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1 On strengthenings of the intersecting shadow

theorem

by P. Frankl and G. O. H. Katona
Rényi Institute, Budapest, Hungary

Abstract

Let n > k > t ≥ j ≥ 1 be integers. Let X be an n-element
set,

(

X
k

)

the collection of its k-subsets. A family F ⊂
(

X
k

)

is called
t-intersecting if |F ∩ F ′| ≥ t for all F,F ′ ∈ F . The j’th shadow
∂jF is the collection of all (k − j)-subsets that are contained in some
member of F . Estimating |∂jF| as a function of |F| is a widely used
tool in extremal set theory. A classical result of the second author
(Theorem 1.3) provides such a bound for t-intersecting families. It is
best possible for |F| =

(2k−t
k

)

.
Our main result is Theorem 1.4 which gives an asymptotically

optimal bound on |∂jF|/|F| for |F| slightly larger, e.g., |F| > 3
2

(2k−t
k

)

.
We provide further improvements for |F| very large as well.

1 Introduction

Throughout the paper n, k, t are positive integers, n > k > t. Let [n] =
{1, 2, . . . , n} be the standard n-element set and

(

[n]
k

)

the collection of all its

k-subsets. For a family F ⊂
(

[n]
k

)

and 0 < j < k define the j’th shadow

∂jF =
{

G ∈
(

[n]
k−j

)

: ∃F ∈ F , G ⊂ F
}

.

Estimating the minimum possible size, |∂jF| in function of |F| has proved
to be one of the most important tools of extremal set theory. As a matter of
fact, the first paper written on this subject, due to Sperner, is heavily relying
on such a bound.
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Proposition 1.1 (Sperner [S]). Suppose that ∅ 6= F ⊂
(

[n]
k

)

, 0 < j < k.
Then

(1.1) |∂jF|/|F| ≥

(

n

k − j

) / (

n

k

)

with equality holding iff F =
(

[n]
k

)

.

The classical Kruskal–Katona Theorem ([Kr], [Ka2]) determines the min-
imum of |∂jF|, given |F|.

For j = 1 the notation ∂F is common and ∂F is called the immediate

shadow.

Definition 1.2. Let 0 ≤ ℓ < k, F ⊂
(

[n]
k

)

. Define the ℓ-shadow σℓ(F) by

σℓ(F) =

{

G ∈

(

[n]

ℓ

)

: ∃F ∈ F , G ⊂ F

}

.

Note that ∂F = σk−1(F) and ∂k−ℓF = σℓ(F).

One of the most widely investigated properties in extremal set theory
is the t-intersecting property. For t ≥ 1, F is said to be t-intersecting if
|F ∩ F ′| ≥ t for all F, F ′ ∈ F . For t = 1, the term intersecting is used as
well.

A widely used result of the second author shows that |∂jF| ≥ |F| for
0 < j ≤ t provided that F is t-intersecting.

Theorem 1.3 (Intersecting Shadow Theorem [Ka1]). Suppose that ∅ 6= F ⊂
(

[n]
k

)

, F is t-intersecting, k − t ≤ ℓ < k. Then

(1.2)
∣

∣σℓ(F)
∣

∣

/

|F| ≥

(

2k − t

ℓ

) / (

2k − t

k

)

with strict inequality unless F =
(

Y

k

)

for some 2k − t-element set Y .

Note that for n ≤ 2k−t the inequality (1.2) can be deduced from Sperner’s
bound (1.1). However for fixed k and n tending to infinity the RHS of (1.1)
tends to 0 while the RHS of (1.2) is at least 1. To be more exact, for ℓ = k−1
its value is k

/

(k − t + 1). For t ≥ 2 this is strictly larger than 1. Our first

result gives a further improvement provided that |F| ≥
(

1 + t−1
k+t

) (

2k−t

k

)

.
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Theorem 1.4. Suppose that F ⊂
(

[n]
k

)

, F is t-intersecting, 1 ≤ j < t < k,

|F| ≥
(

2k−t

k

)

(

1 + t−j

k+t+1−j

)

. Then

(1.3)
∣

∣∂jF|
/

|F| ≥

(

2(k − 1)− t

k − 1− j

) / (

2(k − 1)− t

k − 1

)

.

Let us mention that the requirement on |F| is relatively weak, e.g., it
is weaker than |F| ≥ 3

2

(

2k−t

k

)

. For j = 1, the most widely used case, (1.3)
reduces to

|∂F|/|F| ≥
k − 1

k − t
.

At first sight it might appear to be only a small improvement with respect
to k

k−t+1
, coming from (1.2). However, for k and t fixed the difference is

substantial. Most importantly, the new bound is essentially best possible.

Example 1.5. Fix k > t > 2 and an integer s, 0 ≤ s < k − t − 1. Define

A =
{

A ∈
(

[2k−t]
k

)

: |A ∩ [k − 1 + s]| ≥ t + s
}

, B =
{

B ∈
(

[n]
k

)

, B0 ∪ {x},

B0 ∈
(

[k−1+s]
k−1

)

, x ∈ [2k− t+1, n]
}

. Set F = A∪B. Then F is t-intersecting.

Proposition 1.6. For a proper choice of s and n, Example 1.5 shows that

(1.3) does not hold for k > k0(j) even if

|F| =

(

1 +
j(t− j)s(s− 1) · . . . · (s− j + 1)

(k − 1)j+2
− o(1)

)(

2k − t

k

)

.

The paper is organized as follows. In Section 2 we review some results
concerning shifting and shifted families. Then we prove Theorem 2.10 con-
cerning shadows. In Section 3 we prove Theorem 1.4, in the very short
Section 4 the proof of Proposition 1.6 is provided.

In Section 5 we introduce the notion of a semistar and prove a best
possible lower bound on the shadow of t-intersecting semistars (Theorem
5.5). In Section 6 along with some structural results we prove the best
possible bound

∣

∣∂jF
∣

∣ >
(

t

j

)

|F| for families satisfying |F| > (t + 2)
(

n−t−1
k−t−1

)

,

n > n0(k, t) in a more precise form.
Section 7 contains some more general results.
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2 Preliminaries

Let (a1, . . . , ak) denote the k-element set {a1, . . . , ak} where we know that
a1 < . . . < ak. Let us define ≺, the shifting partial order by setting

(a1, . . . , ak) ≺ (b1, . . . , bk) iff ai ≤ bi for 1 ≤ i ≤ k.

Definition 2.1. The family F is called shifted if (a1, . . . , ak) ≺ (b1, . . . , bk)
and (b1, . . . , bk) ∈ F always imply (a1, . . . , ak) ∈ F .

In their seminal paper [EKR], Erdős, Ko and Rado defined a simple
operation on families of sets called shifting. Repeated application of this
operation eventually transforms a family into a shifted family. Erdős, Ko
and Rado showed that shifting maintains the t-intersecting property. In
[Ka1] it is shown that shifting never increases the ℓ-shadow. Consequently,
it is sufficient to prove Theorem 1.4 for shifted families.

On the other hand, shifted t-intersecting families have some nice proper-
ties.

Proposition 2.2 ([F78]). Suppose that F ⊂
(

[n]
k

)

is shifted and t-intersecting.
Then for every F ∈ F there exists an integer h, 0 ≤ h ≤ k − t such that

(2.1)
∣

∣F ∩ [t + 2h]
∣

∣ ≥ h+ t.

In [F78] the following families were defined:

Ah(n, k, t) =

{

A ∈

(

[n]

k

)

:
∣

∣A ∩ [t+ 2h]
∣

∣ ≥ h + t

}

.

It is easy to see that Ah(n, k, t) is always t-intersecting.
In [F78] it was conjectured that for n ≥ 2k − t,

(2.2) |F| ≤ max
{
∣

∣Ah(n, k, t)
∣

∣ : 0 ≤ h ≤ k − t
}

.

In [FF2] (2.2) was proved for a wide range. However, it was not before the
seminal paper of Ahlswede and Khachatrian [AK1] that (2.2) was established
in its integrity.

It is easy to check that for k and t fixed

lim
n→∞

∣

∣∂jAk−t−1(n, k, t)
∣

∣

/
∣

∣Ak−t−1(n, k, t)
∣

∣ =

(

2(k−1)−t

k − 1− j

)/(

2(k−1)−t

k − 1

)

which shows that (1.3) is essentially best possible.
Based on Proposition 2.2 one can define the following relaxation of the

t-intersecting property.
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Definition 2.3. The family F ⊂
(

[n]
k

)

is said to be pseudo t-intersecting if
for every F ∈ F and some h, 0 ≤ h ≤ k − t, (2.1) holds.

It was shown in [F91] that (1.2) holds for pseudo t-intersecting families
as well.

We need some more definitions.
Let F ⊂

(

[n]
k

)

be pseudo t-intersecting. Define the width w = wt(F) as
the minimum integer such that for every F ∈ F (2.1) holds for some h, 0 ≤
h ≤ w. From Definition 2.3 it is clear that wt(F) exists and wt(F) ≤ k − t.
However, in certain situations it needs to be smaller. For example, define
Fout = F\

(

[2k−t]
k

)

. For F ∈ Fout, |F∩[2k−t]| < k implies wt(Fout) ≤ k−t−1.
This will be very important for our proofs.

Definition 2.4. Let F ⊂
(

X

k

)

be pseudo t-intersecting and w = wt(F). For
F ∈ F define its height h(F ) as

h(F ) = max
{

h : 0 ≤ h ≤ w,
∣

∣F ∩ [t+ 2h]
∣

∣ ≥ t + h
}

.

Claim 2.5. If h(F ) < w then

(2.3)
∣

∣F ∩ [t+ 2h(F )]
∣

∣ = t + h(F ).

Proof. Should
∣

∣F ∩ [t+ 2h(F )]
∣

∣ ≥ t+ h(F ) + 1 hold, we conclude

∣

∣F ∩ [t+ 2(h(F ) + 1)]
∣

∣ ≥ t+ h(F ) + 1,

contradicting the maximal choice of h(F ).

Let us define the tail T = T (F ) for F ∈ F by T (F ) = F \ [t+2h(F )]. In
view of (2.3),

(2.4) |T (F )| = k − t− h(F ) holds if h(F ) < wt(F).

If h(F ) = wt(F) then either (2.4) holds or

|T | < k − t− h(F ).

Definition 2.6. For 0 < j ≤ t and F ∈ F let us define the restricted j’th

shadow ∂j
RF =

{

G ∈
(

F

k−j

)

: T ⊂ G
}

. In human language G is obtained

from F by arbitrarily deleting j vertices from F \ T .
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Claim 2.7. If h(F ) < wt(F) and G ∈ ∂j
RF then (i) and (ii) hold.

(i)
∣

∣G ∩ [t+ 2h(F )]
∣

∣ = t− j + h(F ),

(ii)
∣

∣G ∩ [t+ 2h]
∣

∣ < t− j + h for h(F ) < h ≤ wt(F). �

Applying this claim we infer

Corollary 2.8. Suppose that F, F ′ ∈ F , h(F ) < h(F ′). Then

(2.5) ∂j
RF ∩ ∂j

RF
′ = ∅.

Proof. Using (i) and (ii)

∣

∣G ∩ [t+ 2h(F ′)]
∣

∣ <
∣

∣G′ ∩ [t+ 2h(F ′)]
∣

∣

follows for G ∈ ∂j
RF and G′ ∈ ∂j

RF
′.

Note that (2.5) is immediate also if h(F ) = h(F ′) but T (F ) 6= T (F ′).
Define T =

{

T ⊂ [n] : ∃F ∈ F , T (F ) = T
}

. For T ∈ T define FT = {F ∈

F : T (F ) = T} and FT =
{

F \ T : F ∈ FT

}

. This permits to define the
restricted j’th shadow of FT :

∂j
RFT =

⋃

F∈FT

∂j
RF.

The next lemma is the core of the proofs.

Lemma 2.9. Suppose that F is pseudo t-intersecting, 0 < j ≤ t. Then

F =
⋃

T∈T

FT is a partition, and

(2.6)
∣

∣∂jF
∣

∣ ≥
∑

T∈T

∣

∣∂j
RFT

∣

∣.

Proof. The first part is trivial. To show the second one we need to prove for
T, T ′ ∈ T , T 6= T ′,

∂j
RFT ∩ ∂j

RFT ′ = ∅.

This follows from (2.5) unless both F and F ′ with T (F ) = T and T (F ′) = T ′

satisfy h(F ) = h(F ′) = w = wt(F). (Actually, by (2.3) these are equivalent
to |T |, |T ′| ≤ k − t − w.) In this case T = F \ [t + 2w], T ′ = F ′ \ [t + 2w]
imply ∂j

RFT ∩ ∂j
RFT ′ = ∅.
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With this preparation the next theorem is easy to prove.

Theorem 2.10. Let F ⊂
(

[n]
k

)

be a shifted pseudo t-intersecting of width

w = wt(F). Then for every 0 < j ≤ t,

(2.7)
∣

∣∂j
RF
∣

∣ ≥ |F|

(

t+ 2w

t− j + w

) / (

t+ 2w

t + w

)

.

Proof. Let T be the family of possible tails for F . In view of Lemma 2.9 it
is sufficient to show

(2.8)
∣

∣∂j
RFT

∣

∣ ≥ |FT |

(

t+ 2w

t− j + w

) / (

t + 2w

t+ w

)

.

Recall that FT = {F \ T : F ∈ FT}. If |T | ≥ k − t − w then FT ⊂
(

[t+2(k−t−|T |)]
k−|T |

)

and
∣

∣∂j
RFT

∣

∣ =
∣

∣∂jFT

∣

∣.

If |T | < k− t−w then FT ⊂
(

[t+2w]
k−|T |

)

and again
∣

∣∂j
RFT

∣

∣ =
∣

∣∂jFT

∣

∣. In the

first case t+2(k− t−|T |) = 2(k−|T |)− t, showing that FT is t-intersecting.
In the second case t + 2w > 2(k − |T |)− t by w + |T | < k − t, that is FT is
(t + 1)-intersecting. However, the desired bound readily follows using (1.1)
and the next proposition.

Proposition 2.11. Let 0 < j < t, 0 ≤ h < w and 1 ≤ r ≤ w, then the

following two inequalities hold.

(i)

(

t+ 2h

t+ h− j

) / (

t+ 2h

t + h

)

>

(

t+ 2w

t+ w − j

) / (

t+ 2w

t+ w

)

,

(ii)

(

t + 2w

t + w − j + r

) / (

t+ 2w

t+ w + r

)

>

(

t+ 2w

t + w − j

) / (

t+ 2w

t + w

)

.

Proof. Let f(h) denote the LHS of (i). That is, f(h) =
∏

1≤i≤j

t+h−j+i

h+i
=

∏

1≤i≤j

(

1 + t−j

h+i

)

. Since 1 + t−j

h+i
is a strictly monotone decreasing function of

h, f(h) > f(w) follows.
To prove (ii) let g(r) be the LHS, i.e.,

g(r) =
∏

1≤i≤j

t− j + w + i+ r

w + i− r
.

Since a+r
b−r

is a strictly monotone increasing function of r (for a > 0, b > r),
g(r) > g(0) and thereby (ii) follows.

This concludes the proof of Theorem 2.10 as well.
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3 The proof of Theorem 1.4

Let F ⊂
(

[n]
k

)

be a shifted t-intersecting family, t ≥ 2. If wt(F) ≤ k − t − 1
then for every 1 ≤ j < t, from Theorem 2.10 we infer

∣

∣∂jF
∣

∣ ≥ |F|

(

t+ 2(k − t− 1)

k − 1− j

) / (

t + 2(k − t− 1)

k − 1

)

proving (1.3).
From now on we suppose wt(F) = k − t and fix an A = (a1, . . . , ak) ∈ F

such that

(3.1)
∣

∣A ∩ [t+ 2h]
∣

∣ ≤ t+ h− 1 for 0 ≤ h < k − t.

Applying (2.1) to A yields
∣

∣A∩ [t+2(k− t)]
∣

∣ = k, i.e., A ∈
(

[2k−t]
k

)

. Our plan
for proving (1.3) is the following. We partition F into two families Fin and
Fout where Fin = F ∩

(

[2k−t]
k

)

, Fout = F \ Fin. Then we show that

(3.2) ∂jFin ∩ ∂j
RFout = ∅

and thereby

(3.3)
∣

∣∂jF| ≥
∣

∣∂jFin

∣

∣+
∣

∣∂j
RFout

∣

∣.

For the first term on the RHS we use (1.2) with ℓ = k − j. As for the
second, we prove a stronger inequality

(3.4)
∣

∣∂j
RFout

∣

∣ ≥
∣

∣Fout

∣

∣

(

t+ 1 + 2(k − t− 2)

k − 1− j

) / (

t+ 1 + 2(k − t− 2)

k − 1

)

.

Defining α = α(k, t, j) and β = β(k, t, j) by

α =

(

t+2(k−t−1)
k−1−j

)

(

t+2(k−t−1)
k−1

) −

(

t+2(k−t)
k−j

)

(

t+2(k−t)
k

) , β =

(

t+1+2(k−t−2)
k−1−j

)

(

t+1+2(k−t−2)
k−1

) −

(

t+2(k−t)
k−j

)

(

t+2(k−t)
k

) ,

(3.3) and (3.4) imply

(3.5)
∣

∣∂jF
∣

∣ ≥
(
∣

∣Fin

∣

∣ +
∣

∣Fout

∣

∣

)

(

t+2(k−t)
k−j

)

(

t+2(k−t)
k

) + β
∣

∣Fout

∣

∣.
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Finally we show that the assumption on |F| implies

∣

∣Fout

∣

∣ ≥ |F| −

(

2k − t

k

)

≥
α

β
|F|.

Plugging this into (3.5) yields

∣

∣∂jF
∣

∣ ≥

(
(

t+2(k−t)
k−j

)

(

t+2(k−t)
k

) + α

)

|F| =

(

t+2(k−t−1)
k−1−j

)

(

t+2(k−t−1)
k−1

) |F|, as desired.

Let us now execute this plan. (3.2) is essentially trivial. If G ∈ ∂jFin

then G ⊂ [2k − t]. For F ∈ Fout, F 6⊂ [2k − t] and the definition of the
restricted shadow imply that G′ 6⊂ [2k− t] for each G′ ∈ ∂j

RF . Thus G 6= G′.
To prove (3.4) let us show:

Proposition 3.1. The family Fout is pseudo (t+1)-intersecting and wt+1(Fout) ≤
k − t− 2.

Proof. Define the two sets E and D as follows.

E = (1, 2, . . . , t− 1, t+ 1, t+ 3, . . . , 2k − t− 3, 2k − t− 1, 2k − t),

D = (1, 2, . . . , t, t+ 2, t+ 4, . . . , 2k − t− 2, 2k − t+ 1).

Note that E ∩D = [t− 1].
Let us show that E ≺ A, implying E ∈ F . i ≤ ai is trivial for 1 ≤ i < t.

As to at+h, 0 ≤ h < k− t, (3.1) implies t+2h+1 ≤ at+h. Finally, using this
inequality for h = k − t − 1 gives 2k − t − 1 ≤ ak−1 implying 2k − t ≤ ak.
By shiftedness E ∈ F . On the other hand the t-intersecting property and
|D ∩ E| = t− 1 imply D /∈ F .

Choose an arbitrary B = (b1, . . . , bk) ∈ Fout. As F is shifted, D ≺ B
cannot hold. Note that for 1 ≤ i ≤ t, i ≤ bi. Also, B /∈ Fin implies
2k− t+1 ≤ bk. Therefore there exists a g, 0 ≤ g ≤ k− t−2 such that bt+1+g

is strictly smaller than the corresponding element of D. That is,

bt+1+g ≤ t+ 1 + 2g.

Equivalently
∣

∣B ∩ [t + 1 + 2g]
∣

∣ ≥ t+ 1 + g

proving the pseudo (t+ 1)-intersecting property. Also, g ≤ k − t− 2 implies
wt+1(Fout) ≤ k − t− 2 as well.
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Now (3.4) follows by applying Theorem 2.10 with t replaced by t+ 1.
Let us compute α and β.

(

2k−t−2
k−1−j

)

(

2k−t−2
k−1

)

/(

2k−t

k−j

)

(

2k−t

k

) =
(k − j)(k − t + j)

k(k − t)
= 1 +

j(t− j)

k(k − t)
.

Thus

α =
j(t− j)

k(k − t)
·

(

2k−t

k−j

)

(

2k−t

k

) .(3.6)

(

2k−t−3
k−1−j

)

(

2k−t−3
k−1

)

/ (

2k−t

k−j

)

(

2k−t

k

) =
(k − j)(k − t+ j)(k − t+ j − 1)

k(k − t)(k − t− 1)

= 1 +
j(k2 − t2 − t)− j2(k − 2t− 1)− j3

k(k − t)(k − t− 1)
.

Thus

β =
j(k2 − t2 − t)− j2(k − 2t− 1)− j3

k(k − t)(k − t− 1)
·

(

2k−t

k−j

)

(

2k−t

k

) .

Consequently,

β

α
=

k2 − t2 − t− j(k − 2t+ 1)− j2

(t− j)(k − t− 1)

=
k + t + 1− j

t− j
+

t+ 1 + (t− j)j

(t− j)(k − t− 1)
>

k + t+ 1− j

t− j
.

We proved
α

β
<

t− j

k + t + 1− j
.

On the other hand the assumption of Theorem 1.4 was

|F| ≥

(

2k − t

k

)(

1 +
t− j

k + t+ 1− j

)

implying
∣

∣Fout

∣

∣

/

|F| ≥
t− j

k + t+ 1− j
>

α

β
,

concluding the proof. �
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4 The proof of Proposition 1.6

First of all note that
∣

∣

∣

∣

(

[2k − t]

k

)

\ |A|

∣

∣

∣

∣

=
∑

0≤i<t+s

(

k − 1 + s

i

)(

k + 1− s− t

k − i

)

= o

((

2k − t

k

))

for fixed s, t as k → ∞.
Let us compute the size of ∂jB \

(

[2k−t]
k−j

)

. For a fixed x ∈ [2k − t + 1, n],

{x} ∪ B0 ∈ B iff B0 ∈
(

[k−1+s]
k−1

)

. Thus the sets D ∈
(

∂jB \
(

[2k−t]
k

)

)

are of

the form {x} ∪D0 with D0 ∈
(

[k−1+s]
k−1−j

)

. Thus

∣

∣∂jF
∣

∣ ≤

(

2k − t

k − j

)

+ (n− 2k + t)

(

k − 1 + s

s+ j

)

.

Comparing this with

|F| = (1− o(1))

(

2k − t

k

)

+ (n− 2k + t)

(

k − 1 + s

k − 1

)

and recalling the definition of α (cf. Section 3), we see that
∣

∣∂jF
∣

∣/|F| <

(1 + α)
(

2k−t

k−t

)

as long as

|B| <
α
(

k−1+s

s

)

(

k−1+s

s+j

)

(

2k − t

k

)

(1− o(1)).

Noting
(

k−1+s

s

) / (

k−1+s

s+j

)

=
∏

0≤i<j

k−1−i
s−i

< (k−1)j

s(s−1)·...·(s−j+1)
and α > j(t−j)

k(k−t)
we

see that

|B| <
j(t− j)s(s− 1) · . . . · (s− j + 1)

(k − 1)j+2

(

2k − t

k

)

(1− o(1))

is fine. Setting ε(k) = j(t−j)s(s−1)·...·(s−j+1)
(k−1)j+2 we get |F| = (1+ε(k)−o(1))

(

2k−t

k

)

.
�

5 The shadow of stars and semistars

The most important result concerning intersecting families is the Erdős–Ko–
Rado Theorem.
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Theorem 5.1 ([EKR]). Suppose that n ≥ n0(k, t), F ⊂
(

[n]
k

)

is t-intersecting,
k > t > 0. Then

(5.1) |F| ≤

(

n− t

k − t

)

.

As to the bound n0(k, t), its exact value is (k − t + 1)(t + 1). For t = 1
it was proved already by Erdős, Ko and Rado. For t ≥ 15 it was proved
by the first author ([F78]). Finally Wilson [W] showed it by a proof using
eigenvalues for 2 ≤ t ≤ 14 (the proof is valid for all t).

The full t-star, A0(n, k, t) =
{

A ∈
(

[n]
k

)

: [t] ⊂ A
}

shows that (5.1) is best

possible. Let us note that for n = (k−t+1)(t+1),
∣

∣A0(n, k, t)
∣

∣ =
∣

∣A1(n, k, t)
∣

∣

and for t ≥ 2 up to isomorphism these are the only families achieving equality
in (5.1).

Let us mention that the Intersecting Shadow Theorem implies |F| ≤
∣

∣∂tF| ≤
(

n

k−t

)

for all n ≥ 2k − t. Very recently the first author [F20] showed
the slightly stronger universal bound

(5.2) |F| ≤

(

n− 1

k − t

)

for all n > 2k − t, F is t-intersecting.

Definition 5.2. If C ⊂ F holds for all F ∈ F with a t-set C then F is
called a t-star. If for some (t + 1)-element set D, |F ∩ D| ≥ t holds for all
F ∈ F then F is called a t + 1-semistar. When the value of t is clear from
the context, we say for short that F is a star or semistar.

Let us note that the family A0(n, k, t) ∪ A1(n, k, t) is a semistar with
D = [t+ 1].

Let us fix n, k, t, t ≥ 2 and use the shorthand notation A0, A1.

Proposition 5.3. If ∅ 6= F ⊂ A0 ∪ A1 then

(5.3)
∣

∣∂jF
∣

∣/|F| ≥

(

t+ 2

j + 1

)

/

(t+ 2) for 1 < j < t.

If ∅ 6= F ⊂ A0 then

(5.4)
∣

∣∂jF
∣

∣

/

|F| ≥
∣

∣∂jA0

∣

∣

/

|A0| >

(

t

j

)

.

12



Proof. To prove (5.3) just note that wt(F) ≤ wt(A0 ∪ A1) = 1. Now the
inequality follows from Theorem 2.10.

To prove (5.4) we are going to use Proposition 1.1.
Set F = {F \ [t];F ∈ F}. Since F ⊂ A0, |F| = |F|. For convenience let

us introduce the notation ∂0F = F , ∂1F = ∂F .

Claim 5.4.

(5.5)
∣

∣∂jF
∣

∣ =
∑

0≤i≤j

(

t

j − i

)

∣

∣∂iF
∣

∣.

Proof. For 0 ≤ i ≤ j define

Hi =
{

H ∈ ∂jF : |H ∩ [t]| = i
}

.

That is, Hi consists of the j’th shadows where we omit j− i elements from [t]
and i elements from F\[t]. Then

∣

∣Hi

∣

∣ =
(

t

j−i

)
∣

∣∂iF
∣

∣. Since ∂jF = H0⊔. . .⊔Hj

is a partition, (5.5) follows.

Applying (1.1) to F and using (5.5) we infer

(5.6)
∣

∣∂jF
∣

∣

/

|F| ≥
∑

0≤i≤j

(

t

j − i

)(

n− t

k − t− i

) / (

n− t

k − t

)

.

For the family A0, A0 =
(

[t+1,n]
k−t

)

. Thus
∣

∣∂iA0

∣

∣ =
(

n−t

k−t−i

)

. Consequently,
∣

∣∂jA0

∣

∣

/
∣

∣A0

∣

∣ =
∑

0≤i≤j

(

t

j−i

)(

n−t

k−t−i

)

/

(

n−t

k−t

)

. Comparing with (5.6) the in-

equality (5.4) follows.

The main result of the present section is the following.

Theorem 5.5. Suppose that F ⊂
(

[n]
k

)

is a t-intersecting (t + 1)-semistar.

Then for all 1 < j < t, (5.3) holds.

Since A0 ∪ A1 is a semistar with D = [t + 1], Theorem 5.5 generalizes
Proposition 5.3.

Proof. Without loss of generality let D = [t + 1]. That is, |F ∩ [t + 1]| ≥ t
for all F ∈ F . Since shifting maintains this property and does not increase
the shadow, we may assume that F is shifted.
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Set F0 = {F ∈ F : [t+ 1] ⊂ F} and F0 =
{

F \ [t+ 1] : F ∈ F0

}

. Define

the restricted shadow ∂j
RF0 by

∂j
RF0 =

{

S ∪ T : S ∈

(

[t + 1]

t+ 1− j

)

, T ∈ F0

}

.

Define next T =
{

T ∈
(

[t+2,n]
k−t

)

: ∃G ∈
(

[t+1]
t

)

, G ∪ T ∈ F
}

. For T ∈ T we

define

GT =

{

G ∈

(

[t+ 1]

t

)

: G ∪ T ∈ F

}

and FT =
{

G ∪ T : G ∈ GT

}

.

Since GT ⊂
(

[t+1]
t

)

, (1.1) yields

(5.7)
∣

∣∂jGT

∣

∣ ≥
∣

∣GT

∣

∣

(

t+ 1

t− j

) / (

t+ 1

t

)

=
∣

∣GT

∣

∣

(

t+ 1

j + 1

) /

(t + 1).

Let us note that for T ∈ T the families FT partition F \ F0.
Let us divide T into two parts, T = T1 ∪ T2 where T1 =

{

T ∈ T :
∣

∣GT

∣

∣ =
1
}

, T2 =
{

T ∈ T :
∣

∣GT

∣

∣ ≥ 2
}

. For T ∈ T1 one has
∣

∣∂jGT

∣

∣ =
(

t

j

)

. Setting

Fi =
⋃

T∈Ti

GT , i = 1, 2, we have

(5.8)
∣

∣∂j
RF1

∣

∣ =
∣

∣F1

∣

∣

(

t

j

)

,

and using (5.7)

(5.9)
∣

∣∂j
RF2

∣

∣ ≥
∣

∣F2

∣

∣

(

t+1
j+1

)

t+ 1
.

Note that
(

t

j

)

is larger than the coefficient in (5.3). Indeed,

(

t+2
j+1

)

t+ 2
=

(

t+1
j

)

j + 1
=

t + 1

(j + 1)(t− j + 1)

(

t

j

)

<

(

t

j

)

.

From (5.8), (5.9) and the obvious formula
∣

∣∂j
RF0

∣

∣ =
∣

∣F0

∣

∣

(

t+1
j

)

we infer

(5.10)
∣

∣∂jF
∣

∣ ≥
∑

0≤i≤2

∣

∣∂j
RFi

∣

∣ ≥
∣

∣F0

∣

∣

(

t + 1

j

)

+
∣

∣F1

∣

∣

(

t+2
j+1

)

t+ 2
+
∣

∣F2

∣

∣

(

t+1
j+1

)

t+ 1
.

To conclude the proof we need a relation between F0 and F2.
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Claim 5.6. (t+ 1) ·
∣

∣F0

∣

∣ ≥
∣

∣F2

∣

∣.

Proof of the Claim. First we show that T2 is intersecting. Indeed, if T ∈ T2

then there are at least two choices of G ∈
(

[t+1]
t

)

, G ∈ GT . Thus for T, T
′ ∈ T2

we can choose distinct G,G′ ∈
(

[t+1]
t

)

so that G ∪ T , G′ ∪ T ′ ∈ F . Now
∣

∣(G∪T )∩ (G′ ∪T ′)
∣

∣ = t− 1+ |T ∩T ′|. Since F is t-intersecting, T ∩T ′ 6= ∅.
Applying Theorem 1.3 to T2 yields

∣

∣∂T2

∣

∣ ≥
∣

∣T2

∣

∣. The inequality
∣

∣F2

∣

∣ ≤
(t+1)

∣

∣T2

∣

∣ should be obvious. To conclude the proof of the claim let us show
∣

∣F0

∣

∣ ≥
∣

∣∂T2

∣

∣.

More is true. Namely

(5.11) F0 ⊃ ∂T .

To prove (5.11) pick an arbitrary V ∈ ∂T . Then we can choose G ∈
(

[t+1]
t

)

,
T ∈ T and x ∈ T so that V = T \ {x} and G ∪ T ∈ F . Let y be the unique
element in [t + 1] \ G. Obviously y < x. Thus [t + 1] ∪ V ≺ G ∪ T whence
[t+ 1] ∪ V ∈ F . That is, V ∈ F0.

Now let us rewrite (5.10):

∣

∣∂jF
∣

∣ ≥ |F|

(

t+2
j+1

)

t+ 2
+

{

∣

∣F0

∣

∣

(

(

t+ 1

j

)

−

(

t+2
j+1

)

t + 2

)

−
∣

∣F2

∣

∣

((

t+2
j+1

)

t+ 2
−

(

t+1
j+1

)

t+ 1

)}

.

By Claim 5.6 the quantity in
{ }

is at least

∣

∣F0

∣

∣

(

(

t + 1

j

)

−

(

t+2
j+1

)

t + 1

)

− (t+ 1)

(
(

t+2
j+1

)

t + 2
−

(

t+1
j+1

)

t+ 1

)

=
∣

∣F0

∣

∣

((

t + 1

j

)

−

(

t + 2

j + 1

)

+

(

t+ 1

j + 1

))

= 0,

completing the whole proof.

6 On the structure and shadow of very large

families

Throughout this section F ⊂
(

[n]
k

)

is shifted and t-intersecting. We assume
also that n ≥ (k − t + 1)(t + 1) which guarantees by Theorem 5.1 (Full
Erdős–Ko–Rado Theorem) that |F| ≤

∣

∣A0

∣

∣.
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Since A0 is a t-star, it is natural to investigate the maximum of F as-
suming F 6⊂ A0, i.e., F is not a t-star. Of course, A1 is a strong candidate,
but there is an other one.

Definition 6.1. Define H = H(n, k, t) =
{

H ∈
(

[n]
k

)

: [t] ⊂ H,H ∩ [t+1, k+

1] 6= ∅
}

∪
{

[k + 1] \ {x} : x ∈ [t]
}

.

Theorem 6.2 (Hilton–Milner–Frankl Theorem). Let n ≥ (k − t+ 1)(t+ 1).
Suppose that F ⊂

(

[n]
k

)

is t-intersecting but F is not a t-star. Then

(6.1) |F| ≤ max
{
∣

∣A1

∣

∣, |H|
}

.

Moreover, except for the case (n, k, t) = (2k, k, 1) equality holds only if F is

isomorphic to A1 or H.

The case t = 1 was proved by Hilton and Milner ([HM]). There have
been various shorter proofs given cf. [FF2], [KZ], [HK] or [F19]. The case
of t ≥ 15 was proved in [F78], cf. also [F78b]. Ahlswede and Khachatrian
[AK2] gave a different proof valid for the full range.

One should note that for t + 2 > k − t+ 1, i.e., k ≤ 2t, |A1| > |H|. This
implies

Corollary 6.3. Suppose that n ≥ (k − t + 1)(t + 1), k ≤ 2t, t > j ≥ 1. Let

F ⊂
(

[n]
k

)

be t-intersecting and |F| > |A1|. Then

(6.2)
∣

∣∂jF
∣

∣

/

|F| ≥
∣

∣∂jA0

∣

∣

/
∣

∣A0

∣

∣ >

(

t

j

)

.

Our aim is to prove a similar result for the case k > 2t as well.
We need quite some preparation. Let us recall a structural result from

[F87]. For a shifted t-intersecting family F ⊂
(

[n]
k

)

define its base B = B(F)
by

B =
{

F ∩ [2k − t] : F ∈ F
}

.

Define B(ℓ) = {B ∈ B : |B| = ℓ}, bℓ =
∣

∣B(ℓ)
∣

∣.

Proposition 6.4 ([F87]). (i) ∼ (iv) hold.
(i) B is shifted and t-intersecting.
(ii) bℓ = 0 for ℓ < t.
(iii) bt ≤ 1 with bt = 1 implying that F is a t-star.
(iv) |F| ≤

∑

t≤ℓ≤k

bℓ
(

n−2k+t

k−ℓ

)

.

16



Let us mention that using Theorem 1.3 (i) implies
∣

∣∂tB(ℓ)
∣

∣ ≥
∣

∣B(ℓ)
∣

∣. Since

∂tB(ℓ) ⊂
(

[2k−t]
ℓ−t

)

,

(6.3) bℓ ≤

(

2k − t

ℓ− t

)

.

For ℓ = t + 1 one can analyze the possible structure of B(ℓ). Note that
[t+ 1] ≺ [t] ∪ {t + 2} are the two smallest (t+ 1)-sets in the shifting partial
order. The third ex aequo are A3 = [t+ 2] \ {t} and D3 = [t] ∪ {t+ 3}.

Claim 6.5. If A3 ∈ B(t+1) then F ⊂ A1.

Proof. We must show |F ∩ [t+2]| ≥ t+1. If this fails then using shiftedness
we can find F with F ∩[t+2] = [t]. This implies F ∩A3 = [t−1] contradicting
Proposition 6.4 (i).

From now on throughout this section we suppose F 6⊂ A1 and thereby
A3 /∈ B(t+1).

Claim 6.6. If A3 /∈ B(t+1) then B(t+1) = {[t] ∪ {x} : t + 1 ≤ x ≤ t+ bt+1}.

Proof. The statement is trivially true by shiftedness for bt+1 = 0, 1 or 2.
Suppose bt+1 ≥ 3. Then D3 ∈ B(t+1). We claim that [t] ⊂ B for all B ∈
B(t+1).

Set Di = [t] ∪ {t + i} for i = 1, 2. By D1 ≺ D2 ≺ D3, all three are
in B(t+1). In view of Proposition 6.4 (i), |B ∩ Di| ≥ t, i = 1, 2, 3, implying
[t] ⊂ B. Now Claim 6.6 follows by shiftedness.

Now we are ready to state and prove the main result of this section.

Theorem 6.7. Suppose that F ⊂
(

[n]
k

)

is shifted, t-intersecting, F 6⊂ A1 and

b(t+1) ≥ t+ 1. Then

(6.4)
∣

∣∂jF
∣

∣ >

(

t

j

)

|F|.

Proof. For simpler notation set s = bt+1. If F ⊂ A0, then (6.4) is evident.
Suppose that F 6⊂ A0.

Claim 6.8. If F ∈ F \ A0 then

(6.5) F ∩ [t + s] = [t+ s] \ {y} for some y ∈ [t].
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Proof. In view of Claim 6.6, B(t+1) =
{

[t] ∪ {x} : t < x ≤ t + s
}

. By

Proposition 6.4 (i) |F ∩ B| ≥ t for all B ∈ B(t+1). Since [t] 6⊂ F , x ∈ F for
all t < x ≤ t+ s and |F ∩ [t]| = t− 1.

Define F1 =
{

F ∈ F : |F ∩ [t + s]| = t + s − 1
}

. In view of Claim 6.8,
F \ A0 ⊂ F1. Setting F0 = F \ F1, F0 ⊂ A0 follows. Defining the restricted
shadow with respect to [t+ s] as

∂j
RF =

⋃

F∈F

∂j
RF where ∂j

RF =

{

S ∈

(

F

k − j

)

: S \ [t + s] = F \ [t+ s]

}

,

it should be clear that |F ∩ [t + s]| 6= |F ′ ∩ [t + s]| implies ∂j
RF ∩ ∂j

RF
′ = ∅.

Consequently,

(6.6) ∂j
RF0 ∩ ∂j

RF1 = ∅.

For F0, F0 ⊂ A0 implies

(6.7)
∣

∣∂j
RF0

∣

∣ >

(

t

j

)

∣

∣F0

∣

∣.

To deal with F1 define T ⊂
(

[t+s+1,n]
k−t−s+1

)

by

T =
{

F \ [t + s] : F ∈ F1

}

.

For T ∈ T define GT =
{

G ∈
(

[t+s]
t+s−1

)

: G ∪ T ∈ F1

}

.

Now (1.1) implies

∣

∣∂jGT

∣

∣ ≥
∣

∣GT

∣

∣

(

t+s

t+s−1−j

)

(

t+s

1

) =
∣

∣GT

∣

∣

(

t+s

j+1

)

t + s
.

By definition

∣

∣F1

∣

∣ =
∑

t∈T

∣

∣GT

∣

∣ and
∣

∣∂j
RF1

∣

∣ =
∑

t∈T

∣

∣∂jGT

∣

∣.

Consequently,

(6.8)
∣

∣∂j
RF1

∣

∣ ≥
∣

∣F1

∣

∣

(

t+s

j+1

)

t+ s
.
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Let us show that s ≥ t+ 1 implies

(

t+s

j+1

)

t+ s
=

(

t+s−1
j

)

j + 1
≥

(

2t
j

)

j + 1
≥

(

t

j

)

.

Indeed,
(

2t
j

)

(

t

j

) =
∏

0≤i<j

2t− i

t− i
≥ 2j ≥ j + 1.

Thus adding (6.7) and (6.8), and using (6.6) imply (6.4).

Remark. For j = 1, 21 = 1 + 1. However for larger values of j one can
considerably relax the condition bt+1 ≥ t+ 1.

Corollary 6.8. Suppose that F ⊂
(

[n]
k

)

is shifted, t-intersecting, F 6⊂ A1,

t+ 2 ≤ k − t+ 1. If

|F| > t

(

n− 2k + t

k − t− 1

)

+
∑

t+2≤ℓ≤k

(

2k − t

ℓ− t

)(

n

k − ℓ

)

then

(6.9)
∣

∣∂jF
∣

∣ >

(

t

j

)

|F|.

Proof. If F ⊂ A0 then (6.9) is evident. Otherwise bt = 0 and thereby
bt+1 ≥ t + 1 follow from Proposition 6.4. Now (6.9) is a consequence of
Theorem 6.7.

7 A general bound

To make notation simpler let us define γ(ℓ, t, j) =
(

t+2(ℓ−t)
t+ℓ−j

)

/

(

t+2(ℓ−t)
t+ℓ

)

.

Consider a shifted t-intersecting family F ⊂
(

[n]
k

)

. Recall the definition of
wt(F) as the minimal integer w, 0 ≤ w ≤ k − t such that for every F ∈ F
there exists ℓ = ℓ(F ), 0 ≤ ℓ ≤ w, with

(7.1)
∣

∣F ∩ [t+ 2ℓ]
∣

∣ ≥ t+ ℓ.

Since (7.1) holds with i for F ∈ Ai, wt(F) > i implies F 6⊂ A0 ∪ . . . ∪ Ai.
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Suppose that

(7.2)
∣

∣∂jF
∣

∣

/

|F| < γ(w, t, j).

By Theorem 2.10, F 6⊂ A0 ∪ . . . ∪ Aw. That is, we can find some F ∈ F
failing (7.1) for all 0 ≤ ℓ ≤ w.

Define E = [t− 1]∪ (t+ 1, t+3, . . . , t+2w+1)∪ [t+2w+2, k+w+ 1].
Then E ≺ F and by shiftedness E ∈ F .

Define D = [t] ∪ (t+ 2, . . . , t+ 2w) ∈
(

[2k−t]
t+w

)

. Note that |E ∩D| = t− 1.
This permits to prove

Proposition 7.1. If G ∈ F then either (i) or (ii) hold.
(i)
∣

∣G ∩ [t+ 1 + 2h]
∣

∣ ≥ t + 1 + h for some 0 ≤ h < w.

(ii)
∣

∣G ∩ [2k − t]
∣

∣ > w + t.

Proof. Suppose that (ii) does not hold. Let |G ∩ [2k − t]| = t + h for some
0 ≤ h ≤ w. Set Dh = D ∩ [t + 2h]. Since

∣

∣E ∩ Dh

∣

∣ = t − 1, we infer
Dh 6≺ G ∩ [2k − t] by shiftedness and Proposition 6.4. Thus (i) follows.

Define the partition F = Fin ∪ Fout by

Fin =
{

F ∈ F : |F ∩ [2k − t]| > w + t
}

,

Fout =
{

F ∈ F : |F ∩ [2k − t]| ≤ w + t
}

.

With the definition of restricted j-shadows as in Definition 2.6 we have

(7.3)
∣

∣∂jF
∣

∣ ≥
∣

∣∂j
RFin

∣

∣ +
∣

∣∂j
RFout

∣

∣.

In view of Proposition 6.4, the family
{

F ∩ [2k − t] : F ∈ F
}

is t-
intersecting. Thus by Theorem 1.3 we have

(7.4)
∣

∣∂j
RFin

∣

∣ ≥ γ(k − t, t, j)
∣

∣Fin

∣

∣.

As to Fout, Proposition 7.1 (i) implies that it is pseudo t+1-intersecting with
wt+1

(

Fout

)

≤ w − 1. By Theorem 2.10 we have

(7.5)
∣

∣∂j
RFout

∣

∣ ≥ γ(w − 1, t+ 1, j)
∣

∣Fout

∣

∣.

Defining α, β by

α = γ(w, t, j)− γ(k − t, t, j) and β = γ(w − 1, t+ 1, j)− γ(w, t, j)

we infer from (7.3), (7.4) and (7.5)
∣

∣∂jF
∣

∣ ≥ γ(w, t, j)|F|+ β
∣

∣Fout

∣

∣− α
∣

∣Fin

∣

∣.

Thus we proved
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Proposition 7.2. If
∣

∣Fout

∣

∣ ≥ α
β

∣

∣Fin

∣

∣ then

(7.6)
∣

∣∂jF
∣

∣ ≥ γ(w, t, j)|F|.

Note that α and β are independent of n, that is, α
β
is a constant. Also,

to bound
∣

∣Fin

∣

∣ we may use (6.3) and Proposition 6.4:

∣

∣Fin

∣

∣ ≤
∑

w<ℓ≤k−t

(

2k − t

ℓ

)(

n− 2k + t

k − ℓ− t

)

= (1+o(1))

(

2k − t

w + 1

)(

n− 2k + t

k − w − t− 1

)

.

If (7.6) fails then

∣

∣Fout

∣

∣ <

(

α

β
+ o(1)

)(

2k − t

w + 1

)(

n− 2k + t

k − w − t− 1

)

, i.e.,

|F| <
α + β + o(1)

α

(

2k − t

w + 1

)(

n− 2k + t

k − w − t− 1

)

.

That is, we proved the following

Theorem 7.3. Suppose that F ⊂
(

[n]
k

)

is t-intersecting,

(7.7) |F| >
α + β + o(1)

α

(

2k − t

w + 1

)(

n− 2k + t

k − w − t− 1

)

.

Then

(7.8)
∣

∣∂jF
∣

∣ ≥ γ(w, t, j)|F|.

There are many ways that Theorem 7.3 can be improved. The simplest
is to replace

(

2k−t

w+1

)

by
(

2k−t−1
w+1

)

unless w = k − t (the case that we treated
in Theorem 1.4). More substantial is the improvement that except for the
part of Fin contained in Aℓ+1 ∪ Aℓ+2 ∪ . . . ∪ Ak−t one can replace the factor
γ(k − t, t, j) in (7.4) by the larger γ(ℓ, t, j) leading to a considerably smaller
value of α.

For n → ∞,
∣

∣Ai+1

∣

∣ = O
(
∣

∣Ai

∣

∣/n
)

showing that asymptotically only
γ(w + 1, t, j) matters. That is, Theorem 7.3 holds with α = γ(w+1, t, j)+ ε
for any ε > 0 and n > n0(ε).

Let us close the paper by an open problem.

Problem 7.4. Determine or estimate the smallest value of c = c(k, t, j) such
that (7.8) holds whenever n > n0(k, t, j) and |F| > c

(

n

k−w−t−1

)

.
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