TWO APPLICATIONS (FOR SEARCH THEORY AND TRUTH FUNCTIONS) OF SPERNER TYPE THEOREMS

by

G. O. H. KATONA (Budapest)

To the memory of A. RÉNYI

"I am constantly pondering what kind of knowledge I should try to acquire. Recently, Theaitetos told me that certainty exists only in mathematics and suggested that I learn mathematics from his master, Theodoros who is the leading expert on numbers and geometry in Athens."

From Rényi's "Dialogues on Mathematics"

§ 1.

Assume a finite set $X = \{x_1, \ldots, x_n\}$ is given and we are looking for an unknown $x \in X$. We have informations of type

$$x \in A_i$$
 or $x \notin A_i$

where A_i 's are subsets of X. If one of the sets

$$(1) BC, \, \overline{B}C, \, B\overline{C}, \, \overline{B}\overline{C}$$

is empty, then after knowing $x \in B$ or $x \notin B$ it may occur that $x \in C$ or $x \notin C$ does not contain any new information. For example, if $\overline{BC} = \emptyset$, then $x \notin B$ contains the information $x \notin C$. In the contrary case, if none of the sets (1) is \emptyset , then we need the information " $x \in C$ or $x \notin C$ ", independently of the answer of the question " $x \in B$ or $x \notin B$ ". We say, following Marczewski [1] that B and C are qualitatively independent, if none of the sets (1) is \emptyset . Rényi [2] asked what is the maximal number of pairwise qualitatively independent subsets B_1, \ldots, B_m of an n-element set X. He solved in [2] the question for even n in the following way: The statement "none of BC, \overline{BC} , \overline{BC} is empty" is equivalent to the statement "none of B, \overline{BC} , \overline{C} is contained in an other one". That means, if B_1, \ldots, B_m are pairwise qualitatively independent, then none of B_1, \ldots, B_m , \overline{BC} , \overline{CC} is contained in another one. The well-known theorem of Sperner [3] says that the maximal number of

such subsets is
$$\binom{n}{\left\lceil \frac{n}{2} \right\rceil}$$
. It follows $2m \le \left(\left\lceil \frac{n}{2} \right\rceil \right)$ and

$$m \le \frac{\left(\left[\frac{n}{2}\right]\right)}{2}$$
.

If n is even, this is the best possible upper estimation, since we can choose $\binom{n}{n}/2$ qualitatively independent sets, taking arbitrary one of each comple-

mentary pair of $\frac{n}{2}$ -tuples.

In this paper we solve the case of odd n.

Theorem 1. If B_1, \ldots, B_m are pairwise qualitatively independent subsets of a set of n elements, then

$$m \leq \left(\left\lceil \frac{n-1}{2} \right\rceil - 1 \right)$$

and this is the best possible estimation.

PROOF. 1. If B and C are qualitatively independent, then B and \overline{C} are qualitatively independent, too. If $|B_i| > \frac{n}{2}$ we may change B_i for \overline{B}_i ; $B_1, \ldots, \overline{B}_1, \ldots, B_m$ are qualitatively independent. Thus we may assume B_1, \ldots, B_m are chosen in such a way that

$$|B_i| \leq \left\lceil \frac{n}{2} \right\rceil \quad (1 \leq i \leq m).$$

2. Define $k = \min_{1 \le i \le m} |B_i|$. Assume B_i 's are indexed in such a way that for some p

$$k = |B_1| = \ldots = |B_p| < |B_i|$$
 $(p < i \le m)$.

Denote by $c(B_1, \ldots, B_p)$ the family $\{C_1, \ldots, C_r\}$ of sets C satisfying |C| = k + 1 and $C \supset B_i$ for some $1 \le i \le p$. If n, k and p are given the minimum of r is determined in [4] and [5]. However we do not need this exact minimum here, we need only a simple estimation for r, which is determined by Sperner [3]:

$$p\frac{n-k}{k+1} \leq r.$$

The number of pairs (B_i, C) , where $1 \le i \le p$, $B_i \subset C$, |C| = k + 1 is p(n-k). On the other hand, a fixed C can contain k+1 B_i :

$$p(n-k) \le r(k+1)$$

which is equivalent to (3).

3. $C_1, \ldots, C_r, B_{p+1}, \ldots, B_m$ are pairwise qualitatively independent, if $k < 2 \left\lceil \frac{n}{2} \right\rceil$.

It is trivial for two of B's.

 $C_i \cap C_j$ is not empty since $C_i \supset B_u$, $C_j \supset B_v$ for some u, v $(1 \le u, v \le p)$ and $C_j \cap C_j \supset B_u \cap B_v$ is not empty. $C_i \cap \overline{C_j}$ can not be empty because C_i has k+1 elements, C_j has n-k-1 elements and they can be complementer sets only if $C_j = C_i$, that is if j = i. The total number of elements in $\overline{C_i}$ and $\overline{C_j}$ is 2n-2k-2. They can be disjoint only if

$$(4) 2n-2k-2 \leq n-1$$

as there is an element of $\overline{C}_i \cap \overline{C}_j = C_i \cap C_j$. From (4) it follows $\frac{n-1}{2} \leq k$ which contradicts our supposition. $\overline{C}_i \cap \overline{C}_j$ can not be empty. $C_i \cap B_j$ ($1 \leq i \leq p, \ p < j \leq m$) is not empty since $C_i \supset B_u$ for some u ($1 \leq u \leq p$) and $C_i \cap B_j \supset B_u \cap B_j$ is not empty. C_i has k+1, \overline{B}_j has n-k elements. Thus they can not be complementer sets as k+1+n-k>n. $C_i \cap \overline{B}_j \neq \emptyset$. We have similarly $\overline{C}_i \cap B_j \neq 0$. Finally let us verify that \overline{C}_i and \overline{C}_j have also a common element. The total number of their elements is 2n-2k-1. $\overline{C}_i \cap \overline{B}_j = C_i \cap B_j$ has at least one element. Thus, if \overline{C}_i and \overline{B}_j are disjoint, we have

$$2n-2k-1\leq n-1.$$

This inequality contradicts our supposition $k \leq \left\lceil \frac{n}{2} \right\rceil$.

4. Now we prove if B_1, \ldots, B_m are pairwise independent and m is maximal, then $|B_1| = \ldots = |B_m| = \left\lceil \frac{n}{2} \right\rceil$.

Suppose the contrary, $k = \min_{1 \le i \le m} |B_i| < \left[\frac{n}{2}\right]$. We may apply the result of Section 3: C_1, \ldots, C_r , B_{p+1}, \ldots, B_m are pairwise independent. However,

$$\text{by (3) } p < r \text{ since } \frac{n-k}{k+1} > \frac{n-\left\lceil \frac{n}{2} \right\rceil}{\left\lceil \frac{n}{2} \right\rceil + 1} \ge 1. \, C_1, \ldots, C_r, \, B_{p+1}, \ldots, B_m \text{ has more}$$

members than B_1, \ldots, B_m in contradiction with the maximality of B_1, \ldots, B_m . Thus, $k \ge \left\lceil \frac{n}{2} \right\rceil$ and (2) ensure the validity of the statement.

5. B_1, \ldots, B_m have the same number of elements $\left(\left[\frac{n}{2}\right]\right)$ and $B_i \cap B_j \neq 0$ $(1 \leq i, j \leq m)$. We may apply the next theorem of Erdős—Chao Ko—Rado [6]:

If $|B_1| = \ldots = |B_m| = l$, where B_1, \ldots, B_m are pairwise non-disjoint subsets of a set of n elements, then

$$m \leq {n-1 \choose l-1}$$
.

In our case

$$m \le \left(\left[\frac{n-1}{2}\right]-1\right).$$

The proof is completed.

OPEN PROBLEMS. 1. Determine the maximal m for which there exists a family B_1, B_2, \ldots, B_m satisfying

$$|B_i \cap B_j| \ge r$$
, $|B_i \cap \bar{B}_j| \ge r$, $|\bar{B}_i \cap B_j| \ge r$, $|\bar{B}_i \cap \bar{B}_j| \ge r$
 $(1 \le i, j \le m)$,

where $r \geq 1$ is a fixed integer.

2. Determine the maximal m for which there exists a family B_1, B_2, \ldots, B_m satisfying

$$H(B_i, B_j) \ge r$$
 $(1 \le i, j \le m)$,

where $H(B_i, B_j) = -|B_i \cap B_j| \log |B_i \cap B_j| - |\bar{B}_i \cap B_j| \log |\bar{B}_i \cap B_j| - |B_i \cap \bar{B}_j| \log |B_i \cap \bar{B}_j| - |\bar{B}_i \cap \bar{B}_j| \log |B_i \cap \bar{B}_j|$ and r is a positive real number.

The first problem is solved for r=1 in Theorem 1. The second problem is also solved by Theorem 1 for $r=-3\left(\frac{1}{n}\log\frac{1}{n}\right)-\frac{n-3}{n}\log\frac{n-3}{n}$.

§ 2.

A logical or truth function is an n-dimensional function defined on the n-dimensional 0, 1 vectors and taking on the values 0, 1. A truth function f is said to be monotonically increasing if $f(x_1, \ldots, x_n) = 1$ and $x_1 \leq y_1, \ldots, x_n \leq y_n$ imply $f(y_1, \ldots, y_n) = 1$.

$$(5) (z_{i_{11}} \wedge z_{i_{12}} \wedge \ldots \wedge z_{i_{1r}}) \vee \ldots \vee (z_{i_{11}} \wedge z_{i_{12}} \wedge \ldots \wedge z_{i_{1r}})$$

is called a disjunctive-normal form, where $z_{i_{kl}} = x_{i_{kl}}$ or $1 - x_{i_{kl}}$ and $0 \land 0 = 0$, $0 \land 1 = 0$, $1 \land 0 = 0$, $1 \land 1 = 1$ ($\land =$ "and"), $0 \lor 0 = 0$, $0 \lor 1 = 1$, $1 \lor 0 = 1$, $1 \lor 1 = 1$ ($\lor =$ "or"). Every truth function has a disjunctive-normal form which is equivalent to it. We may produce such a form in the following way. Fix a 0, 1 vector $e = (a_1, \ldots, a_n)$ satisfying f(e) = 1. We cor-

respond an expression $z_1 \wedge z_2 \wedge \ldots \wedge z_n$, where $z_i = x_i$ if $a_i = 1$ and $z_i = 1 - x^i$ if $a_i = 0$. It is easy to see that $z_1 \wedge z_2 \wedge \ldots \wedge z_n = 1$ if and only if $x_i = a$ $(1 \le i \le n)$. These expressions $z_1 \wedge \ldots \wedge z_n$ stand in the place of the bracket-expressions in (5) for all e satisfying f(e) = 1. It is easy to see that this function is identical to f.

A disjunctive-normal form is *minimal* if it has a minimal number of variables (with multiplicity). Assume f is a monotonically increasing function. It is easy to see that we can omit the terms of the form z=1-x from its disjunctive-normal form. Thus, a minimal disjunctive-normal form of a monotonically increasing function has the form

(6)
$$(x_{i_1} \wedge \ldots \wedge x_{i_{p}}) \vee \ldots \vee (x_{i_p} \wedge \ldots \wedge x_{i_p}) .$$

On the other hand, if the index set of one bracket has a proper subset, which is the index set of an other bracket, it can be omitted.

Summarizing what has been said, the minimal disjunctive-normal form of a monotonically increasing function may be determined by a family of subset of the n indices not containing each other. (For the interested reader see [7].)

By this manner the question what is the maximum of the number of variables (with multiplicity) in the minimal disjunctive-normal form of a truth function of n variables is reduced to the problem what is the maximum of the sum of the number of elements in a family consisting of subsets of an n element set not containing each other. By formula: $\max \sum_{i=1}^{m} |A_i|$, where $A_i \in A_j$ $(i \neq j)$.

We solve the problem in a more general form.

THEOREM 2. Let g(k) be a real function defined on natural numbers. If A_1, \ldots, A_m are subsets of a set of n elements with the property $A_i \in A_j$ $(i \neq j)$ then

$$\sum_{i=1}^m g(|A_i|)$$

attains its maximum for the family of all subsets of

$$\max_{0 \le k \le n} g(k) \binom{n}{k}$$

elements.

PROOF. 1. First let us prove the Lubell-Mešalkin inequality ([8],[9]). A family $B_1 \subset B_1 \subset \ldots \subset B_n$ of subsets with $|B_i| = i$ ($0 \le i \le n$) is called a *complete chain*. The total number of complete chains is n!. The number of complete chains containing A_i ($B_{|A_i|} = A_i$) is $|A_i|!(n - |A_i|)!$. It is

easy to see that the complete chains containing A_i are different from the complete chains containing A_j ($i \neq j$) (using $A_i \notin A_j$). Thus, we obtain

$$\sum_{i=1}^{m} |A_i|! (n-|A_i|)! \leq n!.$$

It follows the desired inequality

$$\sum_{i=1}^{m} \frac{1}{\binom{n}{|A_i|}} \leq 1.$$

2. We have to maximize $\sum_{i=1}^{m} g(|A_i|)$ under the condition (7). This is trivial:

$$\sum_{i=1}^m g(|A_i|) = \sum_{i=1}^m \frac{g(|A_i|) \binom{n}{|A_i|}}{\binom{n}{|A_i|}} \leq \sum_{i=1}^m \frac{g(z) \binom{n}{z}}{\binom{n}{|A_i|}} \leq g(z) \binom{n}{z},$$

where z is defined by $g(z) \binom{n}{z} = \max g(k) \binom{n}{k}$.

3. The estimation is the best possible as $\sum_{i=1}^{m} g(|A_i|) = g(z) \binom{n}{z}$ for the family of all the sets of z elements. The proof is completed.

Examples. 1. If g(k) = 1 ($0 \le k \le n$), then Theorem 2 gives the original Sperner theorem.

2. If g(k) = k $(0 \le k \le n)$ we obtain the inequality

(8)
$$\sum_{i=1}^{m} |A_i| \leq \left\{ \frac{n}{2} \right\} \left(\left\{ \frac{n}{2} \right\} \right)$$

since

$$\max_{0 \leq k \leq n} k \binom{n}{k} = n \max_{1 \leq k \leq n} \binom{n-1}{k-1} = n \left(\left\lceil \frac{n-1}{2} \right\rceil \right) = \left\{ \frac{n}{2} \right\} \left(\left\lceil \frac{n}{2} \right\rceil \right),$$

where $\{x\}$ denotes the least integer $\geq x$. (8) gives the solution of the problem induced by the minimal disjunctive-normal form of a truth function. Let us notice that there exists a function which has not a "shorter" disjunctive-normal form: the function which has value 1 iff the number of one is $\geq \left\{\frac{n}{2}\right\}$ in the vector.

3. This example is worthy of formulation as a new theorem.

THEOREM 3. (Iterated Sperner theorem.) Let A_1, \ldots, A_m be subsets of a set of n elements satisfying $A_j \in A_k$ $(1 \le j, k \le m, j \ne k)$. Let, further B_{i1}, \ldots, B_{im_i} be subsets of A_i $(1 \le i \le m)$ satisfying $B_{ij} \subset B_{ik}$ $(1 \le j, k \le m_i, j \ne k)$. Then the number of subsets

(9)
$$\sum_{i=1}^{m} m_{i} \leq \left(\left[\frac{2n}{3} \right] \right) \left(\left[\frac{2n}{3} \right] \right),$$

and the estimation is the best possible.

PROOF. By the Sperner theorem we have

$$m_i \leq \left(\left\lceil \frac{|A_i|}{2} \right\rceil \right).$$

Choose the function $g(k) = \binom{k}{\left\lceil \frac{k}{2} \right\rceil}$. Then, by Theorem 2

(11)
$$\sum_{i=1}^{m} {k \choose \left[\frac{k}{2}\right]} \le {\left[\frac{z}{2}\right]} {n \choose z},$$

where z is defined by

$$\left(\left\lceil \frac{z}{2}\right\rceil\right)\binom{n}{z} = \max_{0 \le k \le n} \binom{k}{\left\lceil \frac{k}{2}\right\rceil}\binom{n}{k}.$$

Here we have

$$\binom{n}{k} \left(\left[\frac{k}{2} \right] \right) = \frac{n(n-1)\dots(n-k+1)}{\left[\frac{k}{2} \right]! \left\{ \frac{k}{2} \right\}!}$$

and

$$\binom{n}{k+1} \left(\left[\frac{k+1}{2} \right] \right) = \binom{n}{k} \left(\left[\frac{k}{2} \right] \right) \cdot \frac{n-k}{\left\lceil \frac{k}{2} \right\rceil + 1} \, .$$

The coefficient satisfies the inequality

$$\left\lceil \frac{n-k}{\left\lfloor \frac{k}{2} \right\rfloor + 1} \right\rceil > 1 \text{ if } k < \frac{2n-2}{3} \text{ and } k \text{ is even or } k < \frac{2n-1}{3} \text{ and } k \text{ is odd}$$

$$\leq 1 \text{ if } k \geq \frac{2n-2}{3} \text{ and } k \text{ is even or } k \geq \frac{2n-1}{3} \text{ and } k \text{ is odd.}$$

The maximal k having a coefficient >1 is $\left\lfloor \frac{2n}{3} \right\rfloor -1$. Hence we obtain the optimal k:

$$(12) z = \left\lceil \frac{2n}{3} \right\rceil.$$

The theorem follows from (10), (11) and (12) using

$$\left[\left[\frac{2n}{3} \right] \right] = \left[\frac{n}{3} \right].$$

It is easy to generalize the theorem to obtain the r times iterated Sperner theorem.

REFERENCES

- E. Marczewski, Indépendance d'ensembles et prolongement de mesures, Colloq. Math. 1 (1948), 122—132.
- [2] A. Rényi, Foundations of probability, San Francisco—Cambridge—London—Amsterdam, 1971.
- [3] E. SPERNER, Ein Satz über Untermengen einer endlichen Menge, Math. Z. 27 (1928), 544-548.
- [4] J. B. KRUSKAL, The number of simplices in a complex, Mathematical Optimization Techniques, Berkeley, 1963, 251—278.
- [5] G. KATONA, A theorem on finite sets, Theory of Graphs (Proc. Colloq., Tihany, 1966), Budapest, 1968, 187—207.
- [6] P. Erdős, Chao Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. 12 (1961), 313—320.
- [7] A. Adám, Truth functions and the problem of their realization by two-terminal graphs, Budapest, 1968.
- [8] D. LUBELL, A short proof of Sperner's lemma, J. Combinatorial Theory 1 (1966), 299.
- [9] L. D. Mešalkin, A generalization of Sperner's theorem on the number of subsets of a finite set, *Teor. Verojatnost. i Primenen.* 8 (1963), 219—220 (in Russian with German summary).

(Received May 10, 1971)

MTA MATEMATIKAI KUTATÓ INTÉZETE, BUDAPEST, V., REÁLTANODA U. 13-15. HUNGARY