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Pázmány Péter s. 1/C, H-1117 Budapest, Hungary

e-mails: miklos.arato@ttk.elte.hu, gyorgy.michaletzky@ttk.elte.hu
2 Department of Mathematics and Computational Sciences, Széchenyi István University,
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Abstract. We discuss recent developments in the following important ar-
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and finally, prime gaps that are responsible for Rényi’s early career reputation.
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1. Introduction: Rényi and dependence measures

It is hard to overestimate the importance of dependence measures in
statistics and in science. When we try to find the cause X that is (partly)
responsible for an effect Y then it is a natural first step to find out if X
and Y are statistically dependent. Thus, it is not surprising that Pearson’s
linear correlation r is responsible for many important causal discoveries like
smoking and lung cancer. Unfortunately if r = 0 then we might suspect
that there is no causal relationship between X and Y even when there is.
Pearson’s correlation r = 0 does not imply independence. This is a typical
problem when the relationship between the variables is highly nonlinear, not
even monotonic. The importance of dependence measures led Rényi to in-
troduce seven axioms of dependence measures in [113]. We will discuss these
quantitative dependence measures in Sections 2–7. The next block, Sections
8–10 is on qualitative independence. Rényi discussed this notion and its rel-
evance to combinatorics in his seminars and also in his book [115]. The last
section is on prime gaps, a classical topic in number theory that brought
international reputation for Rényi in 1947–48. The “randomness” of prime
gaps connects primes and independence.

2. Rényi’s axioms of dependence

For real valued random variables X,Y , Δ(X,Y ) is a dependence measure
if it satisfies Rényi’s axioms:

(A) Δ(X,Y ) is defined for all random variables X and Y , neither of them
being constant with probability 1.

(B) Δ(X,Y ) = Δ(Y,X) (symmetry).
(C) 0 ≤ Δ(Y,X) ≤ 1.
(D) Δ(X,Y ) = 0 if and only if X and Y are independent.
(E) Δ(X,Y ) = 1 if there is a strict dependence between X and Y ; that

is, either X = g(Y ) or Y = f(X), where g and f are Borel measurable func-
tions.

(F) If the Borel measurable functions f(x) and g(x) map the real axis in
a 1–1 way onto itself, Δ(f(X), g(Y )) = Δ(X,Y ).

(G) If the joint distribution of X and Y is normal, then Δ(X,Y ) =
|r(X,Y )| where r(X,Y ) is the correlation coefficient of X and Y .

All these axioms are satisfied by maximal correlation which is the supre-
mum of all correlations r(f(X), g(Y )) for which the correlation of f(X)
and g(Y ) exists. Maximal correlation seemed to be the final word in this
topic and it seemed that maximal correlation was the dependence measure
everybody was looking for. In [113] Rényi proved that under explicit tech-
nical conditions the maximal correlation is actually attained and character-
ized. Namely, let L2

X denote the Hilbert space of all random variables of the
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form f(X) for which Ef(X) = 0 and Var(f(X)) is finite, and similarly, L2
Y

the Hilbert space of all those random variables g(Y ) for which Eg(Y ) = 0
and Var(g(Y )) is finite. Let us put for any f = f(X) ∈ L2

X

(2.1) Af = E
(
E(f(X) | Y ) | X) .

Then A is a bounded linear transformation of the Hilbert space L2
X ; more-

over, it is self-adjoint and positive definite.

Theorem 2.1 [113]. If the transformation A defined by (2.1) is com-
pletely continuous, then the maximal correlation of X and Y is attained
for f0(X) and g0(Y ) where f0 is an eigenfunction belonging to the greatest

eigenvalue λ of A and g0(Y ) = λ−1/2 E(f0(X) | Y ).

The condition that A should be completely continuous is not easy to
verify in concrete cases. Therefore the following theorem is useful.

Theorem 2.2 [113]. If the joint distribution Q(X,Y ) of X and Y is
absolutely continuous with respect to the direct product QX ×QY of their
distributions, and∫

R2

( dQX,Y

d(QX ×QY )
− 1
)2
d(QX ×QY ) < ∞,

then the transformation A is completely continuous and thus the maximal
correlation of X and Y can be attained.

Rényi’s paper was cited more than 800 times. Rényi himself applied the
notion of maximal correlation to a probabilistic generalization of Linnik’s
“large sieve”, a very nice extension of a classical tool. Many years later it
turned out that the empirical maximal correlation is (almost) always 1 no
matter what the statistical sample is; thus, if the maximal correlation were
(weakly) continuous then it would be identically 1 which contradicts ax-
iom (D). A remedy for the non-continuity of maximal correlation is distance
correlation, see Section 3.

3. New axioms

Let S be a nonempty set of pairs of nondegenerate random variables
X,Y taking values in Euclidean spaces or in real, separable Hilbert spacesH .
(Nondegenerate means that the random variable is not constant with prob-
ability 1.) Then Δ: S → [0, 1] is called a dependence measure on S if the
following four axioms hold. In the axioms below we need similarity transfor-
mations of H . Similarity of H is defined as a bijection (1–1 correspondence)
fromH onto itself that multiplies all distances by the same positive real num-
ber (scale). Similarities are known to be compositions of a translation, an
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orthogonal linear mapping, and a uniform scaling. We assume that if (X,Y )
∈ S then (LX,MY ) ∈ S for all similarity transformations L,M of H .

(i) Δ(X,Y ) = 0 if and only if X and Y are independent.
(ii) Δ(X,Y ) is invariant with respect to all similarity transformations

of H ; that is, Δ(LX,MY ) = Δ(X,Y ) where L, M are similarity transfor-
mations of H .

(iii) Δ(X,Y ) = 1 if and only if Y = LX with probability 1, where L is a
similarity transformation of H .

(iv) Δ(X,Y ) is continuous; that is, if for some positive constantK we have
E
( |Xn|2 + |Yn|2

) ≤ K, n = 1, 2, . . . and (Xn, Yn) converges weakly (con-
verges in distribution) to (X,Y ) then Δ(Xn, Yn) → Δ(X,Y ). (The con-
dition on the boundedness of second moments can be replaced by any other
condition that guarantees the convergence of expectations: E(Xn) → E(X)
and E(Yn) → E(Y ); such a condition is uniform integrability of Xn, Yn which
follows from the boundedness of second moments.)

The goal of the new system of axioms is not to characterize a single de-
pendence measure. The new system of axioms is “minimalist” in the sense
that all good dependence measures can be expected to satisfy them. In
[95] it is shown that even this “minimalist” system of axioms can disqualify
several classical measures and also some recently introduced measures of de-
pendence; for example, neither the maximal correlation coefficient nor the
recently introduced maximal information coefficient satisfy axiom (iv). The
same axiom fails to hold for the correlation ratio.

Remark 3.1. (a) Functions of independent random variables are in-
dependent, thus property Δ(X,Y ) = 0 is invariant with respect to all 1–1
Borel measurable transformations of H . On the other hand we do not sup-
pose this 1–1 invariance for other values of Δ. As we shall see, such a
strong condition would contradict axiom (iv). In axiom (ii) and (iii) one can
try to replace the invariance with respect to similarities by other groups of
invariances, particularly, when the statistical problem in question exhibits
symmetries/invariances in the sense of [83, Ch. 6], see also [39]. It is up to
the statistician to choose the right level of invariance. Too much invariance
is not necessarily good. Even if a very strong invariance of Δ does not con-
tradict other important axioms it might decrease the power of Δ in testing
independence. If H = R, the real line, affine transformations coincide with
similarities. In higher dimensions, however, affine invariance for all bounded
nonconstant random variables contradicts axiom (iv) as it is proved in The-
orem 6.1. This makes the choice of similarity invariance in our axioms even
more natural.

(b) Rényi did not assume axiom (iv). Theorem 3.1 below explains that
if he did then no dependence measure would have satisfied all his axioms.

(c) Why did we suppose that S does not contain random variables that
are constant with probability 1? Because if Y is such a random variable
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then it is independent of all random variables X and thus by axiom (i) we
have Δ(X,Y ) = 0. On the other hand, for all X ∈ S axiom (iii) implies
Δ(X,X/n) = 1 for n = 1, 2, . . . . But for bounded random variables X the
limit of X/n is 0 and Δ(X, 0) = 0 which contradicts axiom (iv). In axiom
(A) Rényi also assumes that the random variables X and Y are not constant
with probability 1, i.e., their distributions are nondegenerate. This assump-
tion guarantees that Δ cannot be discontinuous at degenerate distributions
because Δ is simply not defined there. Thus Rényi did not overlook the im-
portance of weak continuity of Δ, he just could not assume it because it
would have been inconsistent with his other axioms.

In what follows we will see that 1–1 invariance is not compatible with
our new axiom of continuity (iv). But why is continuity so natural that one
should suppose it as an axiom? If there is a tiny little change/perturbation in
the distribution of (X,Y ) and this tiny little perturbation changes Δ(X,Y )
dramatically, e.g., changes it from 1 to 0 then Δ has no stability. We can-
not rely our statistical inference on such an unstable Δ because a minor
perturbation, no matter how small it is, can result in a completely different
statistical inference. This can be viewed as a violation of distributional ro-
bustness. If we replace weak convergence by stronger forms of convergence
then of course this would allow more measures of dependence to be contin-
uous but these measures might violate distributional robustness. We do not
need to disregard all nonrobust measures but we need to be aware of this
deficiency.

Theorem 3.1. Suppose S is a set of pairs of non-constant random vari-
ables and if (X,Y ) ∈ S then (LX,MY ) ∈ S for all affine transformations L,
M of H . If the dependence measure Δ(X,Y ) on S is invariant with respect
to all affine transformations L, M of H where dimH > 1 then axiom (iv)
cannot hold. If dimH = 1 then affinity is the same as similarity and in this
case distance correlation is affine invariant. On the other hand, if Δ(X,Y )
is invariant with respect to all 1–1 Borel measurable functions of H then
even if dimH = 1, axiom (iv) cannot hold.

Recall that Euclidean geometry is characterized by invariances with re-
spect to the Euclidean group of transformations (translations, rotations, and
reflections). Similarity geometry deals with geometrical objects with the
same shape. We can obtain one object from another by scaling (enlarging or
shrinking). Similarity transformations consist of all Euclidean transforma-
tions and all (nonzero) scaling; that is, changing the measurement units. In-
stead of 1–1 invariance, in our axioms we suppose similarity invariance only.
Similarity invariance is something we do not want to weaken because chang-
ing the scale, (that is, changing the measurement unit), should not affect
the degree of dependence. Luckily, similarity invariance does not contradict
continuity. Let us see that our system of new axioms is not contradictory
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when S is the set of all nondegenerate random variables with finite expecta-
tion. For this it is sufficient to define a dependence measure that satisfies the
four axioms. Such a measure is distance correlation, which was introduced
in [124].

First of all recall the definition of the sample distance correlation. Take
all pairwise distances between sample values of one variable, and do the
same for the second variable. Rigid motion invariance is automatically guar-
anteed if instead of sample elements we work with their distances. Another
advantage of working with distances is that they are always real numbers
even when the data are vectors of possibly different dimensions. Once we
have computed the distance matrices of both samples, double-center them
(so each has column and row means equal to zero). Then average the entries
of the matrix which holds componentwise products of the two centered dis-
tance matrices. This is the square of the sample distance covariance. If we
denote the centered distances by Aij , i, j = 1, . . . , n and Bij , i, j = 1, . . . , n
where n is the sample size, then the squared sample distance covariance is

1
n2

n∑
i,j=1

Ai,jBi,j.

This definition is very similar to, and almost equally simple as, the defi-
nition of Pearson’s covariance, except that here we have double indices.

The population squared distance covariance can be reduced to the follow-
ing form if E|X|2 and E|Y |2 are finite [124]. Let (X,Y ), (X ′, Y ′), (X ′′, Y ′′)
be independent and identically distributed then the distance covariance is
the square root of

dCov2(X,Y ) := E(|X −X ′| |Y − Y ′|) + E(|X −X ′|)E(|Y − Y ′|)(3.1)

− E(|X −X ′| |Y − Y ′′|)− E(|X −X ′′| |Y − Y ′|).
In the above referred paper it is proved that dCov(X,Y ) is a metric, and
the distance variance, dCov(X,X) is zero if and only if X is constant with
probability 1. Once we defined distance covariance and distance variance
we can define distance correlation the same way as we defined correlation
with the help of covariance and variance. If the random variables X,Y have
finite expected values and they are not constant with probability 1 then the
definition of population distance correlation is the following:

dCor(X,Y ) :=
dCov(X,Y )√

dCov(X,X) dCov(Y, Y )
.

If dCov(X,X) dCov(Y,Y ) = 0 then define dCor(X,Y ) = 0. Distance cor-
relation equals zero if and only if the variables are independent, whatever
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be the underlying distributions and whatever be the dimension of the two
variables (for a transparent explanation see below). This fact and the sim-
plicity of the statistic make distance correlation an attractive candidate for
measuring dependence. For generalizations to metric spaces see [63,84,85].

In [124] an alternative formula for dCov2(X,Y ) was given in terms of
characteristic functions fX,Y , fX and fY of (X,Y ), X , and Y respectively.
If the random variable X takes values in a p-dimensional Euclidean space Rp

and Y takes values in Rq and both variables have finite expectations we have

dCov2(X,Y ) :=
1

cpcq

∫
Rp+q

|fX,Y (t, s)− fX(t)fY (s)|2
|t|1+p

p |s|1+q
q

dt ds.

where cp and cq are constants. This formula clearly shows that indepen-
dence of X and Y is equivalent to dCov(X,Y ) = 0. It is interesting to note
that in Hoeffding’s dissertation [58] the following expression is proved for
the Pearson’s covariance of real valued X and Y with finite variances:

Cov(X,Y ) = E(XY )− E(X)E(Y )

=
∫ ∞

−∞

∫ ∞

−∞
[FX,Y (x, y)− FX(x)FY (y)] dx dy,

where F denotes the cumulative distribution functions. Thus we might want
to define a sign or rather a direction of distance covariance and distance
correlation as the argument of the complex number

z :=
∫
Rp+q

[fX,Y (t, s)− fX(t)fY (s)]w(t, s) dt ds,

where w(t, s) is a suitable weight function. In the most natural case of
w(−t,−s) = w(t, s), this z is always real, so its direction is not more than
a sign. Unfortunately in the most natural choice for w when w(s, t) =( |t|1+p

p |s|1+q
q

)−1, it is not trivial that z exists at all. We also note that
in [59] a test of independence was introduced, based on

∫ ∞

−∞

∫ ∞

−∞
[FX,Y (x, y)− FX(x)FY (y)]2 dFX,Y (x, y).

If the expectations of X , Y do not exist, we can generalize distance
correlation for random variables with finite α > 0 moments, see Section 4. It
is easy to see that the population distance correlation, dCor(X,Y ), satisfies
axioms (ii) and (iv). For the proof that dCor(X,Y ) satisfies (i) and (iii), see
[124].

RÉNYI 100, QUANTITATIVE AND QUALITATIVE (IN)DEPENDENCE 7
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In the special case when (X,Y ) are jointly distributed as bivariate nor-
mal, distance correlation is a deterministic function of Pearson correlation
r = r(X,Y ) [124, Theorem 7], namely,

dCor2(X,Y ) =
r arcsin r +

√
1− r2 − r arcsin(r/2)−√

4− r2 + 1
1 + π/3−√

3
.

Note that this is a strictly increasing, convex function of |r|, and
dCor(X,Y ) ≤ |r(X,Y )| with equality when r = 0 or r = ±1. Thus dCor(X,Y )
does not satisfy Rényi’s axiom (G). It is also clear that if Δ satisfies our
four axioms then h(Δ) also satisfies them whenever h is a strictly increasing,
continuous function, h(0) = 0, h(1) = 1, and 0 < h(x) < 1 for 0 < x < 1. In
the definition of partial distance correlation h(x) = x2 is applied [127]. In
this case the distance standard deviations of the random variables X , Y are
measured in the same units as the X distances and Y distances. If we in-
sisted on axiom (G) we would disqualify distance correlation and also its
square and instead would have accepted a complicated function of distance
correlation as “legitimate”.

An important generalization of distance correlation is introduced in [123].
This is related to a generalized distance correlation where the distance is a
more general metric than the Euclidean one. These generalizations under
some natural conditions like scale invariance also satisfy axioms (i)–(iv).

On a completely different axiomatic approach of dependence measures
see [65].

4. On the relationship between Pearson’s correlation and

distance correlation

Since both the absolute value of Pearson’s correlation coefficient and the
distance correlation coefficient are used in applications to quantify strength
of dependence, it is important to understand how large the differences be-
tween these two measures can possibly be. It is immediately clear that
dCor(X,Y ) = 0 implies r(X,Y ) = 0 and that |r(X,Y )| = 1 if and only if
dCor(X,Y ) = 1. It is also straightforward to show that the distance correla-
tion coefficient of random variables only having two possible values coincides
with their absolute Pearson correlation coefficient. Moreover, several results
for bivariate parametric distributions have been derived, see [38,124].

The fact that dCor is defined for X and Y with finite first moments,
while r(X,Y ) requires finite second moments leads us to the conjecture that
the Pearson correlation coefficient is more sensitive to dependence in the tails
than the distance correlation. This conjecture motivated the construction of
a specific mixture distribution in [40] showing that, up to trivial exceptions,

M. ARATÓ ET AL.8
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RÉNYI 100, QUANTITATIVE AND QUALITATIVE (IN)DEPENDENCE 9

all possible values for the Pearson correlation coefficient r and dCor can be
simultaneously achieved.

This result can be proved in a more general form. If the expectations of
X,Y do not exist, we can generalize distance correlation for random vari-
ables with finite α > 0 moments by taking the α-th powers of the distances
in (3.1), with 0 < α < 2, see [124,125]. That is, let

dCov2
α(X,Y ) = E

( |X −X ′|α|Y − Y ′|α)(4.1)

+ E
( |X −X ′|α)E( |Y − Y ′|α) − 2E

( |X −X ′|α|Y − Y ′′|α) .
By this definition, the α-distance correlation coefficient can be expressed in
the usual way, as

dCorα(X,Y ) =
dCovα(X,Y )√

dCovα(X,X) dCovα(Y, Y )

provided the denominator is positive. dCorα shares all advantageous prop-
erties of dCor; in particular dCorα(X,Y ) = 0 if and only if X and Y are
independent [125]. Moreover, while definition (4.1) only holds for ran-
dom variables X and Y with finite moments of order 2α, the definition
of dCorα(X,Y ) can be straightforwardly extended to X,Y with moments of
order α. For α = 1 we get back the distance correlation coefficient of (3.1).

Theorem 4.1 [40]. Let 0 < α < 2. For every pair (r1, r2), −1 < r1 < 1,
0 < r2 < 1, there exist random variables X,Y with finite moments of order

2α, such that r(X,Y ) = r1, dCorα(X,Y ) = r2.

In addition to the set above, the only possible values of the pair(
r(X,Y ),dCorα(X,Y )

)
are (−1, 1), (0, 0) and (1, 1).

Let 0 < α < β ≤ 2. We conjecture that for every pair 0 < r1, r2 < 1 there
exist random variables X,Y with finite moments of order α and β, resp.,
such that dCorα(X,Y ) = r1 and dCorβ(X,Y ) = r2.

5. The earth mover’s correlation and why we need it

In Section 3 we explained that for real valued or even for separable
Hilbert space valued random variables distance correlation is a very good
measure of dependence. In many new areas of statistical applications like
brain research or network analysis the underlying metric spaces are not
Hilbert spaces. For some of these spaces distance correlation works but
for many others it does not. When it does not, we need a new measure of
dependence that hopefully works in all metric spaces. The Earth mover’s
correlation we are about to introduce in this section is a good candidate for

RÉNYI 100, QUANTITATIVE AND QUALITATIVE (IN)DEPENDENCE 9



Acta Mathematica Hungarica

10 M. ARATÓ ET AL.

such a dependence measure. It works in all metric spaces but we need to pay
the price for that which is computational complexity. Let us see the details.

Distance correlation can be generalized to metric spaces (M, δ) that are
of negative type [84]. A metric space (M, δ) is called of negative type if
the metric possesses the “conditional negative definite” property, namely
that for all integers n ≥ 1 and for all sets of n points xi ∈ M and x′i ∈ M
(i = 1, 2, . . . , n) and for all real numbers a1, a2, . . . , an such that their sum
is 0 we have ∑

i,j

aiajδ(xi, x′i) ≤ 0.

Strong negative type metric spaces satisfy this with equality iff a1 = · · · =
an = 0. However, for the strong negative type property we need somewhat
more, namely for all probability measures μ and ν defined on the Borel sets
of M ∫

δ(x, y) d(μ− ν)2(x, y) ≤ 0

with equality iff μ = ν.
According to a classical theorem of Schoenberg [120,121] a necessary and

sufficient condition for negative type of (M, δ) is that (M,
√
δ) is isomet-

rically embeddable into a Hilbert space. Obviously this property does not
hold for every metric space. When it does then in these “nice” metric spaces
we can apply distance correlation, for all others we need to make new efforts.

We can try to work with functions of δ, say δ∗(δ), that satisfies our
axioms. If the only problem is that the metric is not of strong negative type,
only of negative type then it is easy to find a remedy: take the square root
(or any other power 0 < α < 1) of the metric and this new metric becomes
of strong negative type, see [84].

For arbitrary finite M one can show, see [127], that for a suitably large
number K the new distance δ∗(x, y) = δ(x, y) +K whenever x �= y and 0
otherwise, is always conditionally negative definite. On top of that, this
simple transformation of the metric does not change the unbiased estimator
of dCov which is simply invariant with respect to this additive constant K.

For infinite M there does not always exist a strictly monotone increasing
function δ∗(δ) such that (M, δ∗) is of negative type. Take e.g. two disjoint
infinite sets, A and B, and let M be their union. Define the distance of
two distinct elements to be 1 if they are in different sets, and 2 if they are
in the same set. The function δ∗ must have the following form: δ∗(1) = u ,
δ∗(2) = v, 0 < u < v. Define ai := 1 for n elements of A and ai := −1 for n
elements of B. Then the sum we need to check is n(n− 1)v − n2u, which is
positive for large enough n.

Another approach is this. If all we want from our dependence mea-
sure is to test independence then it is acceptable to change the distances

M. ARATÓ ET AL.10
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in (M, δ) and thus change the distance correlation so long as we do not
change dCor(X,Y ) = 0. If f is an arbitrary 1–1 Borel function on (M, δ)
and X,Y are (M, δ) valued random variables then they are independent iff
f(X), f(Y ) are independent. But every metric space is Borel isomorphic
to a “nice” metric space that is embeddable isomorphically into a Hilbert
space. According to Kuratowski’s theorem two complete separable Borel
spaces are Borel isomorphic iff they have the same cardinality. They are
Borel isomorphic either to R, or to Z or to a finite metric space. Denote
this Borel isomorphism by f . If we can construct it then we can check the
independence of the real valued random variables f(X), f(Y ) via distance
correlation and this is equivalent to testing the independence of X,Y that
take values in general metric spaces. We might want to make f continuous
to avoid the negative effect of minor noise. In this case we can choose f to
be a homeomorphism between our metric space and a subspace of a Hilbert
cube. This f exists if and only if our metric space is separable. Here is how
to construct such an f .

Assume δ ≤ 1 (otherwise, use δ/(δ + 1)). Choose a dense countable se-
quence (xn) from M which exists because the metric space is separable, and
define f(x) := (δ(x, xn)/n)n≥1, a point in the Hilbert cube and here we can
apply distance correlation for testing independence.

These tricks can help to solve some of the problems in testing inde-
pendence but they do not solve the problem of finding a general measure
of dependence applicable to general metric space valued random variables.
The following quantity, called the earth mover’s correlation was introduced
in [96], with the goal to define a dependence measure that applies to the “rest
of the universe” (with one of John von Neumann’s favorite expressions).

First, let us define the population value of the earth mover’s correlation.
Recall the definition of the earth mover’s distance for probability mea-

sures μ, ν on general metric spaces (M, δ). We suppose that the topology of
this metric space and the probability measures on the Borel sets are “compat-
ible”, that is, we suppose that the probability measures are Radon measures
(finite on compact sets, outer regular and inner regular).

Heuristically, if we have two (Radon) probability distributions, μ and ν
on (M, δ) then the earth mover’s distance is the minimum cost of turning
one pile of dust or dirt with distribution μ into the other with distribution ν.
The cost is proportional to the transport distance and also to the amount
of dirt we transport.

This distance was considered by [66,67,92,107,130,133], and many oth-
ers, and in mathematical circles it is typically called Wasserstein distance.
Most statisticians and computer scientists call it earth mover’s distance. On
a recent survey see [97].

RÉNYI 100, QUANTITATIVE AND QUALITATIVE (IN)DEPENDENCE 11
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Denote by P(M) the set of all (Radon) probability measures μ on M.
Suppose that for some x0 ∈ M we have

∫
M

δ(x, x0) dμ(x) < +∞.

Then the earth mover’s distance or Wasserstein distance of the probability
measures μ and ν can be equivalently defined as

e(μ, ν) := inf
γ∈Γ(μ,ν)

∫
M×M

δ(x, y)dγ(x, y),

where Γ(μ, ν) is the set of all possible couplings of probability measures μ
and ν, that is, the set of all joint distributions γ of (X,Y ) with marginal
distributions μ and ν, respectively. Equivalently,

e(μ, ν) = e(X,Y ) := inf
γ∈Γ(μ,ν)

E[δ(X,Y )],

where again the infimum is taken for all joint distributions of (X,Y ) with
marginal distributions μ and ν, respectively.

Mathematically this is not an easy minimization problem to solve. Even
if (M, δ) is an Euclidean space where the transportation cost is the Eu-
clidean distance, the solution is related to the so-called Monge–Ampère dif-
ference equation, see [17,29,30]. For real valued random variables X , Y ,
however, there is a simple formula for the earth mover distance. Denote
F (x) = P(X ≤ x) and G(y) = P(Y ≤ y) the cdf’s of X and Y and consider
their generalized inverses F−1(u), G−1(u), defined as F−1(u) = sup{t : F (t)
≤ u}. Then

e(X,Y ) = E
∣∣F−1(U)−G−1(U)

∣∣
=
∫ 1

0

∣∣F−1(u)−G−1(u)
∣∣ du =

∫ ∞

−∞

∣∣F (t)−G(t)
∣∣ dt.

Define a metric d on the space M×M, e.g. d can be the Manhattan
distance: d

[
(x, y), (u, v)

]
= δ(x, u) + δ(y, v). Then the earth mover’s co-

variance of random variables X,Y taking values in (M, δ) is defined as the
earth mover’s distance between the joint distribution and the product of its
marginals:

(5.1) eCov(X,Y ) = inf
γ∈Γ

Ed
[
(X,Y ), (X ′, Y ′)

]
= e
[
(X,Y ), (X ′, Y ′)

]
,

where Γ is the set of all possible joint distributions of the random variables
X , Y , X ′, Y ′ such that X ′ and X are identically distributed, Y ′ and Y
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are also identically distributed, and X ′, Y ′ are independent (and the joint
distribution of X and Y is given).

In the following we do not really need that d is a Manhattan distance;
what we need is more general, namely that (M×M, d) with a metric d is
a metric space such that

d
[
(x, u), (x, v)

]
= δ(u, v), d

[
(x, u), (y, u)

]
= δ(x, y),

d
[
(x, x), (u, v)

] ≥ δ(u, v).

The following inequality is of Cauchy–Bunyakovsky–Schwarz type:

e2[ (X,Y ), (X ′, Y ′)
] ≤ e

[
(X,X), (X,X ′)

]
e
[
(Y, Y ), (Y, Y ′)

]
,

where X and X ′ are iid, as well as Y and Y ′, and X ′, Y ′ are independent.
In fact, one can show more, namely that

Theorem 5.1 [96].

e
[
(X,Y ), (X ′, Y ′)

] ≤ min
{
e
[
(X,X), (X,X ′)

]
, e
[
(Y, Y ), (Y, Y ′)

]}
.

On the right-hand side, e
[
(X,X), (X,X ′)

]
= eCov(X,X) will be called

the earth mover’s variance and denoted by eVar(X). It can be shown that
the earth mover variance is the same as Gini’s mean difference:

(5.2) eVar(Y ) = Eδ(Y, Y ′),

where Y and Y ′ are iid.
Based on Theorem 5.1 we can now introduce the definition of a new type

of correlation. The earth mover’s correlation of the distributions of X and Y
is defined as

(5.3) eCor(X,Y ) =
eCov(X,Y )

min
{
eVar(X), eVar(Y )

} .

We do not define eCor(X,Y ) when min
{
eVar(X), eVar(Y )

}
= 0.

Remark 5.1. (a) By the previous theorem in the formula for eCor the
denominator min

{
eVar(X), eVar(Y )

}
= min

{
Eδ(X,X ′),Eδ(Y, Y ′)

}
= 0 iff

at least one of X,Y is constant with probability 1. In this case we do not
define eCor. It is interesting to note that for real valued random variables
eVar is easy to compute. It is known, see e.g. [135], that

eVar(X) = 2
∫ ∞

−∞
F (x)(1− F (x)) dx,

where F (x) = P(X ≤ x) is the cdf of the random variable X .

RÉNYI 100, QUANTITATIVE AND QUALITATIVE (IN)DEPENDENCE 13
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(b) Let us apply the Manhattan distance for pairs. Then by the triangle
inequality for δ we have δ(X,X ′) + δ(Y, Y ′) ≥ |δ(X,Y )− δ(X ′, Y ′)|, thus
eCov(X,Y ) ≥ inf

(X′,Y ′)
E
∣∣δ(X,Y )− δ(X ′, Y ′)

∣∣ ≥ ∣∣Eδ(X,Y )− Eδ(X ′, Y ′)
∣∣ .

For an example let us consider dependent indicators. Let X and Y be
indicators, P(X = 1) = 1− P(X = 0) = pX , P(Y = 1) = 1− P(Y = 0) = pY ,
P(X = Y = 1) = pXY . Let us apply the Euclidean metric in R and the Man-
hattan distance for pairs. Then

eCor(X,Y ) =
|pXY − pXpY |

min
{
pX(1− pX), pY (1− pY )

}
see [96, Example 3.4].

The absolute value of Pearson’s correlation for indicators is

|r(X,Y )| = |pXY − pXpY |√
pX(1− pX) pY (1− pY )

thus for indicators X and Y we have |r(X,Y )| ≤ eCor(X,Y ) (and we have
equality iff pX = pY ). Based on this observation one can suspect that
|r(X,Y )| ≤ eCor(X,Y ) for all real valued random variables with finite vari-
ance. This conjecture is also supported by the fact that the independence
of X,Y implies their uncorrelatednes. In the other extreme case when
r(X,Y ) = ±1 we know that Y = f(X) where f is a similarity (here a linear
function) and it can be proved that in this case we have eCor(X,Y ) = 1.

However, this conjecture can easily be disproved. If the joint distribution
of X,Y is bivariate normal, the opposite inequality holds. Namely, in [96] it
is shown that for bivariate normal (X,Y ) with correlation r(X,Y ) = r

eCor(X,Y ) ≤
[
1−

√
1− r2

]1/2
,

which is strictly less than |r|, apart from the trivial cases of r = 0 or r = ±1,
where eCor(X,Y ) = |r|. We conjecture that the inequality above holds with
equality.

Concerning the lower bound of eCor(X,Y ), if σX = σy then Remark
5.1(b) provides the following inequality:

(5.4)
∣∣1−√1− 


∣∣ ≤ eCor(X,Y ).

It seems to be true (though we cannot prove) that in computing the in-
fimum eCov(X,Y ) = inf(X′,Y ′) E

[
δ(X,X ′) + δ(Y, Y ′)

]
, under “general con-

ditions” we can suppose X = X ′ or Y = Y ′. This conjecture is not true
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without some restrictions, because if X and Y are 1–1 functions of each
other then the conjecture would imply that eCor(X,Y ) = 1. Indeed, Y is
a function of X = X ′ thus Y is independent of Y ′. Hence eCov(X,Y ) =
min{eVar(X), eVar(Y )}. Thus in case of continuous marginals the empiri-
cal eCor would always be 1 because for continuous marginals no vertical or
horizontal lines can contain more than one sample points with probability
one. This is, however, not true as is shown by the following sample of four
elements: (1, 4), (2, 2), (3, 3), (4, 1).

It can be proved that this conjecture implies that (5.4) holds with equal-
ity in the bivariate normal case [96].

It is easy to see that eCor as a new measure of dependence satisfies at
least two of our axioms for dependence measures. In metric spaces axiom
(iv) should read as
(iv∗) Δ(X,Y ) is continuous; that is, if for some positive constant K

and x0 ∈ M, y0 ∈ M we have E
(
δ2(Xn, x0) + δ2(Yn, y0)

) ≤ K, n = 1, 2, . . .
and (Xn, Yn) converges weakly (i.e., converges in distribution) to (X,Y ) then
Δ(Xn, Yn) → Δ(X,Y ).

In [96] axioms (i) and (iv∗) are shown to hold. Concerning (ii) and (iii),
only the following weaker versions are proved.
(ii∗) eCor(X,Y ) = eCor(f(X), f(Y )) for every similarity transformation f

of (M, δ).
(iii∗) eCor(X,Y ) = 1 if Y = f(X) with probability 1, where f is a similar-

ity transformation of (M, δ).
In [96] a counterexample is also presented to show that axiom (iii) can-

not be true for eCor in an arbitrary metric space (M, δ). However, it is
conjectured that axiom (iii) is satisfied for Banach spaces valued random
variables.

One can easily define the earth mover’s correlation for more than two
variables. The population version of eCov for three variables is as follows:

eCov(X,Y,Z) = inf
(X′,Y ′,Z′)

Ed
[
(X,Y,Z), (X ′, Y ′, Z ′)

]
.

Here in distribution X = X ′, Y = Y ′, Z = Z ′, and X ′, Y ′, Z ′ are inde-
pendent, and we take the inf over all joint distributions of (X,Y,Z)
and (X ′, Y ′, Z ′).

The population version of the three-variate earth mover’s correlation is

eCor(X,Y,Z) =
eCov(X,Y,Z)

min
{
eVar(X), eVar(Y ), eVar(Z)

} .

Thus we have a natural measure for mutual dependence of more than
two random variables.

Let us turn to the empirical version of eCov.
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The earth mover’s metric suggests the following earth mover’s distance
definition between two sequences x := (x1, x2, . . . , xn) and y := (y1, y2, . . . , yn):

E(x, y) := inf
π

n∑
i=1

δ(xi, yπ(i)),

where the infimum is taken for all permutation π on the integers 1, . . . , n.
One can easily see that for real valued data, if the ordered sample is denoted
by subscripts in brackets, then

E(x, y) :=
n∑

i=1

|x(i) − y(i)|.

The empirical version of eCov is the minimum transportation cost be-
tween the following two mass distributions or probability distributions:

(Q1) 1/n mass at each point (xi, yi), i = 1, 2, . . . , n
and

(Q2) 1/n2 mass at each point (xi, yj), i, j = 1, 2, . . . , n.
It is easy to see that the empirical eVar is the arithmetic average of the

distances δ(xi, xj) because the cost to transport 1/n2 mass from the point
(xi, xj) to the main diagonal (x, x) is at least δ(xi, xj)/n2 and we can achieve
this via “horizontal” transportation only. This is not the case if we want
to transport to n general points, not necessarily on the main diagonal. The
“naive” computational complexity of the empirical eVar which is essentially
Gini’s mean difference is O(n2) but for real valued random variables we can
decrease it to O(n logn).

The complexity of the computation of the empirical eCov is less obvious.
Our transportation problem can be reduced to an assignment problem

between two sets of n2 points, thus according to the “Hungarian algorithm”
[81] this optimization can be solved in polynomial time. It was shown by
[41] and [128] that the algorithmic complexity of assignment problem for two
sets of n points is O(n3) thus in our case the complexity can be reduced to
O(n6).

This is not very encouraging. A better complexity, O(n3 log2 n), is in
[70]. Here the authors show that for the (linear) transportation problem
with m supply nodes, n demand nodes and k feasible arcs there is an al-
gorithm which runs in time proportional to m logm(k + n log n) assuming
without loss of generality that m ≥ n, still at least one order of magnitude
worse than the algorithmic complexity, O(n2), of computing the distance
covariance or the distance correlation. This is the price we need to pay for
the generality of eCov and eCor. The AMPL (A Mathematical Program-
ming Language) code is easy to apply for computing empirical eCov and
then eCor. In [2] it was shown that given n random blue and n random red
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points on the unit square, the transportation cost between them is typically√
n log n. Our problem is to find the optimal transportation costs when the

distance is the Manhattan distance and the number of red points is differ-
ent from the number of blue points (the total mass is the same). A recent
paper of Agarwal et al. [1] suggests that our task of computing the earth
mover’s distance between two sets of size n2 can be done with the first al-
gorithm in the cited paper with O(log2(1/ε)) approximation error bound in
O(n2+ε) steps, for any ε > 0. On related algorithmic optimizations see [4,5].

6. Representations by uncorrelated random variables

Let X = (X1,X2, . . . ,Xn) be an arbitrary random vector where the co-
ordinates Xi, i = 1, 2, . . . , n have finite variances. Then we can diagonalize
the covariance matrix of X and thus we can find a linear transformation
A such that Y = AX becomes a random vector with uncorrelated coordi-
nates. If the inverse A−1 exists then X = A−1Y is a representation of X
with the help of uncorrelated random variables. But here Y is a mixture of
the X coordinates and in many cases we cannot interpret these mixtures,
e.g., if X1 is the squared velocity and X2 is the mass. Instead, let us con-
sider representations that are univariate functions of the coordinates, not
their mixtures. The idea that estimators of unrelated parameters should be
unrelated (in some sense) is an old problem. The most natural notion of
“unrelatedness” is independence. A classical theorem is that the maximum
likelihood estimators of the mean and variance of a Gaussian distribution are
independent. See [64] for many related results. Another classical approach is
the parameter orthogonality, see [33]. In what follows unrelatedness means
uncorrelatedness.

Theorem 6.1 [94]. Every random vector X = (X1, . . . ,Xn) can be rep-
resented as functions of uncorrelated random variables Y1, . . . , Yn, i.e., we
can always find R → R functions f1, . . . , fn such that (X1, . . . ,Xn) has the
same distribution as (f1(Y1), , . . . , fn(Yn)).

The functions fi, i = 1, 2, . . . , n cannot always be one-to-one because [93]
can be reformulated as follows.

Theorem 6.2 [93]. A necessary and sufficient condition for random
variables X1,X2 not to have the same distribution as f1(Y1), f2(Y2) where Y1
and Y2 are uncorrelated random variables and f1, f2 are one-to-one functions
is that Xi, i = 1, 2 have the representation (equality in distribution)

Xi = Zi + ciVi �(Zi = bi), i = 1, 2,

where �(·) denotes the indicator of the event in brackets, V1 and V2 are de-
pendent (correlated) indicator functions, Z1, Z2, (V1, V2) are independent, bi
and ci are real numbers, ci �= 0, and P(Zi = bi) > 0, i = 1, 2.
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On the other hand, the following proposition shows that with very few
exceptions for all random variables X one can find a 1–1 real function f
such that X and f(X) are uncorrelated.

Theorem 6.3 [95]. Let X be a square integrable random variable defined

on an arbitrary probability space. Suppose the distribution of X is not con-
centrated on three or less points. Then there exists a measurable injective

function f : R → R such that X and f(X) are uncorrelated. This f can be
chosen piecewise linear.

Such an f cannot exist if X takes on exactly two values, because in this

case uncorrelatedness is equivalent to independence. When the distribution
of X is supported on exactly 3 points then a necessary and sufficient condi-

tion for f to exist is P(X = EX) = 0.

This is another reason for not assuming 1–1 invariance of Δ in axiom (ii).
The 1–1 invariance would imply the existence of many uncorrelated random
variables X,Y for which Δ(X,Y ) = 1, which is counterintuitive.

Theorem 6.4 [94]. Let X1, . . . ,Xn be arbitrary random variables with

zero means, finite variances, and absolutely continuous distributions. Then
there exist Borel sets Bi ⊂ R+, i = 1, . . . , n, such that if we define fi(t) = −t
for |t| ∈ Bi, and fi(t) = t otherwise, then the random variables Yi := fi(Xi)
are uncorrelated, E(Yi) = 0 and Var(Yi) = Var(Xi). Since the functions fi
are idempotent (fi(fi(x)) = x), we have that Xi = fi(Yi) is a one-to-one

piecewise linear function of uncorrelated random variables.

The next result on bivariate Gaussian vectors is already folklore.

Proposition 6.1. Let (X1,X2) be and arbitrary bivariate normal ran-
dom variable with standard marginals. Then the one-to-one and piecewise

linear function f(x) = x for |x| ≥ c and f(x) = −x for |x| < c with a suit-
able constant c = 1.539 . . . makes X1 and f(X2) uncorrelated, and (X1,X2)
≡ (X1, f(f(X2)). Here the function does not depend on the correlation of X1
and X2.

Can this result be generalized to n-variate Gaussian random variables?
For this generalization one would need a partition of the set of positive in-
tegers into n disjoint subset Ni such that if Hk denotes the k-th Hermite
polynomial, that is, H0(x) ≡ 1, and Hk(x)n(x) = (−1)k( d

dx)
kn(x), k ≥ 1,

where n(x) = (2π)−1/2e−x2/2 denotes the standard normal p.d.f., then

fi(x) :=
∑
k∈Ni

akiHk(x)

is a one-to-one function for i = 1, 2, . . . , n. The explanation is given in the
following theorem.
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Theorem 6.5 [94]. Let (X1, . . . ,Xn) be an arbitrary n-variate Gaussian
random variable with standard marginals. Then fi(Xi), i = 1, . . . , n, are un-
correlated regardless of the correlation of the X variables if and only if the set
of positive integers can be partitioned into n disjoint subsets Ni, i = 1, . . . , n,
such that the Hermite expansion of fi(x) only contains terms Hk(x) with
indices from Ni, that is,

fi(x) =
∑
k∈Ni

akiHk(x).

In case n = 2, the partition N1 = {1}, N2 = {2, 3, . . . } will do (as we
have seen above), but at the moment we do not know if there exist n one-
to-one functions fi with the property above for n > 2. This seems to be an
interesting open problem.

7. Tests for multivariate independence

Testing for independence between components (coordinates) of random
vectors is one of the most classical problems in multivariate statistics. It has
almost innumerable applications in economics, finance, life sciences, geology
and other fields. The importance of the topic has grown especially since cop-
ula methods have gained popularity. This is because, in fact, any study based
on copulas should be preceded by a test of independence with respect to all
components of the observed vectors because completely different methods
have to be used to investigate vectors with independent coordinates. An-
other potentially important statistical application is the time series analysis.
For example, in the dynamic factor analysis (see [21]) it is essential that the
estimated factors show independent behavior.

In this section our random vectors are p-dimensional with a continuous
distribution function. Assume that we have N iid observations:

ξ
i
= (ξi,1, . . . , ξi,p), i = 1, 2, . . . ,N,

and let

G(x) = P(ξi,1 ≤ x1, . . . , ξi,p ≤ xp), Fj(x) = P(ξi,j ≤ x), j = 1, . . . , p,

for all i. Our hypothesis of independence

H0 : G(x) = F1(x1) · . . . · Fp(xp)

is to be tested against the alternative

H1 : G(x) �= F1(x1) · . . . · Fp(xp)

for at least one x.
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A natural approach is to find a measure for mutual dependence with
“good” properties for random vectors and use this measure of dependence
to construct our test statistic. The so called eCor introduced in the previous
section is a suitable candidate for this measure.

The basic question of this approach lies in the properties that are re-
quired for the measure. We suggest the application of the new axioms in-
troduced in Section 3 that provide an appropriate basis for tackling these
questions. The underlying axioms of course should be reformulated for more
than two variables. Another way to study the properties of the measure of
dependence is based on copulas. Schmid et al. refer to these measures as
association measures and list several possible good properties [119].

Here we only selected two mutual dependence measures that are fre-
quently used to construct independence tests. The first one is the so-called
dCor mentioned earlier, for details see [8]. The other measure is the so-called
total distance multivariance described by [25] which is also included in the
Multivariance R package for an independence test. An interesting attempt
could be to generalize the kernel-based independence measure developed in
[54] to several variables.

The above methods were well preceded in time by the approach that
measures the difference between the empirical distribution function GN of G
and the product of the marginal empirical distribution functions FN,j :

GGN (x) :=
√
N

(
GN (x)−

p∏
j=1

FN,j(xj)
)
.

Blum et al. [20] used the Cramér–von Mises statistic derived from the process
GGN ∫

GG2
N dGN ,

and computed the limiting distribution of this statistic for p = 2. They
pointed out the complexity of the GG process and determined the following
useful decomposition:

GGN (x) =
∑

A⊂{1,...,p},|A|>1

GA,N(x)
∏

j∈{1,...,p}\A

FN,j(xj),

where

GA,N(x) =
1√
N

N∑
i=1

∏
i∈A

(
�(ξi,j ≤ xj)− FN,j(xj)

)
.

The GA statistics or the combinations thereof could be used for testing mu-
tual independence. Note, however, that their limiting distributions depend
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on the marginals. Tests based on empirical characteristic functions, max-
imum variance statistics, and the exact boundary distribution of the test
statistic can be found in [35].

The basic idea of tests most commonly used recently is that the inde-
pendence hypothesis should be replaced by its copula counterpart

G(x) = F1(x1) · · ·Fp(xp) ⇐⇒ C(u1, . . . , up) =
p∏

i=1

ui,

where C is the copula of G:

G(x) = C(F1(x1), . . . , Fp(xp).

Deheuvels [36] suggested to replace the original observations ξ1, . . . , ξN by
their associated rank vectors

Ri,j =
N∑
l=1

�(ξl,j ≤ ξi,j)

and the empirical distribution function GN by the empirical copula

CN (u) =
1
N

N∑
i=1

p∏
j=1

�(Ri,j ≤ Nuj).

Deheuvels computed the limiting distribution of the copula process

CCN (u) =
√
N

(
CN (u)−

p∏
j=1

uj

)
.

Genest et al. [49] investigated the behavior of the CCN -based Cramér–von
Mises statistic and the rank analogues of GA,N . This paper computed power
comparisons for different tests of mutual independence.

In the following, we propose a new test whose power turned out to be
very good in our simulation studies. Introduce the rank vectors

Ri = (Ri,1, . . . , Ri,p), i = 1, . . . ,N.

In our test we will use the vectors

R1/(N + 1), . . . , RN/(N + 1).

These vectors, we will simply refer to them as observations, are all lo-
cated in a p-dimensional unit cube. We will test how the location of obser-
vations obtained from vectors with independent coordinates differs from the
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location of observations obtained from vectors with non-independent coordi-
nates. Our basic idea is very simple: a p-dimensional vector (with values in
(0, 1)p) divides the p-dimensional unit cube into 2p parts and we can detect
how many observations fall into each part.

Our procedure is as follows.
(1) Simulate p-dimensional random vectors with iid U(0, 1) marginals K

times. ⇒ We have K different partitions of the unit cube.
(2) For each part determine the probability that the random vector with

independent uniform marginals on 1
N+1 , . . . ,

N
N+1 is included in that partic-

ular part.
(3) Save the partitions and probabilities.
(4) Calculate the Kullback–Leibler divergence

D(s‖q) =
2p∑
�=1

s� log
(s�
q�

)

of the observed (s) and expected (q) frequencies for each of the K partitions.
(5) Multiply the sample via permuting the coordinates and then compute

how many of these new vectors fall into the partitions of the unit cube.
(6) Calculate the mean of the divergences. This is our test statistic.
(7) The critical values of the test are computed by generating M samples

(of size N ) with independent marginals.
In simulation studies the power of the tests is usually computed by using

well-known copulas. In part, we also followed this procedure, using Gauss
and Clayton

Cθ(u) =
( p∑

j=1

u−θ
j − p+ 1

)−1/θ

as well as Gumbel

Cθ(u) = exp
(
−[(− log u1)θ + · · · + (− log up)θ

]1/θ)

copulas.
However, we consider it equally important to use different conditional

distributions for which the dependence is eventually even more apparent.
One of our suggestions is the conditional exponential model. We generate
ξ1, . . . , ξp independent exponentially distributed variables with parameter 1,
but under the condition that ξ1 + · · · + ξp < v. In this case, it is clear that
the smaller the value of v, the stronger the dependence. Not all features of
this model are easy to determine; however, the pairwise correlation can be
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accurately described. Let Sk = ξ1 + · · · + ξk, then

corr(ξ1, ξ2 | Sp < v) = 1− P(Sp+2 < v)P(Sp < v)
2P(Sp+2 < v)P(Sp < v)− P(Sp+1 < v)2

.

The simulation study was performed by the R 3.6.2 statistical software pack-
age [106]. Our test was compared with the tests in the Copula R package
[77]. These can be done using the so-called indepTest function. We utilized
the fisher.pvalue, a p-value resulting from a combination à la Fisher of the
subset statistic p-values, the tippett.pvalue, a p-value resulting from a com-
bination à la Tippett of the subset statistic p-values, and the global.statistic,
value of the global Cramér–von Mises statistic derived directly from the in-
dependence empirical copula process (see [49]).

The dimension p of our random vectors was 3 and 5, respectively, and
the sample size was N = 100. Critical values for both the new test and the
indepTest function were computed from 1000 experiments. The power of the
tests at the 5% level was also estimated based on 1000 trials. In our new
test, we divided the unit cube K = 2000 times into 23 = 8 and 25 = 32 parts,
respectively.

For dependent exponentials, the cuts were v = 3,4, . . . ,10. For the Gum-
bel, Clayton, and Gauss copulas, we considered cases where the Kendall’s τ
coefficient was 0.05, 0.1, 0.15, and 0.2, respectively.

Table 1 summarizes the power of the tests multiplied by 1000. In the
table we can see that the proposed new test produces better results in essen-
tially all cases. This is particularly evident in moderately dependent cases,
such as the conditional exponential model for v = 3 and 4 and the copula
for τ = 0.15.

We can experience a very similar situation in dimension p = 5. Table 2
shows that the new test always performs better than the previously devel-
oped tests especially in the case τ = 0.1.

In the future, we plan to compare our test with further tests and deter-
mine the limiting distribution of our statistics.

8. Qualitative independence in finite sets

Let Ω be a finite set of n elements. The following notion was introduced
by Marczewski [88]. The subsets A,B ⊂ Ω are called qualitatively indepen-
dent (QI) if they divide Ω into four non-empty parts that is A ∩ B, Ā ∩B,
A ∩ B̄, Ā ∩ B̄ are all non-empty. Of course, in the language of probability
theory A and B are events in the probability space Ω. The significance of
this notion in search theory lies in the consequence that after knowing if an
unknown x is in A or not, in both cases, x may be in B or in B̄. In other
words, all the 4 pairs of answers may happen. In terms of probability the-
ory, neither the occurrence nor the non-occurrence of the event A implies
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the occurrence or the non-occurrence of the event B. The family F ⊂ 2Ω is
called qualitatively independent if their members are pairwise qualitatively
independent. Rényi asked in his seminar (later in his book [115]) the ques-
tion what is the maximum size of a qualitatively independent family in an
n-element set. The answer was found by one of the present authors in [68].
Later it turned out that several authors found the same result, around the
same time, with different motivations and formulations: Brace and Daykin
[26], Bollobás [22] and Kleitman and Spencer [71] (see also the closely related
result of [122]).

Theorem 8.1 [22,26,68,71]. The maximum number of pairwise qualita-
tively independent sets in an n-element set is

(
n− 1
�n2 �

)
.

A simple proof, using the cycle method was found in [9].
In fact, Kleitman and Spencer asked and asymptotically solved a more

general problem. They introduced the notion of k-qualitative independence.
A family F ⊂ 2Ω is called k-qualitatively independent iff

k⋂
i=1

Aεi
i �= ∅

holds for any choice of distinct A1, . . . , Ak ∈ F and εi = 0, 1, where A0 = A,
A1 = Ā, that is, when any k members divide Ω into 2k non-empty parts.
The probabilistic interpretation of this condition is that knowing for any
k − 1 of the events (members of the family) which one occurred and which
one did not, in all 2k−1 cases the kth event may or may not occur.

Let f(n, k) denote the maximum size of a k-qualitatively independent
family. The following theorem was proved.

Theorem 8.2 (Kleitman and Spencer [71]).

2c12
−kk−1n ≤ f(n, k) ≤ 2c22

−kn.

Noga Alon [3] gave an explicit construction.
However, in his book [115], Rényi actually asked a more general question.

A set A ⊂ Ω defines a partition (A, Ā). This is generalized in the following
way. Consider partitions (U1, U2, . . . , Ur) of Ω into r parts, in other words,
r-partitions. Two r-partitions (U1, U2, . . . , Ur) and (V1, V2, . . . , Vr) are called
qualitative independent, if all the r2 intersections Ui ∩ Vj of the classes are
non-empty. Of course, such a partition can be identified with a random vari-
able. Two such partitions are qualitatively independent iff the corresponding
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random variables ξ and η possess the following property: whatever is the
value of ξ, all the r values are possible for η. The maximum number of
pairwise qualitatively independent r-partitions is denoted by g(n, r).

It should be mentioned that Poljak and Rödl [102] independently intro-
duced the same concept under the name orthogonal partition and rediscov-
ered Theorem 8.1. The paper [101] shows the connection of this problem to
several other problems in combinatorics and graph theory.

An important development was the following theorem of Poljak and Tuza
[103].

Theorem 8.3. We have

g(n, r) ≤ 1
2

(�2n
r �

�nr �
)
.

Observe that this upper bound coincides with the exact value in Theo-
rem 8.1 if n is even. Improvements of the lower bound were obtained in the
same paper and by Körner and Simonyi [80], and Gargano, Körner and Vac-
caro [47]. Since the value of g(n, r) is exponential in n and an exact formula
for it in the case r ≥ 3 is hopeless, it is sufficient to consider the exponent:

qr = lim sup
n→∞

1
n
log g(n, r).

Theorem 8.3 gives the upper bound qr ≤ 2
r . The lower estimate of [103] was

weaker. With strong techniques borrowed from information theory Gargano,
Körner and Vaccaro succeeded to prove that the upper estimate is sharp.

Theorem 8.4 (Gargano, Körner and Vaccaro [48]). qr = 2
r (2 ≤ r).

The difficulty of the problem is illustrated by the fact that the analo-
gous problem for the case when every three r-partitions are qualitatively
independent is still unsolved. But there are other possible generalizations.

Körner and Monti [79] suggested a weakening of the problem. Three
qualitatively independent sets (equivalently, 2-partitions) divide Ω into 8
non-empty sets. If it is only supposed that at least 6 out of 8 parts are non-
empty, we say that the family is 6

8 or 3
4 -qualitatively independent. [79] gives

good estimates on the size of the largest such family.
There is another weakening. Suppose that there is a qualitatively in-

dependent pair A,B among any m members of the family F ⊂ 2Ω. Then
the family is called an m-weak qualitatively independent family. As an ex-
ample look at the family of all n

2 -element subsets. In this family there are
complementing pairs of members, that is, it is not qualitative independent.
Choosing 3 members, two of them must be qualitatively independent, that
is, this family is 3-weak qualitatively independent. Balázs in [9] proved that
the size of an m-weak qualitatively independent family cannot exceed the
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sum of the m−1
2 largest binomial coefficients of order n if m is odd and this

estimate is sharp when 3m−1
2 ≤ n. The case m is even is not completely

settled, only good estimates are given in [9].
The following one is a strengthening of the condition. A family S ⊂ 2Ω

is s-strongly separating iff all four intersections A∩B, A ∩ B̄, Ā ∩B, Ā ∩ B̄
are of size at least s for any two distinct members A,B ∈ S . In terms of
probability theory we suppose not only that all four combinations of the two
events occur, but they occur with probability at least s

n . The maximum size
of an s-strongly separating family is denoted by h(n, s). Its determination
was proposed in [69]. It has been asymptotically answered by Frankl for
fixed s.

Theorem 8.5 (Frankl [45]).

d1(s)
2n

ns− 1

2

≤ h(n, s) ≤ d2(s)
2n

ns− 1

2

where

d1(s) =

√
2
π

1
2s

− ε and d2(s) =

√
2
π
2s−2(s− 1)! + ε.

The situation is very different when s is about pn where p is a fixed pos-
itive (≤ 1

4 ) number. Let us start with a very special case. Suppose that n is
divisible by 4 and s = n

4 . Let S be an n
4 -strongly separating family. Then

A,B ∈ S (A �= B) divide Ω into four equal parts of size n
4 each. Associate

a vector with coordinates 1,−1 with a member A of S writing 1 in the ith
position iff the ith element of Ω is in A. Denote the vectors obtained in this
way from the members of S by v1, v2, . . . , vm. It is easy to see that the in-
ner product vivj is 0 for 1 ≤ i < j ≤ m. Let v0 have 1’s in each coordinate.
Then v0vi = 0 also holds (1 ≤ i ≤ m). That is, v0, v1, . . . vm are pairwise
orthogonal vectors in an n-dimensional space. We obtained the following
statement.

Proposition 8.1. Let n be divisible by 4. Then

h
(
n,

n

4

)
≤ n− 1

with equality iff there is a Hadamard matrix of order n.

For general p we have the following upper bound.

Theorem 8.6 [69]. Suppose that 0 < p < 0.099, then

h(n, pn) ≤ 2n
(
− 1

2
log p−1.099

)
+o(n).
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Unfortunately, the method applied in [69] does not work for the cases
0.099 < p < 1

4 . No reasonable lower bound is known.
Combining all the problems above we arrive to the following general

question. Let M(n, r, k, s) be the maximum number of r-partitions of an
n-element set under the condition that any k of these partitions divide the
underlying set into rk parts, each of them having size at least s. Give good
estimates on M(n, r, k, s).

A closely related problem was formulated in [69]. The “distance” be-
tween two subsets (2-partitions) is given now by the entropy. For a pair
A,B of subsets define the probabilities

p1 =
|A ∩B|

n
, p2 =

|Ā ∩B|
n

, p3 =
|A ∩ B̄|

n
, p4 =

|Ā ∩ B̄|
n

and then the entropy of the pair:

H(A,B) = H(p1, p2, p3, p4) =
4∑

i=1

(−pi) log pi

where p log p is defined to be 0 for p = 0. Find the maximum size of a fam-
ily F of subsets satisfying q ≤ H(A,B) for every pair of distinct members
of F .

9. Qualitative conditional independence of finite partitions

Under Qualitative Independence (QI) of two algebras (families of subsets
of a set, containing the empty set and closed under complements and finite
unions and intersections), an extension of measures given on them to the
generated algebra is always possible. The generated measure is of a product
structure. In this section, existence of product extensions of measures given
on algebras or only on some sets are investigated. The underlying space is
assumed to be finite and nonempty sets are assumed to have positive mea-
sures. The developments reported here are partly motivated by statistical
applications, some of which are also presented.

Let Ω be a set and let A and B be algebras of subsests of Ω, both gen-
erated by finite partitions. Then C = A∩B is also an algebra of sets, and it
is also generated by a finite partition of Ω.

In [16] the following definition was given: A and B are qualitatively con-
ditionally independent (QCI), if for every ∅ �= A ∈ A and ∅ �= B ∈ B, such
that A ∩B = ∅, there exists a C ∈ C such that

(9.1) A ⊆ C and B ⊆ Cc.

If A and B are such that C = {∅,Ω}, then QCI of A and B implies QI.
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Let P be a measure on A, and Q be a measure on B. P and Q are called
weakly compatible, if P (C) = Q(C) for all C ∈ C. Because of the finite al-
gebras considered, measures are assumed to be finitely additive only. Let
(A∪ B) denote the smallest algebra containig A and B. As the intersection
of algebras is an algbra, (A∪B) exists. A measure R on (A∪B) is called an
extension of P and Q, if R(A) = P (A) for all A ∈ A and R(B) = Q(B) for all
B ∈ B. If such an extension exists, P and Q are called strongly compatible.

Then one has the the following result.

Theorem 9.1 [16]. The following statements are equivalent :
(i) The algebras A and B are QCI.
(ii) If two measures defined on A and B are weakly compatible, then they

are also strongly compatible.

Two algebras need to be QCI, indeed, for the existence of an extension
for all pairs of (weakly compatible) measures. For instance, if Ω = {1, 2, 3},
and A is generated by the partition {{1}, {2, 3}}, and B is generated by the
partition {{1, 2}, {3}}, then a P with P (1) = 0.6 and a Q with Q(3) = 0.6,
with P (1, 2, 3) = Q(1, 2, 3) = 1, cannot have a common extension. Such an
example may always be constructed, whenever QCI does not hold.

The generated algebra (A∪ B) has atoms of the form A ∩B, where A
and B are atoms of the respective algebras. For every atom A, there is an
atom CA of C, which contains A. Indeed, otherwise ∅ �= A ∩ C � A would
hold for some atom C of C, but then A could not be an atom of A. Sim-
ilarly, an atom CB of C contains B. If CA �= CB , then A ∩B = ∅ and set
R(A ∩B) = 0. Otherwise, CA = CB and

R(A ∩B) = P (A|CA)Q(B|CB)P (CA) = P (A|CA)Q(B|CB)Q(CB)(9.2)

It was shown in [16] that R defines a finitely additive measure on (A ∪ B)
which extends both P and Q. When QCI is QI, under the extension ob-
tained, A and B are independent.

The concept of QCI includes the traditional product case. To see this,
let A′, B′, C′ be finitely generated algebras of subsets of Ω. Define

A = A′ × C′ × Ω, B = Ω× C′ × B′.

The algebras A and B defined above are QCI, with

A ∩ B = Ω× C′ × Ω.

The results above extend to several algebras on the same space. Let Ω
be an arbitrary set and for i = 1, . . . , k, let Ai be an algebra of subsets of Ω
generated by a finite partition. Call the algebras decomposable, if there is
an order Ai1 ,Ai2 , . . . ,Aik , such that for every j ≥ 2,

(Ai1 ∪ · · · ∪ Aij−1
) and Aij are QCI
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and there is an i1 ≤ il ≤ ij−1, such that

(Ai1 ∪ · · · ∪ Aij−1
) ∩ Aij = Ail ∩ Aij .

Then, one has the following result.

Proposition 9.1. Let the algebras Ai, i = 1, . . . , k, be such that none
of them is a subalgebra of another one. Let the algebras be decomposable and
let the measures Pi be given on Ai such that on the intersection of any two
algebras the given measures coincide. Then there exists a common extension
of all these measures to (A1 ∪ · · · ∪ Ak).

Proof. The proof is straightforward induction on k. For k = 2, Theo-
rem 9.1 implies the result. Theorem 9.1 also applies in the induction step.
�

That QCI is needed for the existence of extension of all weakly compat-
ible measures, was shown above. But pairwise QCI is not sufficient in the
product case, which is implied by the known counterexample for a three-
dimensional space, see, e.g., [18].

The measure R in (9.2) may also be written in a product form as

R(A ∩B) = P (A|CA)
√
P (CA)Q(B|CB)

√
P (CB)(9.3)

= hA(A,CA)hB(B,CB),

with functions hA, depending on A and hB, depending on B.
In the sequel, the existence of an extension will be assumed, and exis-

tence and properties of multiplicative extensions generalizing (9.3) are in-
vestigated.

Families of distributions which generalize (9.3) on product spaces play
an important role in statistical analysis. The related statistical models are
usually defined on a product space generated by ranges of discrete (finitely
generated) variables and there is a graph given, where the nodes are the
variables. Each of the functions that enter the representation, like hA and hB

in (9.3), depends on variables which are cliques, that is, maximal complete
subgraphs of the graph. A distribution with this structure is called Gibbsian
with respect to the graph. A distribution is called Markovian with respect to
a graph, if it has conditional independence (Markov) properties which can be
read off from the graph. These Markov properties generalize the conditional
independence in (9.2). A celebrated result, called the Hammersley–Clifford
theorem, is that a distribution is Markovian, if and only if it is Gibbsian,
see, e.g., [82] or [118].

Similar structures may also be defined when the underlying space is not
a Cartesian product, and instead of variables, one has finitely generated al-
gebras of subsets. A further generalization to be considered is when, instead
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of measures on algebras, the probabilities of selected subsets are specified,
to be extended to a measure on the generated algebra. First, two examples
are presented.

Example 9.1. Let the elements of Ω be denoted by numbers and let
Ω = {1, 2, 3, 4}. Set

A = {∅, {1, 2}, {3, 4},Ω}, B = {∅, {1, 3}, {2, 4},Ω}.

Then, the two algebras are QI and the atoms of the generated algebra are
the elements of Ω. A probability distribution on Ω may be defined as

(9.4) logP (i) = fA(i) + gB(i),

where fA(i) depends on the atom A of A, which contains i, in the sense
that if i, j ∈ A, then fA(i) = fA(j) and similarly for gB(i). The values of the
functions fA and gB for the respective atoms may be seen as parameters in
the representation (9.4). The distribution P may be written as

(9.5)

⎛
⎜⎝
logP (1)
logP (2)
logP (3)
logP (4)

⎞
⎟⎠ =

⎛
⎜⎝
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1

⎞
⎟⎠
⎛
⎜⎜⎝
f{1,2}
f{3,4}
g{1,3}
g{2,4}

⎞
⎟⎟⎠

An overparameterized version is obtained by including a parameter o
present everywhere, called the overall effect:

⎛
⎜⎝
logP (1)
logP (2)
logP (3)
logP (4)

⎞
⎟⎠ =

⎛
⎜⎝
1 1 0 1 0
1 1 0 0 1
1 0 1 1 0
1 0 1 0 1

⎞
⎟⎠
⎛
⎜⎜⎜⎝

o
f{1,2}
f{3,4}
g{1,3}
g{2,4}

⎞
⎟⎟⎟⎠

This overparameterized version makes it possible to balance the parameters
in the sense of assuming that

f{1,2} + f{3,4} = 0 and g{1,3} + g{2,4} = 0.

The so called corner parameterization of the same family of distributions is

(9.6)

⎛
⎜⎝
logP (1)
logP (2)
logP (3)
logP (4)

⎞
⎟⎠ =

⎛
⎜⎝
1 1 1
1 1 0
1 0 1
1 0 0

⎞
⎟⎠
⎛
⎝ o
e{1,2}
e{1,3}

⎞
⎠
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Let now a probability measure S be given on Ω. Then, in all of the
parametrizations, the parameters may be selected in such a way that

(9.7)
{
P (1, 2) = S(1, 2), P (3, 4) = S(3, 4),
P (1, 3) = S(1, 3), P (2, 4) = S(2, 4).

Thus, P is the independent extension of the restrictions implied by S to A
and to B , which always exists because the two algebras are QI. Such an
independent distribution is characterized by the following odds ratio (see,
e.g., [118]) being equal to 1:

P (1)P (4)
P (2)P (3)

= 1.

The next example illustrates the situation when QI does not hold.

Example 9.2. In this example, Ω = {1, 2, 3}. Set
A = {∅, {1, 2}, {3},Ω}, B = {∅, {1, 3}, {2},Ω}.

In this case, the corner parametrization like the one in (9.6)⎛
⎝logP (1)
logP (2)
logP (3)

⎞
⎠ =

⎛
⎝1 1 1
1 1 0
1 0 1

⎞
⎠
⎛
⎝ o
e{1,2}
e{1,3}

⎞
⎠

is not restrictive as it has 3 parameters for the 3 probabilities. If a measure S
is given on Ω, similarly to (9.7),

(9.8) P (1, 2) = S(1, 2), P (1, 3) = S(1, 3),
may be achieved.

If one makes the model restrictive by omitting the overall effect

(9.9)

⎛
⎝logP (1)
logP (2)
logP (3)

⎞
⎠ =

⎛
⎝1 1
1 0
0 1

⎞
⎠(e{1,2}

e{1,3}

)

then (9.8) cannot be achieved. Instead, one has

P (1, 2) = λS(1, 2), P (1, 3) = λS(1, 3),
for some positive λ.

In the case of distributions of the form (9.9), instead of the odds ratio
being equal to 1, one has

P (1)
P (2)P (3)

= 1.

This is a non-homogeneous generalization of the odds ratio, see [72].
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While the space in Example 9.1 may be seen as generalizing the product
structure because of QI, the space in Example 9.2 is not of a product nature
and it can be seen as an incomplete Cartesian product, see Table 3. Such
data structures occur often in statistical problems, for instance in the anal-
ysis of register data, see [76]. In a register, data about relevant events, like
a baby being born with one or more congenital abnormalities or a driver be-
ing fined for one or several violations or an online purchase of one or several
goods being made by a customer, are collected. Each record in a register de-
scribes an event and contains which features (abnormalities or violations or
goods) are present. A fundamental characteristic of such registers is that ev-
ery record has at least 1 feature present, otherwise, there would be no event
to be entered into the registry, see [76]. Therefore, the summary structure
where the frequencies of every feature combination may be recorded is an in-
complete Cartesian product, and the pairs of algebras generated by the lack
or presence of each feature are not QI. Example 9.2 is a minimal illustra-
tion of such a structure with 2 features. In Table 3, cell 1 counts the cases
where both features are present, cell 2 counts the cases when only feature A
is present and cell 3 counts the cases when only feature B is present.

Relevant statistical models, see [76], may associate effects with a feature
present, but no effect is implied if a feature is not present. A straightforward
justification for considering such structures is parsimony. Every record in a
register is characterized by many possible features. For instance, an online
store may have 10000 different items for sale, but perhaps 99.99% of the
purchases contain not more than 10 goods. If effects are only associated
with the features present, that is goods purchased, the probability of most
purchases would be modeled with 10 parameters (and possible interactions).
If effects are also associated with the features not present, one would have
10000 parameters in every cell (plus possible interactions), which would not
lead to useful simplifications. In Example 9.2, the 2 parameters in (9.9) are
the effects associated with each of the features present.

In a general formulation of this problem, let Ω be a finite set and let I
be its elements arranged in a vector. Probability distributions on Ω of the
following form are considered:

(9.10) logP(I) = Aβ,

where P(I) is the vector of probabilities, A is a design matrix, β is a vec-
tor of parameters. The design matrix is a 0−1 matrix, with at least one 1
in every row. The family of distributions in (9.10) generalizes the usual log-
linear model, see [19] or [118], in three aspects. The space Ω is not assumed
to be a Cartesian product, the parameters β are not assumed to be asso-
ciated with groups of variables, and an overall effect is not assumed to be
present. In particular, the model in (9.10) generalizes (9.3).
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The distributions in (9.10) are said to have an overall effect, if the col-
umn space of A contains the vector of 1’s. In this case, the model may be
reparameterized to have a parameter present in every cell, like the parameter
o in (9.6). Such a reparameterization of (9.9) is not possible.

Let now aj , j = 1, . . . , k denote the columns of the design matrix A.
Each of these vectors may be interpreted as the indicator vector of a subset
of Ω. If A contains an overall effect, some of these subsets may be seen as
indicators of the atoms of an algebra (that is indicators of a partition of Ω).
This is seen in Example 9.1, where the first 2 columns of the design matrix
in (9.5) are the indicators of the atoms of A and the last 2 columns are
indicators of B. Conversely, when some of the columns of A are indicators
of a partition of Ω, then the A may be changed to contain an overall effect,
without changing the family of distributions defined in (9.10).

Suppose the probabilities of the subsets specified by the columns of A
are given as

(9.11) Q(aj), j = 1, . . . , k.
The most general extension considered here, is extending the probabilities
of subsets given in (9.11) to a probability measure of the product (linear
on the logarithmic scale) form in (9.10), even if the subsets do not form a
partition, thus one does not have measures given on algebras.

Obviously, the probabilities in (9.11) need to be strongly compatible for
the existence of an extension with a product structure. A simple way to
achieve this compatibility, is to assume that the probabilities in (9.11) are
taken from a distribution on Ω. Also, the compatibility condition is equiv-
alent to the existence of a positive solution of the following system of linear
equations in x:

A∗x = Q∗,

where A∗ is the transpose of A with a row of 1’s added as the last row
and Q∗ is the column vector with the components given in (9.11) with a 1
added as the last component. Then, one has the following result.

Theorem 9.2 [72]. Let the probabilities of the subsets with indicators aj ,
j = 1, . . . , k given in (9.11) be strongly compatible.

(i) Then, a unique distribution P of the form (9.10) where the design
matrix A consists of the columns aj , j = 1, . . . , k with

(9.12) P (aj) = Q(aj), j = 1, . . . , k

exists if and only if A has the vector of 1’s in its column space.
(ii) If A does not have the vector of 1’s in its column space, then there

exists a unique probability distribution of the form (9.10) with

(9.13) P (aj) = λQ(aj), j = 1, . . . , k

for some positive λ.
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The families of distributions P with the properties in (9.12) and (9.13)
are linear, and the family in (9.10) is exponential. In particular, the family
defined in (9.10) is a regular exponential family when the model contains an
overall effect, and is a curved exponential family when this is not the case,
see [75].

To determine the distribution P in Theorem 9.2, one, in general, needs
to apply an iterative algorithm which was described in [73]. In statistical
applications, Q in (9.11) is the observed probability of the event of having
an observation in the subsets aj , and P is the maximum likelihood estimate
in the model (9.10), see [72].

For results related to the closure of the family (9.10) to allow distribu-
tions with zero probabilities, see [74].

10. Qualitative conditional independence in non-atomic measure

spaces

There are various notions in the literature generalizing the notion of
qualitative indepence, or — as originally introduced by Marczewski [88] —
of independent fields.

In the notion of almost independence of σ-fields the assumption on the
two given σ-fields A and B equipped with measures P and Q, respectively,
is that the intersections of two sets A ∈ A, B ∈ B with positive measures
should have non-empty intersection. The beautiful example given by [57]
shows that this assumption is not enough for assuring the existence of a
common extension of the two measures under which the two σ-fields become
independent. In his example he considers a subset T ⊂ [0, 1]2 with planar
measure less than 1. For example,

T =
{
(x, y) | 0 ≤ x, y ≤ 1, y − x is rational

}
.

Set

A =
{
T ∩ (A× [0, 1]) | A ⊂ [0, 1] is a Borel-set

}
,

B =
{
T ∩ ([0, 1]× B) | B ⊂ [0, 1] is a Borel-set

}
,

and

P
(
T ∩ (A× [0, 1])

)
= λ(A) , Q

(
T ∩ ([0, 1]×B)

)
= λ(B) ,

where λ is the linear Lebesgue measure. Then, since if λ(A) > 0 and
λ(B) > 0 then the set of points y − x, x ∈ A, y ∈ B covers some interval,
and so contains a rational point. Hence

∅ �= T ∩ (A×B) = (T ∩ (A× [0, 1])) ∩ (T ∩ ([0, 1]×B))
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that is, the σ-fields A and B are almost independent. But, on the other
hand, since the (Lebesgue) measure of T is less than 1, it can be covered by
a disjoint union

⋃
i (Ai ×Bi) of measure less than 1. Now,

T ⊂
⋃
i

(Ai ×Bi) =
⋃
i

(T ∩ (Ai × [0, 1]) ∩ ([0, 1]×Bi)) .

Assuming that there is a common extension R of the measures P and Q we
have that

R(T ) ≤
∑
i

λ(Ai)λ(Bi) < 1 .

However, T = T ∩ [0, 1]2 thus R(T ) = (λ([0, 1]))2 = 1. This contradiction
shows that R cannot be a (σ-additive) measure.

In order to generalize Theorem 9.1 to non-atomic probability spaces we
are going to use the notion of lifting introduced by von Neumann, analyzed
in a series of papers by A. Ionescu Tulcea and C. Ionescu Tulcea [61,62] and
also the notion of regular conditional probability considered by Doob. The
connection between lifting and regular version of conditional probability is
discussed e.g. in [60].

Let us consider a probability space (Ω,F , Q). We shall use the notation
A ≡ B, when Q(A ◦B) = 0, where A ◦B denotes the symmetric difference
of the sets A and B. This is an equivalence relation.

Definition 10.1. For a sub-σ-field G ⊂ F the map ρ : G → G is a lifting,
if the following properties hold.

(i) ρ(A) ≡ A;
(ii) A ≡ B implies that ρ(A) = ρ(B);
(iii) ρ(∅) = ∅, ρ(Ω) = Ω;
(iv) ρ(A ∩B) = ρ(A) ∩ ρ(B);
(v) ρ(A ∪B) = ρ(A) ∪ ρ(B).

It was proved by Maharam [86] that if (Ω,F ,Q) is a complete probability
space, then the lifting exists for any sub-σ-field. A proof was given in [61]
based on the martingale convergence theorem. The lifting can be extended
to the Banach-algebra L∞(Ω,G, Q) resulting in a mapping T : L∞(Ω,G, Q)
→ L∞(Ω,G, Q) with the properties:

(i) T (f) ≡ f ;
(ii) f ≡ g implies that T (f) = T (g);
(iii) T (1) = 1;
(iv) f ≥ 0 implies that T (f) ≥ 0;
(v) T (αf + βg) = αT (f) + βT (g);
(vi) T (fg) = T (f)T (g) ,

where f ≡ g means that Q(f = g) = 1. Note, that the connection between
ρ and T is given by the formula �(ρ(A)) = T (�(A)) using the notation � for
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the indicator function of a set. Property (iv) implies that the supremum
norm of the function T (f) equals the ess-sup norm of f ∈ L∞(Ω,G, Q).

Next, let us recall the notion of the regular conditional probability. Let
C ⊂ B be two sub-σ-fields of F . The function Q(B,ω) for B ∈ B, ω ∈ Ω is
a regular conditional probability with respect to C, if

(i) Q( · , ω) is a probability measure on B for any ω ∈ Ω;
(ii) Q(B, · ) is a C-measurable random variable for any B ∈ B;
(iii) Q(B ∩ C) =

∫
C Q(B,ω) dQ(ω) for any C ∈ C.

If there exists a lifting T in L∞(Ω, C, Q) then considering the values at
any fixed ω ∈ Ω of the random variables T (E(X | C)), for X ∈ L∞(Ω,B, Q)
we get a positive, linear functional. Hoffman-Jørgensen [60] discusses the
situation, when these functionals can be induced by probability measures
defining in this way a regular conditional probability. According to Theorem
1 in that paper, if Ω is a Hausdorff space, F is the σ-field of Borel sets, Q is a
regular measure, then the regular conditional probability can be constructed
from the lifting defined on L∞(Ω,F , Q).

Definition 10.2. In the present paper we shall use the terminology of
regular conditional probability induced by lifting.

Notice that if the σ-field is generated by a partition then a lifting obvi-
ously exists and generates a regular conditional probability.

Let us consider now a set Ω with two σ-fields denoted A and B. Set C =
A∩B. Let P and Q be weakly compatible probability measures on A and B,
respectively. Assume the existence of a lifting T defined on L∞(Ω,A, P )
and L∞(Ω,B, Q) giving the same value on L∞(Ω, C, P ) = L∞(Ω, C, Q) and
inducing a regular conditional probability on B with respect to C. Let us
denote by ρ the corresponding lifting defined on the sets from A and B.

In the proof of the following proposition we follow the ideas presented in
[115, Section 3.3.].

Proposition 10.1. Under the previous assumptions if the following
stronger version of qualitative conditional independence holds for the σ-fields
A and B:

if A ∈ A, B ∈ B, A ∩ B = ∅, then there exists a set C ∈ C such that
B ⊂ C , A ∩ ρ(C) = ∅,

then the measures P and Q are strongly compatible.

Proof. Let us introduce the notation R for the measure obtained
from P or Q restricted to the σ-field C. Since P and Q are — accord-
ing to the assumption — weakly compatible, the measure R is well-defined.
The conditional probability of a set A ∈ A with respect to C will be de-
noted by P (A | C), and similarly Q(B | C) denotes the conditional probabil-
ity of B ∈ B with respect to C. Here we do not assume that they are regular
conditional probabilities.
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We are going to prove that there is a common extension μ of the mea-
sures P,Q,R which is defined on the σ-field σ(A,B).

Let us first claim that if B ∈ B then

ρ({Q(B | C) = 1}) ⊂ ρ(B) ⊂ ρ({Q(B | C) > 0}) ;(10.1)

{T (Q(B | C)) > 0} ⊂ ρ({Q(B | C) > 0}) .
In fact, using the identity∫

{Q(B|C)=1}
�(B) dQ =

∫
{Q(B|C)=1}

Q(B | C) dQ

=
∫
{Q(B|C)=1}

1 dQ = Q({Q(B | C) = 1})

we obtain that Q ({Q(B | C) = 1)} \B) = 0 implying the first inclusion. On
the other hand ∫

{Q(B|C)=0}
�(B) dQ = 0 ,

thus Q({Q(B | C) = 0} ∩ B) = 0, giving the second inclusion. Finally, for
any random variable ξ with 0 ≤ ξ ≤ 1 we have that

T (ξ) = T (ξ �(ξ > 0)) = T (ξ)T (�(ξ > 0)) = T (ξ)�
(
ρ(ξ > 0)

)
.

Consequently,

{T (ξ) > 0} ⊂ ρ(ξ > 0) ,

proving the last inclusion for ξ = Q(B | C).
Now, if A ∈ A, B ∈ B then set

(10.2) μ(A ∩ B) =
∫

Ω
P (A | C)Q(B | C) dR.

If A ∩B = ∅, then the stronger version of qualitative conditional indepen-
dence implies that there exists a set C ∈ C for which B ⊂ C, A ∩ ρ(C) = ∅.
Consequently, ∫

Ω\C
Q(B | C) dR =

∫
Ω\C

�(B) dR = 0

thus the random variable Q(B | C) is almost surely zero on the set Ω \ C.
Similarly, ∫

C
P (A | C) dR =

∫
C
�(A) dR =

∫
ρ(C)

�(A) dR = 0
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using that R(ρ(C) ◦C) = 0. This implies that the random variable P (A | C)
is almost surely zero on the set C. Thus the product P (A | C)Q(B | C) = 0
with R-probability 1, giving that μ(A∩B) = 0, if the sets A,B are disjoint.

Next, we show that if for the sets A,A′ ∈ A and B,B′ ∈ B we have that
A ∩B = A′ ∩B′, then μ(A ∩B) = μ(A′ ∩B′). To this aim let us introduce
the notation A0 = A ∩ A′, B0 = B ∩B′. Then A0 ∩B0 = A ∩B = A′ ∩B′

and

(A \A0) ∩B0 = ∅ , A0 ∩ (B \B0) = ∅ , and (A \A0) ∩ (B \B0) = ∅ .

Using that

P (A | C) = P (A \A0 | C) + P (A0 | C)
and

Q(B | C) = Q(B \B0 | C) +Q(B0 | C)
with R probability 1, the previous observation for disjoint sets implies that

μ(A ∩B) = μ(A0 ∩B0) .

Applying the same argument for the sets A′, B′ we obtain that

μ(A′ ∩B′) = μ(A0 ∩B0) ,

thus expression (10.2) gives the same value for μ(A∩B) if A′ ∩B′ = A∩B.
Let us extend the set function μ to the algebra generated by the intersec-

tions A ∩B, where A ∈ A, B ∈ B. Using Theorem 1.3.1 in [115] we obtain
that any element is this algebra has the form

D =
k⋃

i=1

(Ai ∩Bi) ,

where A1, . . . , Ak ∈ A form a partition of Ω and B1, . . . , Bk ∈ B. Set

(10.3) μ(D) =
k∑

i=1

μ(Ai ∩Bi) .

We are going to show that this is well-defined, that is, if the set D has an-
other representation in the form D =

⋃�
j=1
(
A′

j ∩B′
j

)
, then the expression

(10.3) gives the same value.
Let us consider a common refinement of the two partitions A1, . . . , Ak

and A′
1, . . . , A

′
� denoted by Ai,j = Ai ∩A′

j for i = 1, . . . , k, j = 1, . . . , �. Sim-
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ilarly, set Bi,j = Bi ∩B′
j . Then we have a third representation for the set D

as

D =
k⋃

i=1

�⋃
j=1

(Ai,j ∩Bi,j) .

Furthermore, since the sets A1, . . . , Ak are disjoint, we have that

(10.4) Ai ∩Bi =
�⋃

j=1

(Ai,j ∩Bi,j) .

Consequently, it is enough to prove that

μ(Ai ∩Bi) =
�∑

j=1

μ(Ai,j ∩Bi,j) ,

because applying a similar argument for A′
j ∩B′

j and taking the sum of these
identities with respect to i and j, respectively, we obtain that both repre-
sentations of the set D give the same value for μ(D).

Considering the intersection of both sides of (10.4) with Ai,r and using
that the sets Ai,j for j = 1, . . . , � are disjoint, we obtain that

Ai,r ∩Bi = Ai,r ∩ Bi,r .

As we have proved, this implies that μ(Ai,r ∩Bi) = μ(Ai,r ∩Bi,r). Conse-
quently,

�∑
r=1

μ(Ai,r ∩Bi,r) =
�∑

r=1

μ(Ai,r ∩Bi) =
�∑

r=1

∫
P (Ai,r | C)Q(Bi | C) dR

=
∫

P (Ai | C)Q(Bi | C) dR = μ(Ai ∩Bi) ,

using that Ai =
⋃�

r=1 Ai,r and the sets Ai,r for r = 1, . . . , � are disjoint.
Summarizing, the identity (10.3) defines a well-defined, additive set func-

tion on the algebra generated by the σ-algebras A and B.
We show that μ can be extended to the generated σ-algebra as a

σ-additive measure. To this aim — using Lemmata 2.2.2 and 2.2.1 in [115]
— it is enough to prove that for any decreasing sequence of sets D1 ⊃ D2
⊃ · · · from the algebra generated by A and B such that

⋂∞
�=1 D� = ∅ we have

that lim�→∞ μ(D�) = 0.
So, let us consider a decreasing sequence of events D1 ⊃ D1 ⊃ · · · , where

D� =
⋃k�

i=1
(
A

(�)
i ∩B

(�)
i

)
. We might assume that the partition determined by
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the sets A
(�+1)
j , j = 1, . . . , k�+1 is finer than that of A(�)

i , i = 1, . . . , k� and

furthermore, if A(�+1)
j ⊂ A

(�)
i then B

(�+1)
j ⊂ B

(�)
i .

Assume that there exists a value a > 0 such that μ(D�) > a for all � ≥ 1.
We show that in this case

⋂
�D� �= ∅.

Consider the A-measurable random variable

X� =
k�∑
i=1

�(A(�)
i )T

(
Q(B(�)

i | C)) , for � ≥ 1 .

The value of the random variable X�+1 on the set A
(�+1)
j is given by

T
(
Q(B(�+1)

j | C)) . There is a uniquely defined i for which A
(�+1)
j ⊂ A

(�)
i . On

A
(�)
i the value of X� is determined by T

(
Q(B(�)

i | C)) . Since B
(�+1)
j ⊂ B

(�)
i

we have that

T
(
Q(B(�+1)

j | C)) ≤ T
(
Q(B(�)

i | C)) ,
consequently X�+1 ≤ X�.

On the other hand ∫
X� dP = μ(D�) > a .

Consider the sets F� =
{
X� ≥ a

2

}
. Then F�+1 ⊂ F�, and

a < μ(D�) ≤ a

2
(1− P (F�)) + P (F�) ,

implying that

P (F�) ≥ a

2− a
.

Since P is a probability measure on A, Lemma 2.2.1 in [115] implies that⋂
� F� �= ∅. Let us consider an elementary event ω∗ ∈ ⋂� F�. Then for each �

there exists a unique i� for which ω∗ ∈ A
(�)
i�
. Since the partition determined

by the sets A(�+1)
j , j = 1, . . . , k�+1 is finer than that of A(�)

i , i = 1, . . . , k�, we

have that A(�+1)
i�+1

⊂ A
(�)
i�
. Set

A∗ =
⋂
�

A
(�)
i�

and B∗ =
⋂
�

B
(�)
i�

.

We have that A∗ ∈ A, A∗ �= ∅ and B∗ ∈ B. According to our assumption
concerning the representation of the sequence D1, D2, . . . , the inclusion
A

(�+1)
i�+1

⊂ A
(�)
i�

implies that B(�+1)
i�+1

⊂ B
(�)
i�

.
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Since X�(ω∗) ≥ a/2, we obtain that T
(
Q(B(�)

i�
| C)) (ω∗) ≥ a/2. We have

assumed that the lifting T induces a regular conditional probability, in other
words the set function B �→ T

(
Q(B | C)) (ω∗) for B ∈ B is a probability

measure on B. The sequence B1
i(1) ⊃ B2

i(2) ⊃ · · · is a decreasing sequence of
events, thus we have that

T
(
Q(B∗ | C)) (ω∗) = lim

�→∞
T
(
Q(B(�)

i�
| C)) (ω∗) ≥ a

2
.

We get that

B∗ =
⋂
�

B
(�)
i�

�= ∅ .

Since A∗ ∩B∗ ⊂ ⋂�D�, in order to finish the proof of the proposition it
is enough to show that A∗ ∩ B∗ �= ∅.

Assume, on the contrary, that A∗ ∩B∗ = ∅. Our assumptions im-
ply that in this case there exists a set C ∈ C for which B∗ ⊂ C and
A∗ ∩ ρ(C) = ∅. The inclusion B∗ ⊂ C implies that ρ(B∗) ⊂ ρ(C) and thus
ρ({Q(B∗ | C) > 0}) ⊂ ρ(C) using that C ∈ C. Consequently, the intersection
A∗ ∩ ρ({Q(B∗ | C) > 0}) should be empty. Using identity (10.1) we obtain
that A∗ ∩ {T (Q(B∗ | C)) > 0} = ∅, contradicting that ω∗ belongs to both
events. Thus A∗ ∩B∗ �= ∅, so ⋂�Dl is non-empty. Consequently, the mea-
sure μ can be extended to the σ-field generated by A and B. This concludes
the proof of the proposition. �

11. Primes, prime gaps and independence

Several of Rényi’s first papers were devoted to the theory of primes. In
fact, these works brought a high international reputation for him as early
as in 1947–48 [108,109]. He wrote his PhD thesis (in fact, his Candidate of
Science thesis) under the guidance of Linnik who was one of the greatest fig-
ures of 20th century mathematics, in probability theory as well as in number
theory.

The mentioned works containing the results of his thesis dealt with ap-
proximations to two of the oldest and most celebrated (still open) problems
of mathematics: the (binary) Goldbach problem and the twin prime con-
jecture. Goldbach’s conjecture arose in the correspondence of Euler and
Goldbach in 1742 and it asserts that every even integer larger than two can
be written as the sum of two primes. The twin prime conjecture may have
its origin in the ancient Greek mathematics and it states the existence of
infinitely many twin primes, i.e. primes p for which p+ 2 is also a prime.

One can easily see the similarity of the two problems, and in fact the
methods which brought advances in one of the mentioned conjectures led
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to analogous results in the other problem too, at least until the work about
small gaps between primes [50], whose method worked for the approximation
of the twin prime problem but gave no results for the Goldbach problem.

The first successful attack for these problems was made by Brun [28] ex-
actly hundred years ago. He showed that every sufficiently large even number
can be written as the sum of two numbers having at most nine prime fac-
tors. Analogously he proved the existence of infinitely many pairs of integers
(n, n+ 2) such that both have at most nine prime factors. His tool was a
sieve method, invented by him, called today Brun’s sieve. In the following
two decades the above result was improved in several steps to almost primes
having at most four prime factors. The tool remained Brun’s sieve.

Rényi was the first who succeeded to show in his above mentioned works
these theorems in the form that one of the terms in the sum (or difference,
respectively) can be a prime and the other a number having at most K prime
factors with an unspecified large absolute constant K. The value of K was
diminished in several steps, until in 1966 Chen Jing-Run [31,32] could show
this with K = 2.

The tools Rényi used were Brun’s sieve and a new version of the large
sieve of Linnik, also often called the large sieve of Linnik and Rényi (see e.g.
[24, §1]). Besides a direct self-contained approach [112], Rényi gave also a
proof for his sieve [110] where he derives his result from a general probabilis-
tic theorem. Rényi’s large sieve is formulated in the book of Bombieri [24]
in the following form (in what follows p will always denote primes):

Suppose that 1 ≤ n1 < n2 < · · · < nZ ≤ N , Z < N , are arbitrary inte-
gers,

Z(p, a) = #
{
i : ni ≡ a(mod p)

}
.

Then we have for any X ≤ (N/12)1/3

V :=
∑
p≤X

p

p∑
a=1

(
Z(p, a)− Z

p

)2 ≤ 2NZ.

This was improved to V ≤ (N +X2)Z for arbitrary values of X and
extended for composite moduli. Its most important application is the cele-
brated Bombieri–Vinogradov theorem (Bombieri [23] and Vinogradov [131,
132]) which showed that prime numbers up to X are on average equidis-
tributed in residue classes modulo q ≤ Q if Q ≤ X1/2(logX)−B with an
average error of size X1/2(logX)C if the worst residue class a (mod q) is
considered for every q ≤ Q, i.e.

∑
q≤X1/2 log−B X

max
y≤X

max
(a,q)=1

∣∣∣∣π(y, q, a) − li y
ϕ(q)

∣∣∣∣ = O
(
X log−A X

)
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if B = B(A) > 0 is sufficiently large, π(y, q, a) denotes the number of primes
p ≡ a(mod q) with p ≤ y, lix =

∫ x
0 dt/log t, and ϕ(n) is Euler’s totient func-

tion: ϕ(n) = #{m ≤ n : gcd(m,n) = 1}. This result without averaging over
q is of the same strength as the Generalized Riemann Hypothesis. Barban
[13] used the large sieve of Linnik and Rényi to prove the above relation
for moduli q ≤ X1/6−ε. Two years later he extended this for moduli up to
X1/3−ε [14]. For a survey and an extension to 3/8− ε see [15].

The above theorem of Bombieri–Vinogradov has countless applications.
For example, Bombieri [24, §9, Théorème 19] uses it to prove Rényi’s theo-
rem in the stronger form that every sufficiently large even integer is the sum
of a prime and a number with at most four prime factors.

Set p0 = 1 and for n > 0 denote the nth prime by pn. The differences
between two successive prime numbers are called prime gaps and denoted by
dn = pn − pn−1. Properties of prime gaps have been in limelight for a long
time. Rényi also devoted a couple of papers to this problem [44,111,112],
and this is still a vital research direction in our days too, see e.g. [78].

Introduce the notation

(11.1) xn := (pn − pn−1)/ log(pn), n = 1, 2, . . . .

Note that the merit of the prime gap pn+1 − pn is usually defined as
(pn+1 − pn)/ log(pn), that is, the gap is divided by the natural logarithm
of the smaller prime. It does not make a difference asymptotically.

Let us consider the closure J of the set of all xn’s. Erdős [43] formulated
the conjecture that J = [0,∞]. Before this only the point infinity was known
to belong to J [134], and the result of Erdős [42] that J contains numbers
less than 1. In the above mentioned work [43] and in a paper of Ricci [117]
it was shown that J has positive Lebesgue measure μ(J). However, no finite
limit point of J was explicitly known until 2005 when 0 ∈ J was shown by
Goldston, Pintz and Yıldırım [50]. This is equivalent to

lim inf
n→∞

xn = lim inf
n→∞

dn
log pn

= 0.

This was improved in the celebrated works of Yitang Zhang [136] and May-
nard [90] to

lim inf
n→∞

dn ≤ C

with C = 7 · 107 [136] and C = 600 [90]. The latter method was refined in
a Polymath project [104,105] to C = 246. These methods opened the way
to obtain further information about the set J of limit points. Pintz [99] has
shown that J contains an interval [0, c] for some ineffective constant c > 0.
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(Which means that we still do not know any concrete element of J besides
0 and 1). The method of Maynard led Banks et al. [12] to

μ(JT ) := μ(J ∩ [0, T ]) ≥ T (1 + o(1))
8

which was improved in further works of Pintz to μ(JT ) ≥ (1+ o(1))T/4 [100]
and Merikoski to μ(JT ) ≥ T/3 [91].

The Prime Number Theorem [55,129]

π(x) =
∑
pi≤x

1 ∼ li x =
∫ x

0

dt

log t
∼ x

log x

suggests that we may expect in a short interval [x, x + h] about λ primes if
h ∼ λ log x where h, x → ∞.

If we consider bounded differences then a far-reaching generalisation of
the twin prime conjecture was formulated by Dickson [37] and later in a
quantitative form by Hardy and Littlewood [56]. The prime k-tuple con-
jecture of Hardy and Littlewood asserts that if H = {hi}ki=1 is a k-tuple of
non-negative integers (hi < hi+1), then (denoting the set of primes by P)

πH(x) =
∑
n≤x

n+hi∈P

1 =
(
S(H) + o(1)

) x

(logx)k
.

We call H admissible if the so-called singular series is positive, that is,

S(H) =
∏
p

(
1− νH(p)

p

)(
1− 1

p

)−k
> 0,

where νH(p) denotes the number of distinct residue classes occupied by
h1, . . . , hk mod p. The above condition is equivalent to the property that the
polynomial P (n) = (n+ h1) · · · (n+ hk) has no fixed prime divisor. Thus if
H is admissible the Conjecture above predicts an infinity of numbers n with
{n+ hi}ki=1 ∈ Pk.

Gallager [46] showed that if the above conjecture holds in a stronger
uniform form, then the number Pr(h,N) of n ≤ N such that the interval
[n,n+h] contains exactly r primes is under the condition h ∼ λ logN asymp-
totically

Pr(h,N) ∼ Ne−λ λ
k

k!
,

i.e. it satisfies a Poisson distribution with parameter λ.
The phenomenon that primes seem to follow globally a given random

distribution, was formulated as early as in the 1930’s by Cramér [34]. Gauss
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observed already at an age of 15–16 years (based on prime number tables
up to three million) that primes around x occur with a frequency 1/ log x.
He never published anything about this but his observation was confirmed
by the mentioned proof of the Prime Number Theorem, the asymptotic re-
lation π(x) ∼ li x, proved by Hadamard [55] and Vallée-Poussin [129] about
hundred years later. Cramér [34] suggested a probabilistic model for primes
according to which every natural number n > 2 is chosen as prime inde-
pendently with probability 1/ logn. This model can clearly not reflect all
properties of the deterministic sequence of primes. For example, the model
would suggest asymptotically the same number x/(2 log x) of even and odd
primes below x.

Cramér used his model to conjecture

max
pn≤x

(pn − pn−1) ∼ c0 log2 x with c0 = 1.

Numerical calculations suggest that the order of growth, log2 x is correct but
we are uncertain whether c0 = 1. Some theoretic considerations in [51,52]
suggest that c0 > 1, may be c0 = 2e−γ , whereas in the range of calculations
(i.e. up to 1018) we obtain a constant ≈ 0.9206, i.e. less than 1 (as calculated
by T. R. Nicely).

The general belief was that Cramér’s model gives a good prediction in
those cases where we do not have a simple reason for its falsity (like the men-
tioned case of even and odd primes, for example). It was therefore a great
surprise when Helmut Maier [87] showed that the Prime Number Theorem
is not true in short intervals of type

[
x, x+ (logx)A

]
, A > 0 arbitrary,

whereas Cramér’s model would suggest its truth with probability 1 for every
A > 2. Later a modification of the model eliminated this contradiction [51,
52]. Nevertheless it was shown [98] that essentially any reasonable model
based on independent random variables makes wrong predictions in some
global problems as well as, for example, the average order of the error term
of the Prime Number Theorem, i.e. the average order of Δ(x) = π(x)− li x.
An alternative for Cramér’s model was recently suggested by Banks et al.
[11].

However, in some other cases, like the value of the mentioned singu-
lar series S(H) in Hardy–Littlewood’s prime k-tuple conjecture the model
does make good predictions if we modify it slightly (see e.g., [98]). We may
mention that the original conjecture of Hardy and Littlewood was based on
more complicated arguments, namely on a heuristic application of the circle
method and a summation of the corresponding (multiple) singular series.
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Let us now turn to the following question: what can we say about the
ranks of the sequence xn defined in (11.1)? In other words, consider the
permutation r(1), . . . , r(n) of 1, . . . , n such that

xr(1) < xr(2) < · · · < xr(n).

Denote this permutation by R(n). What can we say about these permuta-
tions as n → ∞?

Consider the permutation R(n) for fixed n. Then the changing speed
of the differences dk is proportional to the numbers themselves. The dk’s
are of course even for k > 2 and it is conjectured that they take each value
infinitely many times. Thus the smallest possible values persist but initially
the ratio of changes is much larger than the changes of the value of the
logarithm in their neighborhood; because of that, threads are formed in the
permutations.

The limit distribution of the xn’s is conjectured to be standard expo-
nential. What we do not know is if we have a sort of independence. If the
xn’s were iid then the permutations above would have uniform distribution
and we would know a lot about their dynamics. Rényi [114] discussed a
similar problem: instead of the prime gaps he considered the (suitably nor-
malized) gaps between consecutive numbers coprime with and less than n.
He found that they behave similarly to a homogeneous Poisson process. He
proved his statements via the Poisson model. Rényi liked to use the fact
that in the limit the ranks of iid uniform variables follow the Poisson pro-
cess. (The conditional distribution of the points of a Poisson process in an
interval given that there are n of them is the same as the distribution of
an ordered sample of size n from the uniform distribution on that interval.)
The Hungarian stochastic school prefers referring to this method as Rényi’s
method but it was also discovered by others before Rényi. Rényi gave a talk
about the applications of stochastic methods in different areas of mathemat-
ics at a conference in Canada. Unfortunately we were unable to find this
paper.

Let us fix n and denote the kth elements of the ordered sample of the
x’s by zk, i.e. zk = xr(k). Let us label the element zk of the ordered sample
by the difference dr(k). For each possible label d = 1, 2, . . . the corresponding
x’s are monotone decreasing starting with xF where F is the serial number
of the first appearance of d and ending by xL while dL is the last difference
equal to the chosen d. Because xL = d/ log(pL) with a denominator barely
changing with d these numbers are practically proportional to d.

Since the size of the maximal gap gn is small with respect to pn (more
precisely gn ≤ pθn, where θ can be taken to be 0.525 according to [7]) for
the different values of d the corresponding decreasing runs in the permuta-
tion R(n) are in general exceptionally long (with the obvious exception for
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d = 1). As we have pointed out, the smallest values in these runs are ap-
proximately proportional to d. Now, these runs are merged together to form
the complete permutation R(n).

Now, for any fixed difference d let us consider the appearance of this
value in the whole sequence dr(k). Denote by h the number of different values
between two consecutive occurrences of the same value d. In particular,
if h = 0 then dr(k) = dr(k+1). The second columns in Table 4 contain the
cumulative tail distribution function of the h values. (The total number of
primes considered is 50 847 533, and in 39 504 660 = 50 847 533− 11 342 873
cases a value d was followed by the same value in the sequence dr(k), k =
1, . . . , 50 847 533. In 7 114 470 cases there was only one other value between
two consecutive occurrences of the same d value, and so on.) Thus in the
sequence of prime gaps, when they are ordered according to the modified
merits xr(k) the same d values are sticked together.

In order to check how particular behavior is this one, the same set of
prime gaps was arranged into another order using a random modification of
the original sequence dr(k). For some fixed value n0 the position of quantities
dr(k+n0) and dr(n+1−k) changed places with probabilities 1/2, independently
for the different k values (k = 1, . . . , (n− n0)/2). The third columns of Ta-
ble 4 show that after these random changes in the sequence the cumulative
tail distribution function of the statistics h became fatter, thus the position
of the same d values became more scattered. This shows the particularly in-
teresting behavior of the prime gaps. On this topic see also [27]. Related
interesting reads are [6] and [53].

Final words

One of Rényi’s last papers is joint with his wife, Kató. On this topic
Rényi gave a breathtaking conference talk in 1969, a few days after Kató’s
death on August 23 (see [116]).
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Model Rtest. Rtest. Rtest. New test

global.statistic fisher tippett

Exponential, v = 3 779 519 332 930

Exponential, v = 4 464 243 155 629

Exponential, v = 5 214 109 76 294

Exponential, v = 6 83 62 59 119

Exponential, v = 7 60 51 50 79

Exponential, v = 8 62 54 55 75

Exponential, v = 9 49 50 45 60

Exponential, v = 10 52 43 43 62

Clayton, tau = 0.2 988 965 885 997

Clayton, tau = 0.15 903 819 627 969

Clayton, tau = 0.15 610 448 312 761

Clayton, tau = 0.05 255 145 94 338

Gauss, tau = 0.2 991 967 874 998

Gauss, tau = 0.15 919 791 638 961

Gauss, tau = 0.1 625 419 309 681

Gauss, tau = 0.05 256 141 108 297

Gumbel, tau = 0.2 975 974 905 998

Gumbel, tau = 0.15 842 844 682 943

Gumbel, tau = 0.1 562 518 355 761

Gumbel, tau = 0.05 176 160 120 285

Table 1: Power of the tests at the 5% level (p = 3)
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Model Rtest. Rtest. Rtest. New test

global.statistic fisher tippett

Exponential, v = 3 987 528 227 1000

Exponential, v = 4 925 358 159 996

Exponential, v = 5 703 209 123 957

Exponential, v = 6 415 134 78 706

Exponential, v = 7 195 93 56 412

Exponential, v = 8 85 66 44 176

Exponential, v = 9 38 59 44 77

Exponential, v = 10 36 56 42 50

Clayton, tau = 0.2 1000 999 978 1000

Clayton, tau = 0.15 996 978 764 1000

Clayton, tau = 0.15 922 729 344 989

Clayton, tau = 0.05 516 239 99 653

Gauss, tau = 0.2 1000 1000 966 1000

Gauss, tau = 0.15 999 954 718 1000

Gauss, tau = 0.1 956 675 369 982

Gauss, tau = 0.05 558 202 105 609

Gumbel, tau = 0.2 999 998 977 1000

Gumbel, tau = 0.15 972 986 855 999

Gumbel, tau = 0.1 755 857 529 965

Gumbel, tau = 0.05 360 431 179 694

Table 2: Power of the tests at the 5% level (p = 5)

Product structure No product structure

B yes B no B yes B no

A yes 1 2 A yes 1 2

A no 3 4 A no 3 -

Table 3: The structures of the spaces in Examples 9.1 and 9.2
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h prime control h prime control h prime control

0 50847533 50847533 42 - 476618 84 - 2486

1 11342873 45719214 43 - 421002 85 - 2162

2 4228403 41345257 44 - 372074 86 - 1893

3 1847795 37594880 45 - 328219 87 - 1652

4 889304 34325944 46 - 289738 88 - 1460

5 457644 31444604 47 - 256106 89 - 1281

6 247113 28862927 48 - 226285 90 - 1121

7 139129 26520179 49 - 199833 91 - 1000

8 80547 24368685 50 - 176625 92 - 892

9 47983 22377756 51 - 156333 93 - 781

10 29255 20517902 52 - 138336 94 - 688

11 18266 18771664 53 - 122574 95 - 610

12 11606 17130188 54 - 108533 96 - 545

13 7429 15587438 55 - 96250 97 - 481

14 4833 14135235 56 - 85202 98 - 419

15 3179 12774156 57 - 75447 99 - 361

16 2147 11504408 58 - 66738 100 - 320

17 1398 10325180 59 - 58824 101 - 281

18 956 9233525 60 - 52029 102 - 239

19 638 8231895 61 - 45999 103 - 211

20 457 7320402 62 - 40421 104 - 188

21 329 6494564 63 - 35470 105 - 166

22 238 5751255 64 - 31260 106 - 153

23 169 5083791 65 - 27402 107 - 132

24 123 4492357 66 - 24049 108 - 117

25 81 3967685 67 - 21137 109 - 99

26 54 3503412 68 - 18663 110 - 88

27 32 3094779 69 - 16468 111 - 73

28 24 2734341 70 - 14515 112 - 59

29 18 2415488 71 - 12853 113 - 49

30 12 2133496 72 - 11317 114 - 41

31 7 1884466 73 - 9994 115 - 38

32 5 1664544 74 - 8838 116 - 35

33 4 1469978 75 - 7774 117 - 31

34 4 1297565 76 - 6900 118 - 28

35 3 1144877 77 - 6085 119 - 25

36 3 1009986 78 - 5336 120 - 20

37 2 890668 79 - 4712 121 - 16

38 1 785864 80 - 4196 122 - 7

39 1 693008 81 - 3691 123 - 5

40 - 611292 82 - 3250 124 - 4

41 - 539700 83 - 2826

Table 4: Ordered Prime Gaps
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