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BY G.O.H. KATONA

Introduction

Sperner proved the following theorem [1]: Let A = {A1,..., Am} be a
family of different subsets of a set S of n elements. If no two of them
possess the property

AiCAj (1#3)9
i
then m < <ﬁ§i>, and this is the best possible estimation.
Erdds [2] answered the question what is the maximum of m if no two subsets
satisfy A; © Aj’ |Aj_AiI >n (i# j).
The answer is the sum of the h largest binomial coefficients of order n.

We give now the solution of the contrary problem.

Theorem A. Let A = {A1 S Am} be a family of different subsets of a
set 3 of n elements. If no two of the subsets satisfy Ai € AJ., IAJ.-Ai] < %y

where k is a given positive integer, then

(1) m< ] D

iE[%](mod k)

and this is the best possible estimation.
Kleitman [3] and Katona [4] independently proved a sharpening of

Sperner's theorem: lLet S = S1 u 82, S, n 82 = @ be a partition of S. If

1

* . : S
This work was done while the author was at the Department of Statistics
of the University of North Carolina at Chapel Hill.
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A= {A1,..
satisfy the properties

i 5 Am] is a family of subsets of S and no two different A, Aj

or

% By @ By i P T By

n
then m < ([%J ) remains

in this direction.

true. We give here also a sharpening of Theorem A

Theorem B. Let A = {A1,..., Am} be a family of different subsets of a
set S of n elements, where S = S, v 32, 5, n 82 = @. If no two of the sub-
sets satisfy either

Ai n S1 = Aj n S1, Ai n 82 c Aj n 82 and lAj'AiI <k
or
A nS1CA.nS1,AlnSQ=Ajn82 and ]AJ.-Ail<k,
then
n
m < Z (.)

A
iz[%](mod k)
The next generalization of Theorem A is an analogon of an Erd8s [2]

generalization of Sperner's theorem.

Theorem C. Let A = {A1,..., Am} be a family of different subsets of a
set S of n elements, let further k and h be integers (1 < h < k). If no
h+1 different members of the family eatisfy

B, € see Sl o 1B =B [,
= Tht Th+1 =
then
h-1 :
(2) m < 2 Z (1),
J=0 iE[n_h+1]+j(mod k)

2
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and the estimation ts the best possible.

We will prove Theorems B and C in a more general language, which is val-
id for example for integer-valued functions f (0 i_f(xk) S0y X € S) in-
stead of subsets (see [5]).

An interesting application of Theorem A is the following one:

Theorem D. Let &5 ..., &, &, b be positive integers with the property

1< a;

n
i <@ (1 <1 <n). The number of sums | e.a; (e, =0 or 1) which may

i=1
be congruent mod ab is at most

(3) I (1)
12057 (moa b)

and the estimation is the best possible.

Definitions and theorems

We say that the finite set G is a partially ordered set if a relation <
is defined on G with the following properties: a) at most one of the rela-
tions 8, < 85 g1 = ge, &, < g, holds; b) if g, < & and 8 < 33, then
€, e 83-

g, covers 84 b i &, < & and there is no g3 satisfying 8, < < 855 that

g
ig, if g, is "immediately greater" than g,- Assume that there isaa rank
function r(g) which corresponds a non-negative integer to every element of
G, so that the statement g, covers g, results in r(SE) = r(g1)+1 and there
is at least one element g € G for which r(g) = 0. We say in this case that G
18 a partially ordered set with a rank function.

A chain L of length h is a sequence €15 -+-3 & € G, where g covers
817 Bp_q COVErS & s ..., g, covers g, (|L| = h). A chain is symmetrical

if r(g,) + r(gh) = n, where n = max r(g).
1 geG
We say that a partially ordered set is a symmetrical chain set if we can

split G intc dicjoint symmetrical chains. (It is defined in [6] under a dif-
ferent name.) We say, further, that a partially ordered set G with a rank
function is a mod k symmetrical chain set if we can split G into disjoint

chains L., ..., L of length at most k such that either
1 ¢

ILil =k

or
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*
h = |Li| <k, r(g1) + r(gh) =n

for 1 < i < c. (That is they are either of length k or symmetrical for the

*
fixed "axis" [% 1.) n”* is called axis, and it is not uniquely determined.

For example, the subsets of a finite set S on n elements form a partial-
ly ordered set if we order them by inclusion. A covers B if A > B and
IA—B] = 1. There is also a rank function r(A) = |A|, that is, the number of
elements of A.

More generally, let us consider the integer valued functions f defined
on S = {x1,...,xq} with the property 0 j_f(xk) < @, vhere a is a fixed
positive integer (1 < k < q). We define the ordering as follows. f < g if
f(xk) f_g(xk) for all x, and for at least one x_ f(xk) < g(xk) holds. g
covers f if g(xk) = f(xk) for all but one x, for which g(xk) = f(xk) + 1
holds. The rank function is r(f) = ? f(xk). It is trivial that this set of

k=1
functions is a partially ordered set with rank function. Only for the iden-

tically zero function is r(f) = 0 and max r(f) = % . ¢ denotes the set
feF k=1
of partially ordered sets of this type. If we choose a =1 (1 <k < q) then
we obtain the zero-one valued functions which are equivalent to the subsets.
This means the partially ordered set of subsets of a set S is an element of
¢, that is, it is sufficient to consider the partially ordered sets belong-

ing to ¢. It is proved in [5] that G is a symmetrical chain set, if G € ¢.
Theorem 1. If G ¢ ¢, G 28 a mod k symmetrical chain set.

Theorem A is a simple consequence of this theorem, but we will deduce it
from the more general Theorem 3.

If G and H are partially ordered sets, then the direct swm G + H is the
set of ordered pairs (g,h), g € G, h € H with the ordering (g1,h1) < (ge,hz)
1ff g, < & and h1 < h2, or g, = &, and h1 < h2, or g, < 8, and h1 = h2' TH
follows from this definition, that (g2,h2) covers (g1,h1) if g, = g, and h,

covers h,, or g, covers g, and h2 =h If the rank function of G and H is r

1 i
and s, respectively, then we can define a rank function on G + H as follows:

t((g,h)) = r(g) + s(h).

If G is the partially ordered set of the subsets of a set S, and H is
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the same for S, (S1 and S, are disjoint), then G + H is the partially order-
ed set of the subsets of S1 ] Se. The situation is similar in the case of
the integer-valued functions; the direct sum of two sets of this type is
again a partially ordered set of integer-valued functions defined on the
union of the sets.

Now we can formulate the general theorems,

Theorem 2. Let G and H be mod k symmetrical chain sets with axes n: and

n;, respectively. If we have a set (p1 ,q1) 5 i3 (pm,qm) of the elements of
G + H, such that no two different ones of them satisfy the conditions

Pa = Pjs a4 < qj and t((PJ-,qj)) = t((Pi’q‘i)) < k,
or

Pi < pja qi = Qj and t((Pj,qj)) = t((Piaqi)) < k,
then

m < M.,

n*+n*
is[ 12 2J(mod k)

where M. denotes the number of elements of G + H with rank t((g,h)) = i. The

estimation is the best possible.

Theorem 3. Let G be a mod k symmetrical chain set with awis n’. If we
have a set ., ..., p, of the elements of G such that no h + 1 different
ones of them satisfy the conditions

then

m < z 2 K: 5
S 1
J=O n*_h+1
i:[—zr——1+j (mod k)

where K. denotes the number of elements of G with rank r(g) = i. The estima-
tion s the best possible.
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Proofs
The proofs of Theorems 2 and 3 follow the proof of Theorem 2 of [6].

Proof of Theorem 2. By the definition of the mod k symmetrical sets, G

and H are divisible into disjoint chains of length at most k which are ei-
ther symmetrical or of length exactly k. Denote by G' and H' the partially
ordered sets which have ordering relations only along these chains, that is
g, < &, can hold only if g, and g, lie on the same chain., Thus, the set of
relations in G'(H') is a part of that in G(H). It follows that the set of
relations in G' + H' is a part of that in G + H. So, it is sufficient to
prove the statement of the theorem for G' + H' instead of G + H. However,
the direct sum of two chains By +++> 8, @nd by, ..., By is a rectangular
lattice of pairs (gi’hj)’ where (gi,hj) covered only by (gi+1’hj) and
(gi’hj+1) (Fig. 1). We say that a rectangular sublattice is symmetrical for

n if the sum of its minimal and maximal rank is equal to n”.

(sa,hg) (ga,hb)

> > > >-
F S A\ h A

A A

S

(ggshy) (8y.ny)
Fig: 1w

So G' + H' consists of rectangular lattices, where either (i) both
*
1
(a+1 < k, b#1 < k), or (ii) one of the numbers a+1, b+l (< k) is equal to k.

8o +reo By and ho, 3T hb are symmetrical for n, and n;, respectively,

By supposition of the theorem in the case (i) the rectangle can contain
at most one of (p1,q1), g uwE (pm,qm) in each row or column. The maximal num-
ber cf them is min(a+1, b+1). It is easy to see that if we choose the points
of the "middle diagonal" of the rectangle, that is, all the points with rank

t((gg>n,) )+t ((g 5n )]

5 J, then the number of points is min(a+1, b+1), that is

maximal.

In the case (ii) we may assume that the number of rows is k. By the sup-
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position of the theorem the rectangle may have at most one of

(p1,q1), - (pm,qm) in each column. It is easy to see if we choose all the
st
points of the rectangle with rank = > (mod k) then we choose the maxi-

mal number of them. This set of points satisfies the supposition of the
theorem, since it contains exactly one point in each column and the distance
of the consecutive points in a row is k.
We have to verify only that the union of the sets of points chosen in
* *
n,¥n,
2

the manner described above gives the set of points with rank =

(mod k) in G + H.
To the first part it is sufficient to prove that

t((g,,h ))+t((g_,h )) n*+n
0”0 = ga_ hh = ‘12 2 (l!lOd k).

We may show that exact equality holds. Indeed, by the symmetricity

t((gyshg)) + t((gy,ny)) = rlgy) + slhy) + r(g,) + s(n).
“:+n2
Conversely, every point of G + H with rank = 5 (mod k) is con-

tained in a rectangular. If the rectangular is of type (ii) the point is
chosen above. If the rectangular is of type (i) then the considered point

* %
n_ +n

has a rank (which is chosen above) because a rectangular of type (i)

ny+ng
cannot contain points with rank = > (mod k) except which have rank

2

i
—% |- Indeed, t((go,ho)) and t((ga,hb)) differ from

t((gyshy))+t((g_,hy)) Y4

8n 02 g_» n.+n

ki 1 5 a’ b = 12 with at most {E%E} (where {x} denotes the
at+b

2

least integer greater than or equal to x), and { } < k~1. The proof is

completed.

Proof of Theorem 3. Let us divide G into disjoint chains of form
Bys -+vs B, which are either (i) symmetrical (r(go) + r(ga) =1n") or (ii)
of length k (a+1 = k). By the supposition of the theorem each chain can con-
tain at most min(h,a+1) points from Pys =v+s D- Let us choose the optimal

set in each chain in the following manner:
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h+1J <

Case (1) : points g; where [Tl :_[E:gil] +h -1, if a+1 > h,

and all the points if a+1 < h.
.5 . ’ & n*—h+1 . .
Case (ii): points with rank = [___E__] + i, where 0 < i < h-1.
We have to verify only that the union of the sets of points chosen in
the above described manner gives the set of all points with rank

—h+1

o =Ly PR (0 < i < h-1).

To the flrst part of this statement it is sufficient to prove that r(g )

n h+‘|J - [n -h+1
2

a-

runs from [

J+h-1if j runs from [ LKy

[a—h+1] + h - 1. But this follows from the symmetricity, since
r(g_)-r(g,)-h+1
_ . a- h+1 - a 0 .
r(sj) = rlgg) + i = rlgy) + F5—1+i=xlg) + [——————3;—————~J + i
r(go)+r(sa)—h+1 ) e _
=l | i=Ea i

s . ~h+
Conversely, every point of G with rank = [-——E—l

J+1i(0<i<n-1)is
contained in a chain of type (i) or (ii) and it is chosen there.

The proof is completed.

In order to use Theorems 2 and 3 for finite functions (elements of ¢) we

have to prove Theorem 1.

Lemma. If G and H are mod k symmetrical chain sets then G + H 18 a mod k
symmetrical chain set.

Proof. We proved at the beginning of the proof of Theorem 2 that G + H
is divisible into disjoint union of rectangular lattices
R = {go,...,ga} + {hO""’hb} where ei:her*(i) both {go,...,ga} and
{ho,...,hb} are symmetrical for some n,, 0

2
of the numbers a+1, b+1 (< k) is equal to k.

(a+1 < k, b+1 < k) or (ii) one

Now, we have to divide these rectangular lattices into chains of length
at most k which are either symmetrical for nj + n; or of length k. In the
case (ii) it is very easy. Put e.g. a+1 = k. The lengths of the chains
(go,hi), — (ga’hi) (0 <i<1b) are k, and their union is R.

In the contrary case (i), when a+1 < k, b+1 < k both chains are symmet-

rical:

r(gy) + r(g,) = nj,  s(hg) + s(n) =



The new chains will be the following:

(Easho) (ga’hb)
N
k =
"
(gyshy) (ggohy)
Fig. 2.

Or formally, but less clearly (assume a < b and a+b+1 Z_k):

|
|

1 = {(Sosho) )(81 sho) PR s(gaiho) Q(Sa’h1)s- . ’(ga’hk-a-‘l)}’

L, = {(go,h1),(g1,h1),...,(ga_1,h1),(ga_1,h2),...,(ga_1,hk_a),(sa,hk_&)},

L3 = {(g09h2)1(31 ’he)a---s(g h )s(g

a-2"2 hy)

a-pfg)se e

"(ga—2’hk—a+1)’(ga-1’hk—a+1)’(ga’ k-a+1)}’

Ll = {(go,hi_1),(g1 ,h]'_— ),---,(g&_iﬂ ,hi_1),(8 h ),---

1 a-i+1°71

'"’(ga_i+1’hk_a+i-2)""’(ga—i+2’hk—a+i—2)"°"(ga’hk-a+i—2)}’

Brpgen ™ {(go’ha+b—k+1)""’(gk-b—l’ha&b~k+1)’(gk—b—1’ha+b-k+2)""

---,(gk_b_1,l’l.b),---:(Sashb)},
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h

Lorpie3 = 180 Paungan) s o (B o Parpirn) + (BypooBaspgas) s -

v v B g T

),(g1 shj_1)s- .. ’(ga—,j+‘l ’hj-1)’(ga-,j+‘l ,hj) 30 ’(ga—j+‘l ’hb)}’

Lasq = Legany)se--slegm )l
From Fig. 2 it is easy to see, that the new chains are either of length

k or symmetrical. Formally: Li is of length k if 1 < i < a+b-k+2 because of

a-1i+2+ ((k-ati-2) - (i-1)) + (a - (a-i+1)) = k. L. is symmetrical if

a+b - k+3 < j < a+1 because r(go) + s(hj-1) + r(ga_j+1) + S(hb) =

= rlag) + x(g)) = (3=1) + s(ng) + 5 - Vv aln) =

o
n+n,.

If a+b+1 < k, the situation is similar (even simpler) and we have only

symmetrical new chains:

Fig. 3.

We have proved the lemma, which is a generalization of the basic idea of
L5951
If Ge ¢, then G = % Li where Li‘s are totally ordered sets (chains).
i=1

Let a 41 = ILil be the length of the chain L;. ay is called the i-th size of
G. We say that the size a; is even, or odd if in the equation ui+1 = ak+8

(0 < B <k) o is even or 0dd, respectively. It is easy to see that L; is a
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mod k symmetrical chain set and its axis may be chosen as
o e oy is even
a, £k if & is odd.

(see Fig. 4.)

Fig. k.

Applying the lemma we obtain that G is a mod k symmetrical chain set,

and in addition, its axis may be chosen as

% o if the number of odd sizes is even
i=1
and
% ui+k if the number of odd sizes is odd.
i=1
As the maximal rank is n = ? o, we may also write the axis in the form n

i=1
or n + k. The proof is completed.

Proof of Theorem B. Let G and H be the subsets of the sets S.l and 82,

respectively. The conditions of theorem 2 and theorem B are equivalent in

this case. G and H are mod k symmetrical chain sets, by theorem 1. Here
a; = 1 so all the sizes are even for k > 0. Consequently, the axes n:, n;

are given by

*

1 ‘|_IS1I! n2=n2=|sel’

=]
[}

=
|

that is, n:+n; = n,+n, = n. The proof is completed.

Proof of Theorems C and A. We apply theorem 3 for the subsets of S,

which is a mod k symmetrical chain set by theorem 1. For theorem A we sub-

stitute h = 1 into theorem C. The proofs are completed.
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n
Proof of Theorem D. Consider the sums X €;a;
i=1
the set of indices i where e, =1 in the j-th sum. If Aj' > Aj and

¢ (mod ab). Let Aj be

IAj"Aj| < b, then for the corresponding sums

Z a. - Z 8, = 2 a. .

ieA,, b iea, i€A.,-A.
J J J J

Here

1< |A =A< 1< ¥ a. < |A.,-A.| + a < ab,

4" i€A.,-A, g
J J
which is a contradiction: the sums cannot be congruent mod ab. Thus we may
apply theorem A for A1, T Am:
n
m < Z ;).

= $

ii[gi(mod b)

The proof is completed. If the modulus d is not a multiple of the bound a,

we obtain a similar inequality

m < Z (n)’
 i=23(mod &)
1= > mo a]

but we cannot reach this upper bound in any case.

Further remarks

Why did we not prove theorem 3 under the weaker conditions of type given
in theorem 2 (see [6])7

The following example shows the reason:
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Here k = 6 and h = 2. This rectangle is a direct sum of two totally ordered
sets. The set of points given in the figure does not contain a triple of

point of form

(%)

with length < 6, but their number is 10, while the number of elements of the
two largest "middle diagonal" is 9. It is easy to see that if we exclude the

configurations

(5) } T

with h + 1 points and with length < k, then the general statement follows
from the proofs. For general h the configuration

(6) [

is excluded in [6] instead of (L) (with h + 1 points). The counterexample

shows that to exclude (6) with length < k is too weak, however to exclude
(5) is too strong. To find a good condition between (5) and (6) would be

interesting.
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