}, . . ., C;} of sets C satisfying [C| =
=k + 1and C D B; for some 1 < i < p. If n, k and p are given the minimum
of r is determined in [4] and [5]. However we do not need this exact minimum
here, we need only a simple estimation for », which is determined by SPER-
NER [3]:
n -k

3 =

: P
The number of pairs (B;,C), where 1 —i-—p, B, cC, |C|=%k+ 1 is
p(n — k). On the other hand, a fixed C' can contain £ + 1 B;:

pn — k)= rk 1+ 1)

which is equivalent to (3).
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3. Cy,...,0, By q, ..., By are pairwise qualitatively independent, if

E<2| 2|
2
It is trivial for two of B’s.

C; N Cjis not empty since C; D B,,C; D B, for some u, v(1 =< u, v = p)
and C; NC; D B, N B, is not empty. ¢; N C; can not be empty because C,
has k& 4- 1 elements, C; has n - £ - 1 elements and they can be complementer
sets only if (; = C, that is if j = i. The total number of elements in C; and

Cjis 2n ~ 2k 2. They can be disjoint only if
(4) o — 2 —~ 2= A — 1

as there is an element of C, N éj = C; NC;. From (4) it follows 31—;—1 = k
which contradicts our supposition. C;, N C; can not be empty. C;N B;
(1 =i<p, p<_j<"m)is not empty since C; D B, for some u (1 < u = p)
and ¢, N B; © B, N B; is not empty. C, has k + 1, B; has n — k elements.
Thus they can not be complementer sets as £ + 1 +n — k£ > n.C; N B; == @.
We have similarly C; N B; = 0. Finally let us verify that C, and C; have also
a common element. The total number of their elements is 2n — 2& 1.
C; N B; = C; N B; has at least one element. Thus, if C; and B; are disjoint,
we have
2n — 2k —1<n —1.

This inequality contradicts our supposition b << [%] .
4. Now we prove if B,,. .., B, are pairwise independent and m is maxi-
mal, then |B,| = ...=|B,|= [—:_]
Suppose the contrary, £ = min | B;| < [%] . We may apply the result
l=i=m
of Section 3: Oy, ...,C.. By, ..., B, are pairwise independent. However,
. [i]
7 . n k . 2 Jd 1
by 3)p<rsince——>————>1.0,...,C, Bp,y, ..., Bnhas more
k+1 lj}_] L1
members than B, ..., B, in contradiction with the maximality of B, . . ., B,
Thus, £ > ;—L' and (2) ensure the validity of the statement.
5. By, ..., B, have the same number of elements l:-“] and B; N B; =<0

(1 ==4,7-"m). We may apply the next theorem of Erpds -Crao Ko -
Rapo [6]:
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If |B)| =...=|B,| =1 where By, ..., B, are pairwise non-disjoint
subsels of a set of n elements, then

In our case

The proof is completed.

OPEN PROBLEMS. 1. Determine the maximal m for which there exists
a family B,, B,, ..., B, satisfying

|B:nBJ|:..:r= |Bln]_}jl;:r 'B,ﬂB”;;r, |HrﬂB;|2?‘
1=<4,j<=m),
where » > 1 is a fixed integer.

2. Determine the maximal m for which there exists a family B, B,,..., By
satisfying

H(B;, B)) > r (1L<i.j<m),

where H(B;. Bj) = - |B; N B;j|log | B, N B;| -|B; N B;|log | B, N B;| —
—|B, N Bjjlog |B,NB;| — |B;N Bj|log| B, N Bj| and r is a positive
real number.

The first problem is solved for » = 1 in Theorem 1. The second problem
i Slog?’ e

n n

is also solved by Theorem 1 forr = — 3 [—1- log—l-
n n

§ 2.

A logical or truth function is an n-dimensional function defined on the
n-dimensional 0, 1 vectors and taking on the values 0, 1. A truth function f is

said to be monolonically increasing if f(z,, . . . ,z,)=1and , <y, ....x, <y,
imply f(y, - .., yn) = 1.
(5) (z’.u A zl‘u A T ‘A' :‘.lr} v s V (z‘.ll A z‘;h A et A z{l()

is called a disjunctive-normal form, where Ziy = xj,orl —a, ,and0A 0=0,
0Al1=0, 1AN0=0, 1A1=1 (A ="and”), OVO=0, OV 1=1,
IVO=1,1V1=1(V = "or”). Every truth function has a disjunctive-
normal form which is equivalent to it. We may produce such a form in the
following way. Fix a 0, 1 vector e = (a,, . . . , a,) satisfying f(e) = 1. We cor-
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respond an expression z; Az A... Az, wherez =a;ifa,=1and z;,=1 '
if a; = 0.1t is eary to cee that 2y A 2, A ... Az, =1 if and only if 2, = a
(1 = i << n). These expressions 2z, A ... A z, stand in the place of the

bracket-expressions in (5) for all e satisfying f(e) = 1. It is easy to see that
this function is identical to f.

A disjunctive-normal form is minimal if it has a minimal number of
variables (with multiplicity). Assume f is a monotonically increasing function.
It is easy to see that we can omit the terms of the form z = 1 — « from its
disjunctive-normal form.Thus, a minimal disjunctive-normal form of a monot-
onically increasing function has the form

(6) @A NIV Vg, K AE) .

On the other hand, if the index set of one bracket has a proper subset, which
is the index set of an other bracket, it can be omitted.

Summarizing what has been said, the minimal disjunctive-normal form
of a monotonically increasing function may be determined by a family of
subset of the n indices not containing each other. (For the interested reader
see [7].)

By this manner the question what is the maximum of the number of vari-
ables (with multiplicity) in the minimal disjunctive-normal form of a truth
Sfunction of n variables is reduced to the problem what is the maximum of the sum
of the number of elements in a family consisting of subsets of an n element set

m
not containing each other. By formula: max 2 |4, where A4;a A4; (i+=j).

i=1
We solve the problem in a more general form.

THEOREM 2. Let g(k) be a real function defined on natural nwumbers.

If Ay oo A, are subsets of a set of n elements with the property A, ¢ A;
(i == j) then

m‘
%quil)

altains its maximum for the family of all subsets of

max g(k) ' » ]
0<k<n k

elements.

Proor. 1. First let us prove the LuBrLL -~ MESALKIN inequality ([8],[9]).
A family B, c B, c ... c B, of subsets with |B;| = i (0 <Z i < n) is called
a complele chain. The total number of complete chains is nl. The number of
complete chains containing A; (Bja, = 4,) is |A4;|l(n — [4;])]. Tt is
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easy to see that the complete chains containing A; are different from the

complete chains containing 4; (i == j) (using 4; ¢ A;). Thus, we obtain

St — |41 < n
i=1

1t follows the desired inequality

(7)

m o]
L
=1 ]=
(?Asi
m

2. We have to maximize Y g(l 4;]) under the condition (7). This
is trivial: =l

, g4, (Ij-i] g2 l:] .
%QI}A;s)-—-g—-( = __é < (@) lzl
|A:‘!] '|A,[]

where z is defined by g(z)

2’ = max g(k) I:] ‘

m n
3. The estimation is the best possible as > g(| 4;|) = g(z) l ] for the
i=1 z

family of all the sets of z elements. The proof is completed.

Exampres. 1. If g(k) = 1 (0 =~ k£ < n), then Theorem 2 gives the original
Sperner theorem.

2. If g(k) = k (0 = k < n) we obtain the inequality

" siai=fz)(g2)
(e ) )

where {z} denotes the least integer > x. (8) gives the solution of the problem
induced by the minimal disjunctive-normal form of a truth function. Let us
notice that there exists a function which has not a ‘“‘shorter” disjunctive-

max k
0=k=n

n
= I max
1=k=n

normal form: the function which has value 1 iff the number of one is > ,%I
in the vector.

3. This example is worthy of formulation as a new theorem.
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Tueorem 3. (Iterated Sperner theorem.) Let A, ..., A, be subsets of
a set of n elements satisfying A ¢ Ak 1=<4,k<m,j-=k). Let, fur{h.er

B, ..., Bim, be subsets of A; (1 = i <~ m) satisfying B;j € By (1 << j, k <
Jj == k). Then the number of subsets

2n]

m n

(9) 2:?&,_('&) [:
i=1 s

3 -
3

and the estimation is the best possible.

Proor. By the Sperner theorem we have

[4)

B
Choose the function g(k) = ([ . ] . Then, by Theorem 2

N A
1) (2]

) e

S s

The coefficient satisfies the inequality

(10) m; <

Here we have

and

n—k | =11k /E”’_ 2
e T 3

and kis evenor k < o -3_ ]— and k is odd

T
Sl MW 2n — 2 ) —
l ‘ ' l 1 if B> —n?— and kis evenor k > i %—-1— and k is odd.
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2
The maximal k& having a coefficient 1 is [-ﬁl 1.

Hence we obtain the optimal k:

(12)

The theorem follows from (10), (11) and (12) using

i:]_ :[1].

2 3

It is easy to generalize the theorem to obtain the r times iterated Sperner

theorem.

[1] E.
[2] A.
[3] E.
(4] J.
[5] G.
(6] P.
[7] A.
[8] D.
(9] L.
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