On strengthenings of the intersecting shadow theorem

by P. Frankl and G. O. H. Katona
Rényi Institute, Budapest, Hungary

Abstract

Let $n>k>t \geq j \geq 1$ be integers. Let X be an n-element set, $\binom{X}{k}$ the collection of its k-subsets. A family $\mathcal{F} \subset\binom{X}{k}$ is called t-intersecting if $\left|F \cap F^{\prime}\right| \geq t$ for all $F, F^{\prime} \in \mathcal{F}$. The j^{\prime} 'th shadow $\partial^{j} \mathcal{F}$ is the collection of all $(k-j)$-subsets that are contained in some member of \mathcal{F}. Estimating $\left|\partial^{j} \mathcal{F}\right|$ as a function of $|\mathcal{F}|$ is a widely used tool in extremal set theory. A classical result of the second author (Theorem 1.3) provides such a bound for t-intersecting families. It is best possible for $|\mathcal{F}|=\binom{2 k-t}{k}$.

Our main result is Theorem 1.4 which gives an asymptotically optimal bound on $\left|\partial^{j} \mathcal{F}\right| /|\mathcal{F}|$ for $|\mathcal{F}|$ slightly larger, e.g., $|\mathcal{F}|>\frac{3}{2}\binom{2 k-t}{k}$. We provide further improvements for $|\mathcal{F}|$ very large as well.

1 Introduction

Throughout the paper n, k, t are positive integers, $n>k>t$. Let $[n]=$ $\{1,2, \ldots, n\}$ be the standard n-element set and $\binom{[n]}{k}$ the collection of all its k-subsets. For a family $\mathcal{F} \subset\binom{[n]}{k}$ and $0<j<k$ define the j^{\prime} 'th shadow $\partial^{j} \mathcal{F}=\left\{G \in\binom{[n]}{k-j}: \exists F \in \mathcal{F}, G \subset F\right\}$.

Estimating the minimum possible size, $\left|\partial^{j} \mathcal{F}\right|$ in function of $|\mathcal{F}|$ has proved to be one of the most important tools of extremal set theory. As a matter of fact, the first paper written on this subject, due to Sperner, is heavily relying on such a bound.

Proposition 1.1 (Sperner [S]). Suppose that $\emptyset \neq \mathcal{F} \subset\binom{[n]}{k}, 0<j<k$. Then

$$
\begin{equation*}
\left|\partial^{j} \mathcal{F}\right| /|\mathcal{F}| \geq\binom{ n}{k-j} /\binom{n}{k} \tag{1.1}
\end{equation*}
$$

with equality holding iff $\mathcal{F}=\binom{[n]}{k}$.
The classical Kruskal-Katona Theorem ($[\mathrm{Kr},[\mathrm{Ka} 2])$ determines the minimum of $\left|\partial^{j} \mathcal{F}\right|$, given $|\mathcal{F}|$.

For $j=1$ the notation $\partial \mathcal{F}$ is common and $\partial \mathcal{F}$ is called the immediate shadow.

Definition 1.2. Let $0 \leq \ell<k, \mathcal{F} \subset\binom{[n]}{k}$. Define the ℓ-shadow $\sigma_{\ell}(\mathcal{F})$ by

$$
\sigma_{\ell}(\mathcal{F})=\left\{G \in\binom{[n]}{\ell}: \exists F \in \mathcal{F}, G \subset F\right\}
$$

Note that $\partial \mathcal{F}=\sigma_{k-1}(\mathcal{F})$ and $\partial^{k-\ell} \mathcal{F}=\sigma_{\ell}(\mathcal{F})$.
One of the most widely investigated properties in extremal set theory is the t-intersecting property. For $t \geq 1, \mathcal{F}$ is said to be t-intersecting if $\left|F \cap F^{\prime}\right| \geq t$ for all $F, F^{\prime} \in \mathcal{F}$. For $t=1$, the term intersecting is used as well.

A widely used result of the second author shows that $\left|\partial^{j} \mathcal{F}\right| \geq|\mathcal{F}|$ for $0<j \leq t$ provided that \mathcal{F} is t-intersecting.

Theorem 1.3 (Intersecting Shadow Theorem Ka1). Suppose that $\emptyset \neq \mathcal{F} \subset$ $\binom{[n]}{k}, \mathcal{F}$ is t-intersecting, $k-t \leq \ell<k$. Then

$$
\begin{equation*}
\left|\sigma_{\ell}(\mathcal{F})\right| /|\mathcal{F}| \geq\binom{ 2 k-t}{\ell} /\binom{2 k-t}{k} \tag{1.2}
\end{equation*}
$$

with strict inequality unless $\mathcal{F}=\binom{Y}{k}$ for some $2 k-t$-element set Y.
Note that for $n \leq 2 k-t$ the inequality (1.2) can be deduced from Sperner's bound (1.1). However for fixed k and n tending to infinity the RHS of (1.1) tends to 0 while the RHS of (1.2) is at least 1 . To be more exact, for $\ell=k-1$ its value is $k /(k-t+1)$. For $t \geq 2$ this is strictly larger than 1 . Our first result gives a further improvement provided that $|\mathcal{F}| \geq\left(1+\frac{t-1}{k+t}\right)\binom{2 k-t}{k}$.

Theorem 1.4. Suppose that $\mathcal{F} \subset\binom{[n]}{k}, \mathcal{F}$ is t-intersecting, $1 \leq j<t<k$, $|\mathcal{F}| \geq\binom{ 2 k-t}{k}\left(1+\frac{t-j}{k+t+1-j}\right)$. Then

$$
\begin{equation*}
\left|\partial^{j} \mathcal{F}\right| /|\mathcal{F}| \geq\binom{ 2(k-1)-t}{k-1-j} /\binom{2(k-1)-t}{k-1} \tag{1.3}
\end{equation*}
$$

Let us mention that the requirement on $|\mathcal{F}|$ is relatively weak, e.g., it is weaker than $|\mathcal{F}| \geq \frac{3}{2}\binom{2 k-t}{k}$. For $j=1$, the most widely used case, (1.3) reduces to

$$
|\partial \mathcal{F}| /|\mathcal{F}| \geq \frac{k-1}{k-t}
$$

At first sight it might appear to be only a small improvement with respect to $\frac{k}{k-t+1}$, coming from (1.2). However, for k and t fixed the difference is substantial. Most importantly, the new bound is essentially best possible.

Example 1.5. Fix $k>t>2$ and an integer $s, 0 \leq s<k-t-1$. Define $\mathcal{A}=\left\{A \in\binom{[2 k-t]}{k}:|A \cap[k-1+s]| \geq t+s\right\}, \quad \mathcal{B}=\left\{B \in\binom{[n]}{k}, B_{0} \cup\{x\}\right.$, $\left.B_{0} \in\binom{[k-1+s]}{k-1}, x \in[2 k-t+1, n]\right\}$. Set $\mathcal{F}=\mathcal{A} \cup \mathcal{B}$. Then \mathcal{F} is t-intersecting.

Proposition 1.6. For a proper choice of s and n, Example 1.5 shows that (1.3) does not hold for $k>k_{0}(j)$ even if

$$
|\mathcal{F}|=\left(1+\frac{j(t-j) s(s-1) \cdot \ldots \cdot(s-j+1)}{(k-1)^{j+2}}-o(1)\right)\binom{2 k-t}{k}
$$

The paper is organized as follows. In Section 2 we review some results concerning shifting and shifted families. Then we prove Theorem 2.10 concerning shadows. In Section 3 we prove Theorem [1.4, in the very short Section 4 the proof of Proposition 1.6 is provided.

In Section 5 we introduce the notion of a semistar and prove a best possible lower bound on the shadow of t-intersecting semistars (Theorem 5.5). In Section 6 along with some structural results we prove the best possible bound $\left|\partial^{j} \mathcal{F}\right|>\binom{t}{j}|\mathcal{F}|$ for families satisfying $|\mathcal{F}|>(t+2)\binom{n-t-1}{k-t-1}$, $n>n_{0}(k, t)$ in a more precise form.

Section 7 contains some more general results.

2 Preliminaries

Let $\left(a_{1}, \ldots, a_{k}\right)$ denote the k-element set $\left\{a_{1}, \ldots, a_{k}\right\}$ where we know that $a_{1}<\ldots<a_{k}$. Let us define \prec, the shifting partial order by setting

$$
\left(a_{1}, \ldots, a_{k}\right) \prec\left(b_{1}, \ldots, b_{k}\right) \quad \text { iff } \quad a_{i} \leq b_{i} \quad \text { for } \quad 1 \leq i \leq k
$$

Definition 2.1. The family \mathcal{F} is called shifted if $\left(a_{1}, \ldots, a_{k}\right) \prec\left(b_{1}, \ldots, b_{k}\right)$ and $\left(b_{1}, \ldots, b_{k}\right) \in \mathcal{F}$ always imply $\left(a_{1}, \ldots, a_{k}\right) \in \mathcal{F}$.

In their seminal paper [EKR, Erdős, Ko and Rado defined a simple operation on families of sets called shifting. Repeated application of this operation eventually transforms a family into a shifted family. Erdős, Ko and Rado showed that shifting maintains the t-intersecting property. In KK1] it is shown that shifting never increases the ℓ-shadow. Consequently, it is sufficient to prove Theorem 1.4 for shifted families.

On the other hand, shifted t-intersecting families have some nice properties.

Proposition 2.2 ([F78]). Suppose that $\mathcal{F} \subset\binom{[n]}{k}$ is shifted and t-intersecting. Then for every $F \in \mathcal{F}$ there exists an integer $h, 0 \leq h \leq k-t$ such that

$$
\begin{equation*}
|F \cap[t+2 h]| \geq h+t \tag{2.1}
\end{equation*}
$$

In [F78] the following families were defined:

$$
\mathcal{A}_{h}(n, k, t)=\left\{A \in\binom{[n]}{k}:|A \cap[t+2 h]| \geq h+t\right\}
$$

It is easy to see that $\mathcal{A}_{h}(n, k, t)$ is always t-intersecting.
In [F78] it was conjectured that for $n \geq 2 k-t$,

$$
\begin{equation*}
|\mathcal{F}| \leq \max \left\{\left|\mathcal{A}_{h}(n, k, t)\right|: 0 \leq h \leq k-t\right\} \tag{2.2}
\end{equation*}
$$

In [FF2] (2.2) was proved for a wide range. However, it was not before the seminal paper of Ahlswede and Khachatrian [AK1] that (2.2) was established in its integrity.

It is easy to check that for k and t fixed

$$
\lim _{n \rightarrow \infty}\left|\partial^{j} \mathcal{A}_{k-t-1}(n, k, t)\right| /\left|\mathcal{A}_{k-t-1}(n, k, t)\right|=\binom{2(k-1)-t}{k-1-j} /\binom{2(k-1)-t}{k-1}
$$

which shows that (1.3) is essentially best possible.
Based on Proposition 2.2 one can define the following relaxation of the t-intersecting property.

Definition 2.3. The family $\mathcal{F} \subset\binom{[n]}{k}$ is said to be pseudo t-intersecting if for every $F \in \mathcal{F}$ and some $h, 0 \leq h \leq k-t$, (2.1) holds.

It was shown in [F91 that (1.2) holds for pseudo t-intersecting families as well.

We need some more definitions.
Let $\mathcal{F} \subset\binom{[n]}{k}$ be pseudo t-intersecting. Define the width $w=w_{t}(\mathcal{F})$ as the minimum integer such that for every $F \in \mathcal{F}$ (2.1) holds for some $h, 0 \leq$ $h \leq w$. From Definition 2.3 it is clear that $w_{t}(\mathcal{F})$ exists and $w_{t}(\mathcal{F}) \leq k-t$. However, in certain situations it needs to be smaller. For example, define $\mathcal{F}_{\text {out }}=\mathcal{F} \backslash\binom{[2 k-t]}{k}$. For $F \in \mathcal{F}_{\text {out }},|F \cap[2 k-t]|<k$ implies $w_{t}\left(\mathcal{F}_{\text {out }}\right) \leq k-t-1$. This will be very important for our proofs.

Definition 2.4. Let $\mathcal{F} \subset\binom{X}{k}$ be pseudo t-intersecting and $w=w_{t}(\mathcal{F})$. For $F \in \mathcal{F}$ define its height $h(F)$ as

$$
h(F)=\max \{h: 0 \leq h \leq w,|F \cap[t+2 h]| \geq t+h\} .
$$

Claim 2.5. If $h(F)<w$ then

$$
\begin{equation*}
|F \cap[t+2 h(F)]|=t+h(F) . \tag{2.3}
\end{equation*}
$$

Proof. Should $|F \cap[t+2 h(F)]| \geq t+h(F)+1$ hold, we conclude

$$
|F \cap[t+2(h(F)+1)]| \geq t+h(F)+1,
$$

contradicting the maximal choice of $h(F)$.
Let us define the tail $T=T(F)$ for $F \in \mathcal{F}$ by $T(F)=F \backslash[t+2 h(F)]$. In view of (2.3),

$$
\begin{equation*}
|T(F)|=k-t-h(F) \quad \text { holds if } \quad h(F)<w_{t}(\mathcal{F}) \tag{2.4}
\end{equation*}
$$

If $h(F)=w_{t}(\mathcal{F})$ then either (2.4) holds or

$$
|T|<k-t-h(F) .
$$

Definition 2.6. For $0<j \leq t$ and $F \in \mathcal{F}$ let us define the restricted j 'th shadow $\partial_{R}^{j} F=\left\{G \in\binom{F}{k-j}: T \subset G\right\}$. In human language G is obtained from F by arbitrarily deleting j vertices from $F \backslash T$.

Claim 2.7. If $h(F)<w_{t}(\mathcal{F})$ and $G \in \partial_{R}^{j} F$ then (i) and (ii) hold.
(i) $|G \cap[t+2 h(F)]|=t-j+h(F)$,
(ii) $|G \cap[t+2 h]|<t-j+h$ for $h(F)<h \leq w_{t}(\mathcal{F})$.

Applying this claim we infer
Corollary 2.8. Suppose that $F, F^{\prime} \in \mathcal{F}, h(F)<h\left(F^{\prime}\right)$. Then

$$
\begin{equation*}
\partial_{R}^{j} F \cap \partial_{R}^{j} F^{\prime}=\emptyset . \tag{2.5}
\end{equation*}
$$

Proof. Using (i) and (ii)

$$
\left|G \cap\left[t+2 h\left(F^{\prime}\right)\right]\right|<\left|G^{\prime} \cap\left[t+2 h\left(F^{\prime}\right)\right]\right|
$$

follows for $G \in \partial_{R}^{j} F$ and $G^{\prime} \in \partial_{R}^{j} F^{\prime}$.
Note that (2.5) is immediate also if $h(F)=h\left(F^{\prime}\right)$ but $T(F) \neq T\left(F^{\prime}\right)$. Define $\mathcal{T}=\{T \subset[n]: \exists F \in \mathcal{F}, T(F)=T\}$. For $T \in \mathcal{T}$ define $\mathcal{F}_{T}=\{F \in$ $\mathcal{F}: T(F)=T\}$ and $\overline{\mathcal{F}}_{T}=\left\{F \backslash T: F \in \mathcal{F}_{T}\right\}$. This permits to define the restricted j 'th shadow of \mathcal{F}_{T} :

$$
\partial_{R}^{j} \mathcal{F}_{T}=\bigcup_{F \in \mathcal{F}_{T}} \partial_{R}^{j} F
$$

The next lemma is the core of the proofs.
Lemma 2.9. Suppose that \mathcal{F} is pseudo t-intersecting, $0<j \leq t$. Then $\mathcal{F}=\bigcup_{T \in \mathcal{T}} \mathcal{F}_{T}$ is a partition, and

$$
\begin{equation*}
\left|\partial^{j} \mathcal{F}\right| \geq \sum_{T \in \mathcal{T}}\left|\partial_{R}^{j} \mathcal{F}_{T}\right| \tag{2.6}
\end{equation*}
$$

Proof. The first part is trivial. To show the second one we need to prove for $T, T^{\prime} \in \mathcal{T}, T \neq T^{\prime}$,

$$
\partial_{R}^{j} \mathcal{F}_{T} \cap \partial_{R}^{j} \mathcal{F}_{T^{\prime}}=\emptyset
$$

This follows from (2.5) unless both F and F^{\prime} with $T(F)=T$ and $T\left(F^{\prime}\right)=T^{\prime}$ satisfy $h(F)=h\left(F^{\prime}\right)=w=w_{t}(\mathcal{F})$. (Actually, by (2.3) these are equivalent to $|T|,\left|T^{\prime}\right| \leq k-t-w$.) In this case $T=F \backslash[t+2 w], T^{\prime}=F^{\prime} \backslash[t+2 w]$ imply $\partial_{R}^{j} \mathcal{F}_{T} \cap \partial_{R}^{j} \mathcal{F}_{T^{\prime}}=\emptyset$.

With this preparation the next theorem is easy to prove.
Theorem 2.10. Let $\mathcal{F} \subset\binom{[n]}{k}$ be a shifted pseudo t-intersecting of width $w=w_{t}(\mathcal{F})$. Then for every $0<j \leq t$,

$$
\begin{equation*}
\left|\partial_{R}^{j} \mathcal{F}\right| \geq|\mathcal{F}|\binom{t+2 w}{t-j+w} /\binom{t+2 w}{t+w} \tag{2.7}
\end{equation*}
$$

Proof. Let \mathcal{T} be the family of possible tails for \mathcal{F}. In view of Lemma 2.9 it is sufficient to show

$$
\begin{equation*}
\left|\partial_{R}^{j} \mathcal{F}_{T}\right| \geq\left|\mathcal{F}_{T}\right|\binom{t+2 w}{t-j+w} /\binom{t+2 w}{t+w} \tag{2.8}
\end{equation*}
$$

Recall that $\overline{\mathcal{F}}_{T}=\left\{F \backslash T: F \in \mathcal{F}_{T}\right\}$. If $|T| \geq k-t-w$ then $\overline{\mathcal{F}}_{T} \subset$ $\binom{[t+2(k-t-|T|)]}{k-|T|}$ and $\left|\partial_{R}^{j} \mathcal{F}_{T}\right|=\left|\partial^{j} \overline{\mathcal{F}}_{T}\right|$.

If $|T|<k-t-w$ then $\overline{\mathcal{F}}_{T} \subset\binom{[t+2 w]}{k-|T|}$ and again $\left|\partial_{R}^{j} \mathcal{F}_{T}\right|=\left|\partial_{j} \overline{\mathcal{F}}_{T}\right|$. In the first case $t+2(k-t-|T|)=2(k-|T|)-t$, showing that $\overline{\mathcal{F}}_{T}$ is t-intersecting. In the second case $t+2 w>2(k-|T|)-t$ by $w+|T|<k-t$, that is $\overline{\mathcal{F}}_{T}$ is $(t+1)$-intersecting. However, the desired bound readily follows using (1.1) and the next proposition.
Proposition 2.11. Let $0<j<t, 0 \leq h<w$ and $1 \leq r \leq w$, then the following two inequalities hold.
(i) $\binom{t+2 h}{t+h-j} /\binom{t+2 h}{t+h}>\binom{t+2 w}{t+w-j} /\binom{t+2 w}{t+w}$,
(ii) $\binom{t+2 w}{t+w-j+r} /\binom{t+2 w}{t+w+r}>\binom{t+2 w}{t+w-j} /\binom{t+2 w}{t+w}$.

Proof. Let $f(h)$ denote the LHS of (i). That is, $f(h)=\prod_{1 \leq i \leq j} \frac{t+h-j+i}{h+i}=$ $\prod_{1 \leq i \leq j}\left(1+\frac{t-j}{h+i}\right)$. Since $1+\frac{t-j}{h+i}$ is a strictly monotone decreasing function of $h, f(h)>f(w)$ follows.

To prove (ii) let $g(r)$ be the LHS, i.e.,

$$
g(r)=\prod_{1 \leq i \leq j} \frac{t-j+w+i+r}{w+i-r}
$$

Since $\frac{a+r}{b-r}$ is a strictly monotone increasing function of r (for $a>0, b>r$), $g(r)>g(0)$ and thereby (ii) follows.

This concludes the proof of Theorem 2.10 as well.

3 The proof of Theorem 1.4

Let $\mathcal{F} \subset\binom{[n]}{k}$ be a shifted t-intersecting family, $t \geq 2$. If $w_{t}(\mathcal{F}) \leq k-t-1$ then for every $1 \leq j<t$, from Theorem 2.10 we infer

$$
\left|\partial^{j} \mathcal{F}\right| \geq|\mathcal{F}|\binom{t+2(k-t-1)}{k-1-j} /\binom{t+2(k-t-1)}{k-1}
$$

proving (1.3).
From now on we suppose $w_{t}(\mathcal{F})=k-t$ and fix an $A=\left(a_{1}, \ldots, a_{k}\right) \in \mathcal{F}$ such that

$$
\begin{equation*}
|A \cap[t+2 h]| \leq t+h-1 \quad \text { for } \quad 0 \leq h<k-t \tag{3.1}
\end{equation*}
$$

Applying (2.1) to A yields $|A \cap[t+2(k-t)]|=k$, i.e., $A \in\binom{[2 k-t]}{k}$. Our plan for proving (1.3) is the following. We partition \mathcal{F} into two families $\mathcal{F}_{\text {in }}$ and $\mathcal{F}_{\text {out }}$ where $\mathcal{F}_{\text {in }}=\mathcal{F} \cap\binom{[2 k-t]}{k}, \mathcal{F}_{\text {out }}=\mathcal{F} \backslash \mathcal{F}_{\text {in }}$. Then we show that

$$
\begin{equation*}
\partial^{j} \mathcal{F}_{\text {in }} \cap \partial_{R}^{j} \mathcal{F}_{\text {out }}=\emptyset \tag{3.2}
\end{equation*}
$$

and thereby

$$
\begin{equation*}
\left|\partial^{j} \mathcal{F}\right| \geq\left|\partial^{j} \mathcal{F}_{\text {in }}\right|+\left|\partial_{R}^{j} \mathcal{F}_{\text {out }}\right| \tag{3.3}
\end{equation*}
$$

For the first term on the RHS we use (1.2) with $\ell=k-j$. As for the second, we prove a stronger inequality

$$
\begin{equation*}
\left|\partial_{R}^{j} \mathcal{F}_{\text {out }}\right| \geq\left|\mathcal{F}_{\text {out }}\right|\binom{t+1+2(k-t-2)}{k-1-j} /\binom{t+1+2(k-t-2)}{k-1} \tag{3.4}
\end{equation*}
$$

Defining $\alpha=\alpha(k, t, j)$ and $\beta=\beta(k, t, j)$ by

$$
\alpha=\frac{\binom{t+2(k-t-1)}{k-1-j}}{\binom{t+2(k-t-1)}{k-1}}-\frac{\binom{t+2(k-t)}{k-j}}{\binom{t+2(k-t)}{k}}, \quad \beta=\frac{\binom{t+1+2(k-t-2)}{k-1-j}}{\binom{t+2(k-t-2)}{k-1}}-\frac{\binom{t+2(k-t)}{k-j}}{\binom{t+2(k-t)}{k}},
$$

(3.3) and (3.4) imply

$$
\begin{equation*}
\left|\partial^{j} \mathcal{F}\right| \geq\left(\left|\mathcal{F}_{\text {in }}\right|+\left|\mathcal{F}_{\text {out }}\right|\right) \frac{\binom{t+2(k-t)}{k-j}}{\binom{t 2(k-t)}{k}}+\beta\left|\mathcal{F}_{\text {out }}\right| \tag{3.5}
\end{equation*}
$$

Finally we show that the assumption on $|\mathcal{F}|$ implies

$$
\left|\mathcal{F}_{\text {out }}\right| \geq|\mathcal{F}|-\binom{2 k-t}{k} \geq \frac{\alpha}{\beta}|\mathcal{F}|
$$

Plugging this into (3.5) yields

$$
\left|\partial^{j} \mathcal{F}\right| \geq\left(\frac{\binom{t+2(k-t)}{k-j}}{\binom{t+2(k-t)}{k}}+\alpha\right)|\mathcal{F}|=\frac{\binom{t+2(k-t-1)}{k-1-j}}{\binom{t 2(k-t-1)}{k-1}}|\mathcal{F}|, \quad \text { as desired }
$$

Let us now execute this plan. (3.2) is essentially trivial. If $G \in \partial^{j} \mathcal{F}_{\text {in }}$ then $G \subset[2 k-t]$. For $F \in \mathcal{F}_{\text {out }}, F \not \subset[2 k-t]$ and the definition of the restricted shadow imply that $G^{\prime} \not \subset[2 k-t]$ for each $G^{\prime} \in \partial_{R}^{j} F$. Thus $G \neq G^{\prime}$.

To prove (3.4) let us show:
Proposition 3.1. The family $\mathcal{F}_{\text {out }}$ is pseudo $(t+1)$-intersecting and $w_{t+1}\left(\mathcal{F}_{\text {out }}\right) \leq$ $k-t-2$.

Proof. Define the two sets E and D as follows.

$$
\begin{aligned}
& E=(1,2, \ldots, t-1, t+1, t+3, \ldots, 2 k-t-3,2 k-t-1,2 k-t), \\
& D=(1,2, \ldots, t, t+2, t+4, \ldots, 2 k-t-2,2 k-t+1)
\end{aligned}
$$

Note that $E \cap D=[t-1]$.
Let us show that $E \prec A$, implying $E \in \mathcal{F} . i \leq a_{i}$ is trivial for $1 \leq i<t$. As to $a_{t+h}, 0 \leq h<k-t$, (3.1) implies $t+2 h+1 \leq a_{t+h}$. Finally, using this inequality for $h=k-t-1$ gives $2 k-t-1 \leq a_{k-1}$ implying $2 k-t \leq a_{k}$. By shiftedness $E \in \mathcal{F}$. On the other hand the t-intersecting property and $|D \cap E|=t-1$ imply $D \notin \mathcal{F}$.

Choose an arbitrary $B=\left(b_{1}, \ldots, b_{k}\right) \in \mathcal{F}_{\text {out }}$. As \mathcal{F} is shifted, $D \prec B$ cannot hold. Note that for $1 \leq i \leq t, i \leq b_{i}$. Also, $B \notin \mathcal{F}_{\text {in }}$ implies $2 k-t+1 \leq b_{k}$. Therefore there exists a $g, 0 \leq g \leq k-t-2$ such that b_{t+1+g} is strictly smaller than the corresponding element of D. That is,

$$
b_{t+1+g} \leq t+1+2 g .
$$

Equivalently

$$
|B \cap[t+1+2 g]| \geq t+1+g
$$

proving the pseudo ($t+1$)-intersecting property. Also, $g \leq k-t-2$ implies $w_{t+1}\left(\mathcal{F}_{\text {out }}\right) \leq k-t-2$ as well.

Now (3.4) follows by applying Theorem 2.10 with t replaced by $t+1$. Let us compute α and β.

$$
\frac{\binom{2 k-t-2}{k-1-j}}{\binom{2 k-t-2}{k-1}} / \frac{\binom{2 k-t}{k-j}}{\binom{2 k-t}{k}}=\frac{(k-j)(k-t+j)}{k(k-t)}=1+\frac{j(t-j)}{k(k-t)} .
$$

Thus

$$
\begin{align*}
\alpha & =\frac{j(t-j)}{k(k-t)} \cdot \frac{\binom{2 k-t}{k-j}}{\binom{2 k-t}{k}} . \tag{3.6}\\
& \frac{\binom{2 k-t-3}{k-1-j}}{\binom{2 k-t-3}{k-1}} / \frac{\binom{2 k-t}{k-j}}{\binom{2 k-t}{k}}=\frac{(k-j)(k-t+j)(k-t+j-1)}{k(k-t)(k-t-1)} \\
& =1+\frac{j\left(k^{2}-t^{2}-t\right)-j^{2}(k-2 t-1)-j^{3}}{k(k-t)(k-t-1)} .
\end{align*}
$$

Thus

$$
\beta=\frac{j\left(k^{2}-t^{2}-t\right)-j^{2}(k-2 t-1)-j^{3}}{k(k-t)(k-t-1)} \cdot \frac{\binom{2 k-t}{k-j}}{\binom{2 k-t}{k}} .
$$

Consequently,

$$
\begin{aligned}
\frac{\beta}{\alpha} & =\frac{k^{2}-t^{2}-t-j(k-2 t+1)-j^{2}}{(t-j)(k-t-1)} \\
& =\frac{k+t+1-j}{t-j}+\frac{t+1+(t-j) j}{(t-j)(k-t-1)}>\frac{k+t+1-j}{t-j} .
\end{aligned}
$$

We proved

$$
\frac{\alpha}{\beta}<\frac{t-j}{k+t+1-j}
$$

On the other hand the assumption of Theorem 1.4 was

$$
|\mathcal{F}| \geq\binom{ 2 k-t}{k}\left(1+\frac{t-j}{k+t+1-j}\right)
$$

implying

$$
\left|\mathcal{F}_{\text {out }}\right| /|\mathcal{F}| \geq \frac{t-j}{k+t+1-j}>\frac{\alpha}{\beta},
$$

concluding the proof.

4 The proof of Proposition 1.6

First of all note that

$$
\left|\binom{[2 k-t]}{k} \backslash\right| \mathcal{A}\left|\left\lvert\,=\sum_{0 \leq i<t+s}\binom{k-1+s}{i}\binom{k+1-s-t}{k-i}=o\left(\binom{2 k-t}{k}\right)\right.\right.
$$

for fixed s, t as $k \rightarrow \infty$.
Let us compute the size of $\partial^{j} \mathcal{B} \backslash\binom{[2 k-t]}{k-j}$. For a fixed $x \in[2 k-t+1, n]$, $\{x\} \cup B_{0} \in \mathcal{B}$ iff $B_{0} \in\binom{[k-1+s]}{k-1}$. Thus the sets $D \in\left(\partial^{j} B \backslash\binom{[2 k-t]}{k}\right)$ are of the form $\{x\} \cup D_{0}$ with $D_{0} \in\binom{[k-1+s]}{k-1-j}$. Thus

$$
\left|\partial^{j} \mathcal{F}\right| \leq\binom{ 2 k-t}{k-j}+(n-2 k+t)\binom{k-1+s}{s+j}
$$

Comparing this with

$$
|\mathcal{F}|=(1-o(1))\binom{2 k-t}{k}+(n-2 k+t)\binom{k-1+s}{k-1}
$$

and recalling the definition of α (cf. Section 3), we see that $\left|\partial^{j} \mathcal{F}\right| /|\mathcal{F}|<$ $(1+\alpha)\binom{2 k-t}{k-t}$ as long as

$$
|\mathcal{B}|<\frac{\alpha\binom{k-1+s}{s}}{\binom{k-1+s}{s+j}}\binom{2 k-t}{k}(1-o(1)) .
$$

$\operatorname{Noting}\binom{k-1+s}{s} /\binom{k-1+s}{s+j}=\prod_{0 \leq i<j} \frac{k-1-i}{s-i}<\frac{(k-1)^{j}}{s(s-1) \ldots \cdot(s-j+1)}$ and $\alpha>\frac{j(t-j)}{k(k-t)}$ we see that

$$
|\mathcal{B}|<\frac{j(t-j) s(s-1) \cdot \ldots \cdot(s-j+1)}{(k-1)^{j+2}}\binom{2 k-t}{k}(1-o(1))
$$

is fine. Setting $\varepsilon(k)=\frac{j(t-j) s(s-1) \ldots .(s-j+1)}{(k-1)^{j+2}}$ we get $|\mathcal{F}|=(1+\varepsilon(k)-o(1))\binom{2 k-t}{k}$.

5 The shadow of stars and semistars

The most important result concerning intersecting families is the Erdős-KoRado Theorem.

Theorem 5.1 ([EKR]). Suppose that $n \geq n_{0}(k, t), \mathcal{F} \subset\binom{[n]}{k}$ ist-intersecting, $k>t>0$. Then

$$
\begin{equation*}
|\mathcal{F}| \leq\binom{ n-t}{k-t} \tag{5.1}
\end{equation*}
$$

As to the bound $n_{0}(k, t)$, its exact value is $(k-t+1)(t+1)$. For $t=1$ it was proved already by Erdős, Ko and Rado. For $t \geq 15$ it was proved by the first author ([F78]). Finally Wilson [W] showed it by a proof using eigenvalues for $2 \leq t \leq 14$ (the proof is valid for all t).

The full t-star, $\mathcal{A}_{0}(n, k, t)=\left\{A \in\binom{[n]}{k}:[t] \subset A\right\}$ shows that (5.1) is best possible. Let us note that for $n=(k-t+1)(t+1),\left|\mathcal{A}_{0}(n, k, t)\right|=\left|\mathcal{A}_{1}(n, k, t)\right|$ and for $t \geq 2$ up to isomorphism these are the only families achieving equality in (5.1).

Let us mention that the Intersecting Shadow Theorem implies $|\mathcal{F}| \leq$ $\left|\partial^{t} \mathcal{F}\right| \leq\binom{ n}{k-t}$ for all $n \geq 2 k-t$. Very recently the first author [F20] showed the slightly stronger universal bound

$$
\begin{equation*}
|\mathcal{F}| \leq\binom{ n-1}{k-t} \quad \text { for all } \quad n>2 k-t, \quad \mathcal{F} \text { is } t \text {-intersecting. } \tag{5.2}
\end{equation*}
$$

Definition 5.2. If $C \subset F$ holds for all $F \in \mathcal{F}$ with a t-set C then \mathcal{F} is called a t-star. If for some $(t+1)$-element set $D,|F \cap D| \geq t$ holds for all $F \in \mathcal{F}$ then \mathcal{F} is called a $t+1$-semistar. When the value of t is clear from the context, we say for short that \mathcal{F} is a star or semistar.

Let us note that the family $\mathcal{A}_{0}(n, k, t) \cup \mathcal{A}_{1}(n, k, t)$ is a semistar with $D=[t+1]$.

Let us fix $n, k, t, t \geq 2$ and use the shorthand notation $\mathcal{A}_{0}, \mathcal{A}_{1}$.
Proposition 5.3. If $\emptyset \neq \mathcal{F} \subset \mathcal{A}_{0} \cup \mathcal{A}_{1}$ then

$$
\begin{equation*}
\left|\partial^{j} \mathcal{F}\right| /|\mathcal{F}| \geq\binom{ t+2}{j+1} /(t+2) \quad \text { for } 1<j<t \tag{5.3}
\end{equation*}
$$

If $\emptyset \neq \mathcal{F} \subset \mathcal{A}_{0}$ then

$$
\begin{equation*}
\left|\partial^{j} \mathcal{F}\right| /|\mathcal{F}| \geq\left|\partial^{j} \mathcal{A}_{0}\right| /\left|\mathcal{A}_{0}\right|>\binom{t}{j} \tag{5.4}
\end{equation*}
$$

Proof. To prove (5.3) just note that $w_{t}(\mathcal{F}) \leq w_{t}\left(\mathcal{A}_{0} \cup \mathcal{A}_{1}\right)=1$. Now the inequality follows from Theorem 2.10.

To prove (5.4) we are going to use Proposition 1.1.
Set $\overline{\mathcal{F}}=\{F \backslash[t] ; F \in \mathcal{F}\}$. Since $\mathcal{F} \subset \mathcal{A}_{0},|\overline{\mathcal{F}}|=|\mathcal{F}|$. For convenience let us introduce the notation $\partial^{0} \overline{\mathcal{F}}=\overline{\mathcal{F}}, \partial^{1} \overline{\mathcal{F}}=\partial \overline{\mathcal{F}}$.

Claim 5.4.

$$
\begin{equation*}
\left|\partial^{j} \mathcal{F}\right|=\sum_{0 \leq i \leq j}\binom{t}{j-i}\left|\partial^{i} \overline{\mathcal{F}}\right| \tag{5.5}
\end{equation*}
$$

Proof. For $0 \leq i \leq j$ define

$$
\mathcal{H}_{i}=\left\{H \in \partial^{j} \mathcal{F}:|H \cap[t]|=i\right\}
$$

That is, \mathcal{H}_{i} consists of the j 'th shadows where we omit $j-i$ elements from $[t]$ and i elements from $F \backslash[t]$. Then $\left|\mathcal{H}_{i}\right|=\left(\begin{array}{c}{ }_{j-i}\end{array}\right)\left|\partial^{i} \overline{\mathcal{F}}\right|$. Since $\partial^{j} \mathcal{F}=\mathcal{H}_{0} \sqcup \ldots \sqcup \mathcal{H}_{j}$ is a partition, (5.5) follows.

Applying (1.1) to $\overline{\mathcal{F}}$ and using (5.5) we infer

$$
\begin{equation*}
\left|\partial^{j} \mathcal{F}\right| /|\mathcal{F}| \geq \sum_{0 \leq i \leq j}\binom{t}{j-i}\binom{n-t}{k-t-i} /\binom{n-t}{k-t} \tag{5.6}
\end{equation*}
$$

For the family $\mathcal{A}_{0}, \overline{\mathcal{A}_{0}}=\binom{[t+1, n]}{k-t}$. Thus $\left|\partial^{i} \overline{\mathcal{A}}_{0}\right|=\binom{n-t}{k-t-i}$. Consequently, $\left|\partial^{j} \mathcal{A}_{0}\right| /\left|\mathcal{A}_{0}\right|=\sum_{0 \leq i \leq j}\binom{t}{j-i}\binom{n-t}{k-t-i} /\binom{n-t}{k-t}$. Comparing with (5.6) the inequality (5.4) follows.

The main result of the present section is the following.
Theorem 5.5. Suppose that $\mathcal{F} \subset\binom{[n]}{k}$ is a t-intersecting $(t+1)$-semistar. Then for all $1<j<t$, (5.3) holds.

Since $\mathcal{A}_{0} \cup \mathcal{A}_{1}$ is a semistar with $D=[t+1]$, Theorem 5.5 generalizes Proposition 5.3.

Proof. Without loss of generality let $D=[t+1]$. That is, $|F \cap[t+1]| \geq t$ for all $F \in \mathcal{F}$. Since shifting maintains this property and does not increase the shadow, we may assume that \mathcal{F} is shifted.

Set $\mathcal{F}_{0}=\{F \in \mathcal{F}:[t+1] \subset \mathcal{F}\}$ and $\overline{\mathcal{F}}_{0}=\left\{F \backslash[t+1]: F \in \mathcal{F}_{0}\right\}$. Define the restricted shadow $\partial_{R}^{j} \mathcal{F}_{0}$ by

$$
\partial_{R}^{j} \mathcal{F}_{0}=\left\{S \cup T: S \in\binom{[t+1]}{t+1-j}, T \in \overline{\mathcal{F}}_{0}\right\}
$$

Define next $\mathcal{T}=\left\{T \in\binom{[t+2, n]}{k-t}: \exists G \in\binom{[t+1]}{t}, G \cup T \in \mathcal{F}\right\}$. For $T \in \mathcal{T}$ we define

$$
\mathcal{G}_{T}=\left\{G \in\binom{[t+1]}{t}: G \cup T \in \mathcal{F}\right\} \quad \text { and } \quad \mathcal{F}_{T}=\left\{G \cup T: G \in \mathcal{G}_{T}\right\} .
$$

Since $\mathcal{G}_{T} \subset\binom{[t+1]}{t}$, (1.1) yields

$$
\begin{equation*}
\left|\partial^{j} \mathcal{G}_{T}\right| \geq\left|\mathcal{G}_{T}\right|\binom{t+1}{t-j} /\binom{t+1}{t}=\left|\mathcal{G}_{T}\right|\binom{t+1}{j+1} /(t+1) \tag{5.7}
\end{equation*}
$$

Let us note that for $T \in \mathcal{T}$ the families \mathcal{F}_{T} partition $\mathcal{F} \backslash \mathcal{F}_{0}$.
Let us divide \mathcal{T} into two parts, $\mathcal{T}=\mathcal{T}_{1} \cup \mathcal{T}_{2}$ where $\mathcal{T}_{1}=\left\{T \in \mathcal{T}:\left|\mathcal{G}_{T}\right|=\right.$ $1\}, \mathcal{T}_{2}=\left\{T \in \mathcal{T}:\left|\mathcal{G}_{T}\right| \geq 2\right\}$. For $T \in \mathcal{T}_{1}$ one has $\left|\partial^{j} \mathcal{G}_{T}\right|=\binom{t}{j}$. Setting $\mathcal{F}_{i}=\bigcup_{T \in \mathcal{T}_{i}} \mathcal{G}_{T}, i=1,2$, we have

$$
\begin{equation*}
\left|\partial_{R}^{j} \mathcal{F}_{1}\right|=\left|\mathcal{F}_{1}\right|\binom{t}{j} \tag{5.8}
\end{equation*}
$$

and using (5.7)

$$
\begin{equation*}
\left|\partial_{R}^{j} \mathcal{F}_{2}\right| \geq\left|\mathcal{F}_{2}\right| \frac{\binom{t+1}{j+1}}{t+1} \tag{5.9}
\end{equation*}
$$

Note that $\binom{t}{j}$ is larger than the coefficient in (5.3). Indeed,

$$
\frac{\binom{t+2}{j+1}}{t+2}=\frac{\binom{t+1}{j}}{j+1}=\frac{t+1}{(j+1)(t-j+1)}\binom{t}{j}<\binom{t}{j} .
$$

From (5.8), (5.9) and the obvious formula $\left|\partial_{R}^{j} \mathcal{F}_{0}\right|=\left|\mathcal{F}_{0}\right|\binom{t+1}{j}$ we infer

$$
\begin{equation*}
\left|\partial^{j} \mathcal{F}\right| \geq \sum_{0 \leq i \leq 2}\left|\partial_{R}^{j} \mathcal{F}_{i}\right| \geq\left|\mathcal{F}_{0}\right|\binom{t+1}{j}+\left|\mathcal{F}_{1}\right| \frac{\binom{t+2}{j+1}}{t+2}+\left|\mathcal{F}_{2}\right| \frac{\binom{t+1}{j+1}}{t+1} \tag{5.10}
\end{equation*}
$$

To conclude the proof we need a relation between \mathcal{F}_{0} and \mathcal{F}_{2}.

Claim 5.6. $(t+1) \cdot\left|\mathcal{F}_{0}\right| \geq\left|\mathcal{F}_{2}\right|$.
Proof of the Claim. First we show that \mathcal{T}_{2} is intersecting. Indeed, if $T \in \mathcal{T}_{2}$ then there are at least two choices of $G \in\binom{[t+1]}{t}, G \in \mathcal{G}_{T}$. Thus for $T, T^{\prime} \in \mathcal{T}_{2}$ we can choose distinct $G, G^{\prime} \in\binom{[t+1]}{t}$ so that $G \cup T, G^{\prime} \cup T^{\prime} \in \mathcal{F}$. Now $\left|(G \cup T) \cap\left(G^{\prime} \cup T^{\prime}\right)\right|=t-1+\left|T \cap T^{\prime}\right|$. Since \mathcal{F} is t-intersecting, $T \cap T^{\prime} \neq \emptyset$.

Applying Theorem 1.3 to \mathcal{T}_{2} yields $\left|\partial \mathcal{T}_{2}\right| \geq\left|\mathcal{T}_{2}\right|$. The inequality $\left|\mathcal{F}_{2}\right| \leq$ $(t+1)\left|\mathcal{T}_{2}\right|$ should be obvious. To conclude the proof of the claim let us show

$$
\left|\mathcal{F}_{0}\right| \geq\left|\partial \mathcal{T}_{2}\right|
$$

More is true. Namely

$$
\begin{equation*}
\overline{\mathcal{F}}_{0} \supset \partial \mathcal{T} \tag{5.11}
\end{equation*}
$$

To prove (5.11) pick an arbitrary $V \in \partial \mathcal{T}$. Then we can choose $G \in\binom{[t+1]}{t}$, $T \in \mathcal{T}$ and $x \in T$ so that $V=T \backslash\{x\}$ and $G \cup T \in \mathcal{F}$. Let y be the unique element in $[t+1] \backslash G$. Obviously $y<x$. Thus $[t+1] \cup V \prec G \cup T$ whence $[t+1] \cup V \in \mathcal{F}$. That is, $V \in \overline{\mathcal{F}}_{0}$.

Now let us rewrite (5.10):

$$
\left|\partial^{j} \mathcal{F}\right| \geq|\mathcal{F}| \frac{\binom{t+2}{j+1}}{t+2}+\left\{\left|\mathcal{F}_{0}\right|\left(\binom{t+1}{j}-\frac{\binom{t+2}{j+1}}{t+2}\right)-\left|\mathcal{F}_{2}\right|\left(\frac{\binom{t+2}{j+1}}{t+2}-\frac{\binom{t+1}{j+1}}{t+1}\right)\right\}
$$

By Claim 5.6 the quantity in $\{\quad\}$ is at least

$$
\begin{gathered}
\left|\mathcal{F}_{0}\right|\left(\binom{t+1}{j}-\frac{\binom{t+2}{j+1}}{t+1}\right)-(t+1)\left(\frac{\binom{t+2}{j+1}}{t+2}-\frac{\binom{t+1}{j+1}}{t+1}\right) \\
=\left|\mathcal{F}_{0}\right|\left(\binom{t+1}{j}-\binom{t+2}{j+1}+\binom{t+1}{j+1}\right)=0
\end{gathered}
$$

completing the whole proof.

6 On the structure and shadow of very large families

Throughout this section $\mathcal{F} \subset\binom{[n]}{k}$ is shifted and t-intersecting. We assume also that $n \geq(k-t+1)(t+1)$ which guarantees by Theorem 5.1 (Full Erdős-Ko-Rado Theorem) that $|\mathcal{F}| \leq\left|\mathcal{A}_{0}\right|$.

Since \mathcal{A}_{0} is a t-star, it is natural to investigate the maximum of \mathcal{F} assuming $\mathcal{F} \not \subset \mathcal{A}_{0}$, i.e., \mathcal{F} is not a t-star. Of course, \mathcal{A}_{1} is a strong candidate, but there is an other one.
Definition 6.1. Define $\mathcal{H}=\mathcal{H}(n, k, t)=\left\{H \in\binom{[n]}{k}:[t] \subset H, H \cap[t+1, k+\right.$ $1] \neq \emptyset\} \cup\{[k+1] \backslash\{x\}: x \in[t]\}$.

Theorem 6.2 (Hilton-Milner-Frankl Theorem). Let $n \geq(k-t+1)(t+1)$. Suppose that $\mathcal{F} \subset\binom{[n]}{k}$ is t-intersecting but \mathcal{F} is not a t-star. Then

$$
\begin{equation*}
|\mathcal{F}| \leq \max \left\{\left|\mathcal{A}_{1}\right|,|\mathcal{H}|\right\} \tag{6.1}
\end{equation*}
$$

Moreover, except for the case $(n, k, t)=(2 k, k, 1)$ equality holds only if \mathcal{F} is isomorphic to \mathcal{A}_{1} or \mathcal{H}.

The case $t=1$ was proved by Hilton and Milner ([HM]). There have been various shorter proofs given cf. [FF2], [KZ], [HK] or [F19]. The case of $t \geq 15$ was proved in [F78], cf. also [F78b]. Ahlswede and Khachatrian [AK2] gave a different proof valid for the full range.

One should note that for $t+2>k-t+1$, i.e., $k \leq 2 t,\left|\mathcal{A}_{1}\right|>|\mathcal{H}|$. This implies

Corollary 6.3. Suppose that $n \geq(k-t+1)(t+1), k \leq 2 t, t>j \geq 1$. Let $\mathcal{F} \subset\binom{[n]}{k}$ be t-intersecting and $|\mathcal{F}|>\left|\mathcal{A}_{1}\right|$. Then

$$
\begin{equation*}
\left|\partial^{j} \mathcal{F}\right| /|\mathcal{F}| \geq\left|\partial^{j} \mathcal{A}_{0}\right| /\left|\mathcal{A}_{0}\right|>\binom{t}{j} \tag{6.2}
\end{equation*}
$$

Our aim is to prove a similar result for the case $k>2 t$ as well.
We need quite some preparation. Let us recall a structural result from [F87]. For a shifted t-intersecting family $\mathcal{F} \subset\binom{[n]}{k}$ define its base $\mathcal{B}=\mathcal{B}(\mathcal{F})$ by

$$
\mathcal{B}=\{F \cap[2 k-t]: F \in \mathcal{F}\} .
$$

Define $\mathcal{B}^{(\ell)}=\{B \in \mathcal{B}:|B|=\ell\}, b_{\ell}=\left|\mathcal{B}^{(\ell)}\right|$.
Proposition 6.4 ([F87]). (i) ~ (iv) hold.
(i) \mathcal{B} is shifted and t-intersecting.
(ii) $b_{\ell}=0$ for $\ell<t$.
(iii) $b_{t} \leq 1$ with $b_{t}=1$ implying that \mathcal{F} is a t-star.
(iv) $|\mathcal{F}| \leq \sum_{t \leq \ell \leq k} b_{\ell}\binom{n-2 k+t}{k-\ell}$.

Let us mention that using Theorem 1.3 (i) implies $\left|\partial^{t} \mathcal{B}^{(\ell)}\right| \geq\left|\mathcal{B}^{(\ell)}\right|$. Since $\partial^{t} \mathcal{B}^{(\ell)} \subset\left(\begin{array}{c}{\left[\begin{array}{c}2 k-t] \\ \ell-t\end{array}\right), ~}\end{array}\right.$

$$
\begin{equation*}
b_{\ell} \leq\binom{ 2 k-t}{\ell-t} \tag{6.3}
\end{equation*}
$$

For $\ell=t+1$ one can analyze the possible structure of $\mathcal{B}^{(\ell)}$. Note that $[t+1] \prec[t] \cup\{t+2\}$ are the two smallest $(t+1)$-sets in the shifting partial order. The third ex aequo are $A_{3}=[t+2] \backslash\{t\}$ and $D_{3}=[t] \cup\{t+3\}$.

Claim 6.5. If $A_{3} \in \mathcal{B}^{(t+1)}$ then $\mathcal{F} \subset \mathcal{A}_{1}$.
Proof. We must show $|F \cap[t+2]| \geq t+1$. If this fails then using shiftedness we can find F with $F \cap[t+2]=[t]$. This implies $F \cap A_{3}=[t-1]$ contradicting Proposition 6.4 (i).

From now on throughout this section we suppose $\mathcal{F} \not \subset \mathcal{A}_{1}$ and thereby $A_{3} \notin \mathcal{B}^{(t+1)}$.

Claim 6.6. If $A_{3} \notin \mathcal{B}^{(t+1)}$ then $\mathcal{B}^{(t+1)}=\left\{[t] \cup\{x\}: t+1 \leq x \leq t+b_{t+1}\right\}$.
Proof. The statement is trivially true by shiftedness for $b_{t+1}=0,1$ or 2 . Suppose $b_{t+1} \geq 3$. Then $D_{3} \in \mathcal{B}^{(t+1)}$. We claim that $[t] \subset B$ for all $B \in$ $\mathcal{B}^{(t+1)}$.

Set $D_{i}=[t] \cup\{t+i\}$ for $i=1,2$. By $D_{1} \prec D_{2} \prec D_{3}$, all three are in $\mathcal{B}^{(t+1)}$. In view of Proposition 6.4 (i), $\left|B \cap D_{i}\right| \geq t, i=1,2,3$, implying $[t] \subset B$. Now Claim 6.6 follows by shiftedness.

Now we are ready to state and prove the main result of this section.
Theorem 6.7. Suppose that $\mathcal{F} \subset\binom{[n]}{k}$ is shifted, t-intersecting, $\mathcal{F} \not \subset \mathcal{A}_{1}$ and $b^{(t+1)} \geq t+1$. Then

$$
\begin{equation*}
\left|\partial^{j} \mathcal{F}\right|>\binom{t}{j}|\mathcal{F}| . \tag{6.4}
\end{equation*}
$$

Proof. For simpler notation set $s=b_{t+1}$. If $\mathcal{F} \subset \mathcal{A}_{0}$, then (6.4) is evident. Suppose that $\mathcal{F} \not \subset \mathcal{A}_{0}$.

Claim 6.8. If $F \in \mathcal{F} \backslash \mathcal{A}_{0}$ then

$$
\begin{equation*}
F \cap[t+s]=[t+s] \backslash\{y\} \quad \text { for some } \quad y \in[t] . \tag{6.5}
\end{equation*}
$$

Proof. In view of Claim 6.6, $\mathcal{B}^{(t+1)}=\{[t] \cup\{x\}: t<x \leq t+s\}$. By Proposition 6.4 (i) $|F \cap B| \geq t$ for all $B \in \mathcal{B}^{(t+1)}$. Since $[t] \not \subset F, x \in F$ for all $t<x \leq t+s$ and $|F \cap[t]|=t-1$.

Define $\mathcal{F}_{1}=\{F \in \mathcal{F}:|F \cap[t+s]|=t+s-1\}$. In view of Claim 6.8, $\mathcal{F} \backslash \mathcal{A}_{0} \subset \mathcal{F}_{1}$. Setting $\mathcal{F}_{0}=\mathcal{F} \backslash \mathcal{F}_{1}, \mathcal{F}_{0} \subset \mathcal{A}_{0}$ follows. Defining the restricted shadow with respect to $[t+s]$ as
$\partial_{R}^{j} \mathcal{F}=\bigcup_{F \in \mathcal{F}} \partial_{R}^{j} F \quad$ where $\quad \partial_{R}^{j} F=\left\{S \in\binom{F}{k-j}: S \backslash[t+s]=F \backslash[t+s]\right\}$,
it should be clear that $|F \cap[t+s]| \neq\left|F^{\prime} \cap[t+s]\right|$ implies $\partial_{R}^{j} F \cap \partial_{R}^{j} F^{\prime}=\emptyset$. Consequently,

$$
\begin{equation*}
\partial_{R}^{j} \mathcal{F}_{0} \cap \partial_{R}^{j} \mathcal{F}_{1}=\emptyset \tag{6.6}
\end{equation*}
$$

For $\mathcal{F}_{0}, \mathcal{F}_{0} \subset \mathcal{A}_{0}$ implies

$$
\begin{equation*}
\left|\partial_{R}^{j} \mathcal{F}_{0}\right|>\binom{t}{j}\left|\mathcal{F}_{0}\right| . \tag{6.7}
\end{equation*}
$$

To deal with \mathcal{F}_{1} define $\mathcal{T} \subset\binom{[t+s+1, n]}{k-t-s+1}$ by

$$
\mathcal{T}=\left\{F \backslash[t+s]: F \in \mathcal{F}_{1}\right\} .
$$

For $T \in \mathcal{T}$ define $\mathcal{G}_{T}=\left\{G \in\binom{[t+s]}{t+s-1}: G \cup T \in \mathcal{F}_{1}\right\}$.
Now (1.1) implies

$$
\left|\partial^{j} \mathcal{G}_{T}\right| \geq\left|\mathcal{G}_{T}\right| \frac{\binom{t+s}{t+s-1-j}}{\binom{t+s}{1}}=\left|\mathcal{G}_{T}\right| \frac{\binom{t+s}{j+1}}{t+s} .
$$

By definition

$$
\left|\mathcal{F}_{1}\right|=\sum_{t \in \mathcal{T}}\left|\mathcal{G}_{T}\right| \quad \text { and } \quad\left|\partial_{R}^{j} \mathcal{F}_{1}\right|=\sum_{t \in \mathcal{T}}\left|\partial^{j} \mathcal{G}_{T}\right|
$$

Consequently,

$$
\begin{equation*}
\left|\partial_{R}^{j} \mathcal{F}_{1}\right| \geq\left|\mathcal{F}_{1}\right| \frac{\binom{t+s}{j+1}}{t+s} \tag{6.8}
\end{equation*}
$$

Let us show that $s \geq t+1$ implies

$$
\frac{\binom{t+s}{j+1}}{t+s}=\frac{\binom{t+s-1}{j}}{j+1} \geq \frac{\binom{2 t}{j}}{j+1} \geq\binom{ t}{j} .
$$

Indeed,

$$
\frac{\binom{2 t}{j}}{\binom{t}{j}}=\prod_{0 \leq i<j} \frac{2 t-i}{t-i} \geq 2^{j} \geq j+1
$$

Thus adding (6.7) and (6.8), and using (6.6) imply (6.4).
Remark. For $j=1,2^{1}=1+1$. However for larger values of j one can considerably relax the condition $b_{t+1} \geq t+1$.

Corollary 6.8. Suppose that $\mathcal{F} \subset\binom{[n]}{k}$ is shifted, t-intersecting, $\mathcal{F} \not \subset \mathcal{A}_{1}$, $t+2 \leq k-t+1$. If

$$
|\mathcal{F}|>t\binom{n-2 k+t}{k-t-1}+\sum_{t+2 \leq \ell \leq k}\binom{2 k-t}{\ell-t}\binom{n}{k-\ell}
$$

then

$$
\begin{equation*}
\left|\partial^{j} \mathcal{F}\right|>\binom{t}{j}|\mathcal{F}| \tag{6.9}
\end{equation*}
$$

Proof. If $\mathcal{F} \subset \mathcal{A}_{0}$ then (6.9) is evident. Otherwise $b_{t}=0$ and thereby $b_{t+1} \geq t+1$ follow from Proposition 6.4. Now (6.9) is a consequence of Theorem 6.7.

7 A general bound

To make notation simpler let us define $\gamma(\ell, t, j)=\binom{t+2(\ell-t)}{t+\ell-j} /\binom{t+2(\ell-t)}{t+\ell}$. Consider a shifted t-intersecting family $\mathcal{F} \subset\binom{[n]}{k}$. Recall the definition of $w_{t}(\mathcal{F})$ as the minimal integer $w, 0 \leq w \leq k-t$ such that for every $F \in \mathcal{F}$ there exists $\ell=\ell(F), 0 \leq \ell \leq w$, with

$$
\begin{equation*}
|F \cap[t+2 \ell]| \geq t+\ell \tag{7.1}
\end{equation*}
$$

Since (17.1) holds with i for $F \in \mathcal{A}_{i}, w_{t}(\mathcal{F})>i$ implies $\mathcal{F} \not \subset \mathcal{A}_{0} \cup \ldots \cup \mathcal{A}_{i}$.

Suppose that

$$
\begin{equation*}
\left|\partial^{j} \mathcal{F}\right| /|\mathcal{F}|<\gamma(w, t, j) \tag{7.2}
\end{equation*}
$$

By Theorem 2.10, $\mathcal{F} \not \subset \mathcal{A}_{0} \cup \ldots \cup \mathcal{A}_{w}$. That is, we can find some $F \in \mathcal{F}$ failing (7.1) for all $0 \leq \ell \leq w$.

Define $E=[t-1] \cup(t+1, t+3, \ldots, t+2 w+1) \cup[t+2 w+2, k+w+1]$.
Then $E \prec F$ and by shiftedness $E \in \mathcal{F}$.
Define $D=[t] \cup(t+2, \ldots, t+2 w) \in\binom{[2 k-t]}{t+w}$. Note that $|E \cap D|=t-1$. This permits to prove
Proposition 7.1. If $G \in \mathcal{F}$ then either (i) or (ii) hold.
(i) $|G \cap[t+1+2 h]| \geq t+1+h$ for some $0 \leq h<w$.
(ii) $|G \cap[2 k-t]|>w+t$.

Proof. Suppose that (ii) does not hold. Let $|G \cap[2 k-t]|=t+h$ for some $0 \leq h \leq w$. Set $D_{h}=D \cap[t+2 h]$. Since $\left|E \cap D_{h}\right|=t-1$, we infer $D_{h} \nprec G \cap[2 k-t]$ by shiftedness and Proposition 6.4. Thus (i) follows.

Define the partition $\mathcal{F}=\mathcal{F}_{\text {in }} \cup \mathcal{F}_{\text {out }}$ by

$$
\begin{aligned}
\mathcal{F}_{\text {in }} & =\{F \in \mathcal{F}:|F \cap[2 k-t]|>w+t\}, \\
\mathcal{F}_{\text {out }} & =\{F \in \mathcal{F}:|F \cap[2 k-t]| \leq w+t\} .
\end{aligned}
$$

With the definition of restricted j-shadows as in Definition 2.6 we have

$$
\begin{equation*}
\left|\partial^{j} \mathcal{F}\right| \geq\left|\partial_{R}^{j} \mathcal{F}_{\text {in }}\right|+\left|\partial_{R}^{j} \mathcal{F}_{\text {out }}\right| \tag{7.3}
\end{equation*}
$$

In view of Proposition [6.4, the family $\{F \cap[2 k-t]: F \in \mathcal{F}\}$ is t intersecting. Thus by Theorem 1.3 we have

$$
\begin{equation*}
\left|\partial_{R}^{j} \mathcal{F}_{\text {in }}\right| \geq \gamma(k-t, t, j)\left|\mathcal{F}_{\text {in }}\right| . \tag{7.4}
\end{equation*}
$$

As to $\mathcal{F}_{\text {out }}$, Proposition 7.1(i) implies that it is pseudo $t+1$-intersecting with $w_{t+1}\left(\mathcal{F}_{\text {out }}\right) \leq w-1$. By Theorem 2.10 we have

$$
\begin{equation*}
\left|\partial_{R}^{j} \mathcal{F}_{\text {out }}\right| \geq \gamma(w-1, t+1, j)\left|\mathcal{F}_{\text {out }}\right| \tag{7.5}
\end{equation*}
$$

Defining α, β by

$$
\alpha=\gamma(w, t, j)-\gamma(k-t, t, j) \quad \text { and } \quad \beta=\gamma(w-1, t+1, j)-\gamma(w, t, j)
$$

we infer from (7.3), (7.4) and (7.5)

$$
\left|\partial^{j} \mathcal{F}\right| \geq \gamma(w, t, j)|\mathcal{F}|+\beta\left|\mathcal{F}_{\text {out }}\right|-\alpha\left|\mathcal{F}_{\text {in }}\right| .
$$

Thus we proved

Proposition 7.2. If $\left|\mathcal{F}_{\text {out }}\right| \geq \frac{\alpha}{\beta}\left|\mathcal{F}_{\text {in }}\right|$ then

$$
\begin{equation*}
\left|\partial^{j} \mathcal{F}\right| \geq \gamma(w, t, j)|\mathcal{F}| \tag{7.6}
\end{equation*}
$$

Note that α and β are independent of n, that is, $\frac{\alpha}{\beta}$ is a constant. Also, to bound $\left|\mathcal{F}_{\text {in }}\right|$ we may use (6.3) and Proposition 6.4:

$$
\left|\mathcal{F}_{\text {in }}\right| \leq \sum_{w<\ell \leq k-t}\binom{2 k-t}{\ell}\binom{n-2 k+t}{k-\ell-t}=(1+o(1))\binom{2 k-t}{w+1}\binom{n-2 k+t}{k-w-t-1}
$$

If (7.6) fails then

$$
\begin{aligned}
\left|\mathcal{F}_{\text {out }}\right| & <\left(\frac{\alpha}{\beta}+o(1)\right)\binom{2 k-t}{w+1}\binom{n-2 k+t}{k-w-t-1}, \text { i.e., } \\
|\mathcal{F}| & <\frac{\alpha+\beta+o(1)}{\alpha}\binom{2 k-t}{w+1}\binom{n-2 k+t}{k-w-t-1}
\end{aligned}
$$

That is, we proved the following
Theorem 7.3. Suppose that $\mathcal{F} \subset\binom{[n]}{k}$ is t-intersecting,

$$
\begin{equation*}
|\mathcal{F}|>\frac{\alpha+\beta+o(1)}{\alpha}\binom{2 k-t}{w+1}\binom{n-2 k+t}{k-w-t-1} . \tag{7.7}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|\partial^{j} \mathcal{F}\right| \geq \gamma(w, t, j)|\mathcal{F}| \tag{7.8}
\end{equation*}
$$

There are many ways that Theorem 7.3 can be improved. The simplest is to replace $\binom{2 k-t}{w+1}$ by $\binom{2 k-t-1}{w+1}$ unless $w=k-t$ (the case that we treated in Theorem (1.4). More substantial is the improvement that except for the part of $\mathcal{F}_{\text {in }}$ contained in $\mathcal{A}_{\ell+1} \cup \mathcal{A}_{\ell+2} \cup \ldots \cup \mathcal{A}_{k-t}$ one can replace the factor $\gamma(k-t, t, j)$ in (7.4) by the larger $\gamma(\ell, t, j)$ leading to a considerably smaller value of α.

For $n \rightarrow \infty,\left|\mathcal{A}_{i+1}\right|=O\left(\left|\mathcal{A}_{i}\right| / n\right)$ showing that asymptotically only $\gamma(w+1, t, j)$ matters. That is, Theorem 7.3 holds with $\alpha=\gamma(w+1, t, j)+\varepsilon$ for any $\varepsilon>0$ and $n>n_{0}(\varepsilon)$.

Let us close the paper by an open problem.
Problem 7.4. Determine or estimate the smallest value of $c=c(k, t, j)$ such that (7.8) holds whenever $n>n_{0}(k, t, j)$ and $|\mathcal{F}|>c\binom{n}{k-w-t-1}$.

References

[AK1] R. Ahlswede, L. H. Khachatrian, The complete intersection theorem for systems of finite sets, European J. Combin. 18 (1997), 125-136.
[AK2] R. Ahlswede, L. H. Khachatrian, The complete nontrivial-intersection theorem for systems of finite sets, J. Combin. Theory Ser. A 76 (1996), 121--138.
[EKR] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, The Quart. J. Math. Oxford, Ser. (2) 12 (1961), 313-320.
[F78] P. Frankl, The Erdős-Ko-Rado theorem is true for $n=c k t$, in: Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I, pp. 365375, Colloq. Math. Soc. János Bolyai, 18, North-Holland, Amsterdam-New York, 1978.
[F78b] P. Frankl, On intersecting families of finite sets, J. Combinatorial Theory A 24 (1978), 146-161.
[F84] P. Frankl, A new short proof for the Kruskal-Katona theorem, Discrete Math. 48 (2-3) (1984), 327-329.
[F84b] P. Frankl, New proofs for old theorems in extremal set theory, in: Combinatorics and applications (Calcutta, 1982), 127-132, Indian Statist. Inst., Calcutta, 1984.
[F87] P. Frankl, The shifting technique in extremal set theory, in: Surveys in combinatorics, London Math. Soc. Lecture Note Ser. 123, Cambridge Univ. Press, pp. 81-110, Cambridge, 1987.
[F91] P. Frankl, Shadows and shifting, Graphs Combin. 7 (1) (1991), 23-29.
[F19] P. Frankl, A simple proof of the Hilton-Milner Theorem, Moscow J. Combinatorics and Number Theory 8 (2019), 97-101.
[F20] P. Frankl, An improved universal bound for t-intersecting families, European J. Combinatorics 87: 103134 (2020).
[FF1] P. Frankl, Z. Füredi, Non-trivial intersecting families, Journal of Combinatorial Theory A 41 (1) (1986), 150-153.
[FF2] P. Frankl, Z. Füredi, Beyond the Erdős-Ko-Rado theorem, J. Combinatorial Theory A 56 (2) (1991), 182-194.
[HM] A. J. W. Hilton, E. C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2) 18 (1967), 369-384.
[HK] G. Hurlbert, V. Kamat, New injective proofs of the Erdős--Ko--Rado and Hilton-Milner theorems, Discrete Math. 341 (6) (2018), 1749-1754.
[Ka1] G. O. H. Katona, Intersection theorems for systems of finite sets, Acta Math. Acad. Sci. Hungar. 15 (1964), 329-337.
[Ka2] G. O. H. Katona, A theorem of finite sets, in: Theory of Graphs, Proc. Colloq. Tihany, 1966, pp. 187-207, Akad. Kiadó, Budapest, 1968.
[Kr] J. B. Kruskal, The number of simplices in a complex, in: Math. Optimization Techniques, pp. 251-278, Univ. of Calif. Press, Berkeley, 1963.
[KZ] A. Kupavskii, D. Zakharov, Regular bipartite graphs and intersecting families, J. Comb. Theory Ser. A 155 (2018), 180-189.
[S] E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Math. Z. 27 (1928), 544-548.
[W] R. M. Wilson, The exact bound in the Erdős-Ko-Rado Theorem, Combinatorica 4 (1984), 247-257.

