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Abstract

Let n > k >t > 7 > 1 be integers. Let X be an n-element
set, ()]i ) the collection of its k-subsets. A family F C (‘)k( ) is called
t-intersecting if |[F"' N F’'| > t for all F,F’ € F. The j’th shadow
&7 F is the collection of all (k — j)-subsets that are contained in some
member of F. Estimating |07 F| as a function of |F| is a widely used
tool in extremal set theory. A classical result of the second author
(Theorem [I.3]) provides such a bound for t-intersecting families. It is
best possible for |F| = (%k_t).

Our main result is Theorem [[.4] which gives an asymptotically
optimal bound on |07 F|/|F| for | F| slightly larger, e.g., | F| > %(%k_t).
We provide further improvements for |F| very large as well.

1 Introduction

Throughout the paper n,k,t are positive integers, n > k > t. Let [n] =
{1,2,...,n} be the standard n-element set and ([Z}) the collection of all its

k-subsets. For a family F C ([Z}) and 0 < j < k define the j'th shadow
IF = {G e("):IFeFGC F}

Estimating the minimum possible size, |07 F| in function of | F| has proved
to be one of the most important tools of extremal set theory. As a matter of
fact, the first paper written on this subject, due to Sperner, is heavily relying
on such a bound.
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Proposition 1.1 (Sperner [S]). Suppose that ) # F C ([Z}), 0<j<k.
Then

1) P FI|F| > (,{f j) / (Z)

with equality holding iff F = (I1)).

The classical Kruskal-Katona Theorem ([Kr], [Ka2]) determines the min-
imum of |9 F|, given |F|.

For j = 1 the notation 0F is common and OF is called the immediate
shadow.

Definition 1.2. Let 0 </ <k, F C ([Z]). Define the (-shadow o¢(F) by

O'g(f):{GE (@) :HFe]-",GCF}.

Note that OF = op_1(F) and OF~*F = o,(F).

One of the most widely investigated properties in extremal set theory
is the t-intersecting property. For ¢t > 1, F is said to be t-intersecting if
|FNF'| >t forall F;F' € F. For t = 1, the term intersecting is used as
well.

A widely used result of the second author shows that |0/ F| > |F| for
0 < 7 <t provided that F is t-intersecting.

Theorem 1.3 (Intersecting Shadow Theorem [Kall). Suppose that ) # F C
([Z]), F is t-intersecting, k —t < ¢ < k. Then

12 /e (00 ()

with strict inequality unless F = (},:) for some 2k — t-element set Y.

Note that for n < 2k—t the inequality (L2]) can be deduced from Sperner’s
bound (II). However for fixed k£ and n tending to infinity the RHS of (L))
tends to 0 while the RHS of ([I.2]) is at least 1. To be more exact, for £ = k—1
its value is k / (k —t 4 1). For ¢ > 2 this is strictly larger than 1. Our first

result gives a further improvement provided that |F| > (1 + Z;Ji) (zkk_t).



Theorem 1.4. Suppose that F C ( ) F is t-intersecting, 1 < j <t < k,
FI > () (14 552)- Then

E4t+1—j

wy s E= (N0 (YT,

Let us mention that the requirement on |F| is relatively weak, e.g., it
is weaker than |F| > %(%_t). For j = 1, the most widely used case, (L3))

k

reduces to
k — 1
|0F|/|.F| e Y

At first sight it might appear to be only a small improvement with respect
to k_LtH, coming from (L2). However, for k and ¢ fixed the difference is
substantial. Most importantly, the new bound is essentially best possible.

Example 1.5. Fix £ >t > 2 and an integer s, 0 < s < k —t — 1. Define
A={ae N ank—1+s)zt+s), B={Be (}),Bu{al,

By € ([k 1+s]) r€2k—t+1 n]} Set F = AUB. Then F is t-intersecting.

Proposition 1.6. For a proper choice of s and n, Example shows that
(L3) does not hold for k > ko(j) even if

7| = <1+j(t_j)8(s(_k1_)'1')};2' (s—j+1) _0(1)) <2kk_ t)'

The paper is organized as follows. In Section 2] we review some results
concerning shifting and shifted families. Then we prove Theorem 210 con-
cerning shadows. In Section [B] we prove Theorem [[4] in the very short
Section M] the proof of Proposition is provided.

In Section [B] we introduce the notion of a semistar and prove a best
possible lower bound on the shadow of ¢-intersecting semistars (Theorem
B.0). In Section [ along with some structural results we prove the best

possible bound }8]./T } |.F | for families satisfying |F| > (¢ + 2)(2_;_1),

n > ng(k,t) in a more premse form.
Section [7] contains some more general results.



2 Preliminaries

Let (ay,...,ax) denote the k-element set {ai,...,a;} where we know that
ay < ...<ag. Let us define <, the shifting partial order by setting

(al,...,ak)<(b1,...,bk) iff a; < b; for 1<i<k.

Definition 2.1. The family F is called shifted if (a1,...,ax) < (by,...,bx)
and (by,...,b;) € F always imply (aq,...,ax) € F.

In their seminal paper [EKR], Erdés, Ko and Rado defined a simple
operation on families of sets called shifting. Repeated application of this
operation eventually transforms a family into a shifted family. Erdds, Ko
and Rado showed that shifting maintains the t-intersecting property. In
[Kal] it is shown that shifting never increases the ¢-shadow. Consequently,
it is sufficient to prove Theorem [I.4] for shifted families.

On the other hand, shifted t-intersecting families have some nice proper-
ties.

Proposition 2.2 ([F'78]). Suppose that F C ([Z]) is shifted and t-intersecting.
Then for every F' € F there exists an integer h, 0 < h < k —t such that

(2.1) |[FO[t+2h]| > h+t.
In [F78] the following families were defined:

An(n, k,t) = {Ae ([Z]) L |AN [t + 25| 2h+t}.

It is easy to see that Ap(n, k,t) is always t-intersecting.
In [F78] it was conjectured that for n > 2k — ¢,

(2.2) | F| < max {|Ap(n, k, )] : 0 < h < k—t}.

In [FE2] (2.2) was proved for a wide range. However, it was not before the
seminal paper of Ahlswede and Khachatrian [AK1] that (2.2)) was established
in its integrity.

It is easy to check that for k and t fixed

lim [0 A1 (n ko )]/ [ A (ko 1)] = (2,5(]{__11)__;) / (2(12_—1)1_t)

which shows that (IL3]) is essentially best possible.
Based on Proposition 2.2] one can define the following relaxation of the
t-intersecting property.



Definition 2.3. The family F C ([Z]) is said to be pseudo t-intersecting if
for every F' € F and some h, 0 < h < k — ¢, (2.1)) holds.

It was shown in [F91] that (I.2)) holds for pseudo t-intersecting families
as well.

We need some more definitions.

Let F C ([Z}) be pseudo t-intersecting. Define the width w = wy(F) as
the minimum integer such that for every F' € F (21I) holds for some h, 0 <
h < w. From Definition 2.3 it is clear that w;(F) exists and wy(F) < k —t.
However, in certain situations it needs to be smaller. For example, define
Four = F\ (). For F € Fou, |FN[2k—t]| < k implies w;(Fou) < k—t—1.
This will be very important for our proofs.

Definition 2.4. Let F C ()k() be pseudo t-intersecting and w = w;(F). For
F € F define its height h(F') as

h(F):max{h:OShgw,

FNlt+2h)| >t+h}.

Claim 2.5. If h(F) < w then

(2.3) |[F N[t +2n(F)]| =t + h(F).

Proof. Should |F N [t + 2h(F)]| >t + h(F) + 1 hold, we conclude
|[FN[t+2(h(F)+1)]| > t+h(F)+1,

contradicting the maximal choice of h(F). O

Let us define the tail T'=T(F) for F € F by T(F) = F\ [t + 2h(F)]. In
view of (2.3)),

(2.4) |T(F)|=k—t—h(F) holdsif h(F)<w(F).
If h(F) = wy(F) then either (2.4]) holds or
IT| < k—1t—h(F).

Definition 2.6. For 0 < j <t and F' € F let us define the restricted j'th
shadow &;F = {G € (kfj) T C G}. In human language G is obtained
from F' by arbitrarily deleting j vertices from F'\ T



Claim 2.7. If h(F) < w(F) and G € ORF then (i) and (ii) hold.
(i) |Gt +2n(F)]| =t —j+ h(F),
(ii) [GN[t+2h]| <t—j—+h for h(F) < h < w(F). O

Applying this claim we infer

Corollary 2.8. Suppose that F, F' € F, h(F) < h(F"). Then

(2.5) ORF NORF = 0.
Proof. Using (i) and (ii)

|G N[t +20(F)]| < |G N [+ 2h(F")]]

follows for G € 0L F and G’ € 0L F". O

Note that (Z3) is immediate also if A(F) = h(F’) but T(F) # T(F").
Define 7 = {T C [n] : 3F € F,T(F) =T}. For T € T define Fr = {F €
F:T(F)=T}and Fr = {F\T : F € Fr}. This permits to define the
restricted j’th shadow of Fr:

The next lemma is the core of the proofs.

Lemma 2.9. Suppose that F is pseudo t-intersecting, 0 < j < t. Then

F = U Fr is a partition, and
TeT

(2.6) EEaE= A}

TeT

Proof. The first part is trivial. To show the second one we need to prove for
T,T'eT, T#T,

e Fr N OBFr = 0.
This follows from (Z.) unless both F' and F’ with T(F) =T and T(F') = T"
satisfy h(F) = h(F') = w = wy(F). (Actually, by (2Z3]) these are equivalent
to |T|,|T" <k —t—w.) Inthis case T'= F \ [t +2w], T" = F"\ [t + 2uw]

imply 0% Fr N OpFr = 0. O



With this preparation the next theorem is easy to prove.

Theorem 2.10. Let F C ([Z]) be a shifted pseudo t-intersecting of width
w = wy(F). Then for every 0 < j <t,

o o=, /()

Proof. Let T be the family of possible tails for F. In view of Lemma it
is sufficient to show

; t+ 2w t+ 2w
2.8 o Fr| > |F .
(28) [OrFr| > | ﬂ(t—j+w)//<t+w)
Recall that Fr = {F\T : F € Fp}. If |[T| > k—t — w then Fr C

(3 s (07| = 07|

If |T| < k—t—wthen Fr C ([It‘z;”ﬂ) and again }%fT‘ = ‘@-?T‘. In the
first case t+2(k —t —|T|) = 2(k —|T|) — t, showing that Fy is t-intersecting.
In the second case t + 2w > 2(k — |T'|) —t by w + |T| < k —t, that is Fr is
(t + 1)-intersecting. However, the desired bound readily follows using (L)

and the next proposition.

Proposition 2.11. Let 0 < j < t, 0 < h < w and 1 < r < w, then the
following two inequalities hold.

EETTE - () )
0 () () () /()

Proof. Let f(h) denote the LHS of (i). That is, f(h) = J] Hi=dt —

h+i
1<i<j

t—j . t—j - . . .
1<1:[<j (1 + h—ﬂ) Since 1+ ;=% is a strictly monotone decreasing function of

h, f(h)> f(w) follows.
To prove (ii) let g(r) be the LHS, i.e.,

t—jtwtitr
g(r):H wHi—r

1<i<j

Since $F* is a strictly monotone increasing function of r (for a > 0, b > r),

g(r) > ¢(0) and thereby (ii) follows. O
This concludes the proof of Theorem as well. O
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3 The proof of Theorem 1.4

Let F C ([Z]) be a shifted t-intersecting family, ¢ > 2. If wy(F) < k—t—1
then for every 1 < j < ¢, from Theorem 210 we infer

\ajf\z\f\<t+,f(_k1__t;1))/(HQ(:—T_D)

proving ([L.3]).

From now on we suppose w(F) =k —t and fix an A = (ay,...,ax) € F
such that
(3.1) [AN[t+2h)| <t+h—1 for 0<h<k-—t

Applying (2.1)) to A yields ‘Aﬂ [t+2(k —t)” =k, ie, A€ ([%k_ﬂ). Our plan
for proving (L3]) is the following. We partition F into two families F;, and
Fou where F, = F (P71), Fou = F \ Fin. Then we show that

(3.2) & Fin N Fous = 0
and thereby
(3.3) |V F| > |07 Fia| + |0 Fout]-

For the first term on the RHS we use (L2) with ¢ = k — j. As for the
second, we prove a stronger inequality

; t+14+2k—t—2 t+14+2(k—t—-2
) o4l = 7l (T2 TITY) (),

Defining o = «(k, ¢, j) and 5 = p(k,t,j) by

(t+i(kl—t—_1)) (t—i—i(k'—t)) (t+14};2({c—;—2)) (t+i(k_—t))
_ —1-j —J _ —1—j —J
o= (t+2(:_—1t—1)) o (t+2(:—t))’ g = (t—l—l—l—i(_kl—t—m) - (t+2(:—t))’
B3) and @) imply
| (“3)
(35) ‘8jf‘ Z (‘-En‘ +‘fout‘)(t+Tkj_t))+ﬁ‘fout‘
k



Finally we show that the assumption on |F| implies

2k —t Q@
}Fout‘2|'/—_.|_( L )EE|}—|

Plugging this into (3.0) yields

t+2(k—t) t4+2(k—t—1)
- ) ()
‘81‘/7‘ = <(t+2(k]—t)) _'_a) “7:‘ - (t+2(k—t]—1)>

k k—1

|F|, as desired.

Let us now execute this plan. (3.2) is essentially trivial. If G € &’ F,
then G C [2k — t]. For F € Fou, F' ¢ [2k — t] and the definition of the
restricted shadow imply that G’ ¢ [2k —t] for each G’ € 9L F. Thus G # G'.

To prove ([B.4]) let us show:

Proposition 3.1. The family Foy is pseudo (t+1)-intersecting and w1 (Four) <
k—t—2.

Proof. Define the two sets E and D as follows.

E=(1,2,...,t—1,t+1,t+3,...,2k—t—3,2k—t—1,2k —t),
D=(1,2,...,t,t+2,t+4,....,2k—t—2,2k—t+1).

Note that EN D = [t —1].

Let us show that £ < A, implying F € F. i < q; is trivial for 1 <17 < t.
As to agyp, 0 < h < k—t, (31) implies t + 2h + 1 < a4y Finally, using this
inequality for h = k —t — 1 gives 2k —t — 1 < ai_; implying 2k — t < ay.
By shiftedness £ € F. On the other hand the t-intersecting property and
|IDNE|=t—1imply D ¢ F.

Choose an arbitrary B = (by,...,bx) € Fou. As F is shifted, D < B
cannot hold. Note that for 1 < i < ¢, i < b;. Also, B ¢ F;, implies
2k —t+1 < b;. Therefore there exists a g, 0 < g < k—t—2 such that b4,
is strictly smaller than the corresponding element of D. That is,

bipr4g ST+ 1+ 2g.

Equivalently

BNt+1+2g]|>t+1+g
proving the pseudo (¢ + 1)-intersecting property. Also, g < k — ¢ — 2 implies
Wil (Four) < k —t — 2 as well. O



Now (3.4)) follows by applying Theorem 210 with ¢ replaced by ¢ + 1.
Let us compute o and f.

Goo) /G5) k=)=t 4g) | it =)
7/ ¢ k(k —1) k(k—1)
Thus
_gt-5 G5)
(3.6) e K1) (zkk_t).
(o) /GE)  k—pDE—t+i)k—t+j-1)
G5/ O KRk i)
IR Pk -2t 1) - 50
=1+ M=)k —t—1) '
Thus .
B:j@?—t%—o—j%k—Qp—n—g3_Q;)
k(k—t)(k—t—1) (>
Consequently,
B K-t —t—jk-2t+1)—j
a (t—=g)k—t—1)
:k+t+1—j+_t+1+@—jﬁ Jkttti—j
t—J (t—=J)k—t-1) t—j
We proved

o t—3

< ).
g k+t+1—7
On the other hand the assumption of Theorem [I.4] was

2%k —t t—j
> 14—
A= () ()

t—J
‘fout‘ / |F| > [

implying

.
/6 )

concluding the proof.
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4 The proof of Proposition

First of all note that

=z ()0 ()

for fixed s,t as k — oo.

Let us compute the size of &8\ ([Qk t]) For a fixed = € [2k —t + 1,n],
{z} UBy € Biff By € ([k_Hs}). Thus the sets D € (033\ (zkk t)) are of

k—1

the form {z} U Dy with Dy € ([::}i’j]) Thus

. 2k — —1
\&J-‘\g(k ,t)+(n—2k+t)<k +s)
k— s+

Comparing this with

7= oy (M) s (1)

and recalling the definition of a (cf. Section [)), we see that |67F } J|F| <
(1+ ) (%_t) as long as

R | ) [

( s+j )
Noting (k 1JFS) / (k;lrjs) = 0<1_[i<j ki;i < 8(8_1glff,l(l];j+l) and o > ]EZ ]t)) we
see that -

B < L)l (‘]{;1_)'1')];2' (st 1) (2’“]; t)(l o))

is fine. Setting e(k) = 2= Rh oI we get | F| = (1+2(k)—o(1)) ().

5 The shadow of stars and semistars

The most important result concerning intersecting families is the Erdos—Ko—
Rado Theorem.

11



Theorem 5.1 ([EKR]). Suppose thatn > ny(k,t), F C ([Z}) is t-intersecting,
k>t>0. Then

(5.1 7= (3 21)

As to the bound ng(k,t), its exact value is (k — ¢+ 1)(t +1). For t =1
it was proved already by Erdds, Ko and Rado. For t > 15 it was proved
by the first author ([E78]). Finally Wilson [W] showed it by a proof using
eigenvalues for 2 < ¢ < 14 (the proof is valid for all ¢).

The full t-star, Ag(n, k,t) = {A € ([Z]) :[t] C A} shows that (5.1]) is best
possible. Let us note that for n = (k—t+1)(t+1), |Ao(n, k, )| = |Ai(n, k,1)]
and for t > 2 up to isomorphism these are the only families achieving equality
in (5.0).

Let us mention that the Intersecting Shadow Theorem implies |F| <
|0'F| < (,",) for all n > 2k — t. Very recently the first author [F20] showed
the slightly stronger universal bound

-1
(5.2) |F| < (Z B t) for all n>2k—t, F is t-intersecting.

Definition 5.2. If C' C F holds for all F' € F with a t-set C' then F is
called a t-star. If for some (¢ 4 1)-element set D, |F'N D| > t holds for all
F € F then F is called a t + 1-semistar. When the value of ¢ is clear from
the context, we say for short that F is a star or semistar.

Let us note that the family Ay(n, k,t) U Ai(n, k,t) is a semistar with
D=[t+1].
Let us fix n, k,t, t > 2 and use the shorthand notation Ag, A;.

Proposition 5.3. If ) # F C Ay U A, then

(5.3) |7 F|/|F| > Ci) J(t+2) for 1<j<t.
If ) #+# F C Ay then
(5.4) 9 F| /|1F] > [0 Aol / 1 Ao] > C)

12



Proof. To prove (5.3) just note that wy(F) < wi(Ay U .A;) = 1. Now the
inequality follows from Theorem 2.10

To prove (B.4]) we are going to use Proposition [LT]
Set F = {F\[t]; F' € F}. Since F C Ay, |F| = |F|. For convenience let

us introduce the notation 0°F = F, O'F = OF.
Claim 5.4.

. t —
(5.5) =Y (j _Z_) Padl
0<i<y
Proof. For 0 <14 < j define
H,={H e &F:|HN[t]| =1i}.

That is, H; consists of the j’th shadows where we omit j —7 elements from ]
and i elements from F\[t]. Then |H;| = (..)|0"F|. Since & F = Hol. . .UH,

t
j—i

is a partition, (5.0) follows. O
Applying (L)) to F and using (5.5) we infer

(5.6)  |oF[/1F= Oéj (jii) (ﬂ;fi) / C;:i)'

For the family Ay, Ay = ([t;rz"]). Thus }0izo‘ = (ki;fl) Consequently,
}07.40‘ / ‘Ao‘ = > (Jil) (k’_ifl) / (Z:E) Comparing with (5.6) the in-
0<i<j

equality (54) follows. O
The main result of the present section is the following.

Theorem 5.5. Suppose that F C ([Z}) is a t-intersecting (t + 1)-semistar.
Then for all 1 < j < t, (53)) holds.

Since Ag U A; is a semistar with D = [t + 1], Theorem generalizes
Proposition (.3l

Proof. Without loss of generality let D = [t 4+ 1]. That is, |[F N[t + 1| > ¢t
for all I/ € F. Since shifting maintains this property and does not increase
the shadow, we may assume that F is shifted.

13



Set Fo={F € F:[t+1] C F}and Fo={F\[t+1]: F € F}. Define
the restricted shadow &%F by

a;foz{SUT:Se< [ti] ) T e ]-"0}

Define next T = {TE (HM) 3G € ([tH) GUTEF}. For T € T we
define

gT:{Ge ([“;1]) :GUTE]—"} and Fr={GUT:GeGr}).

Since Gr C ( ) (1) yields

o o1 /()i o

Let us note that for 7' € T the families Fr partition F \ Fy.

Let us divide 7T into two parts, 7 = 71 U T, where 77 = {T eT: ‘QT‘ =
1}, Ty = {T eT: ‘QT‘ > 2}. For T € 7, one has ‘8jQT‘ = (j) Setting
Fi= U Gr,i=1,2, we have

TeT;
: t
(5.8) |0rF1| = |71 <])
and using (5.7
(t+1)
1
(5.9) |00 F>| > \Fz}til

Note that (;) is larger than the coefficient in (5.3]). Indeed,

E@ - ff)l e 1>t<t+—1 TS C) - C)

From (5.8), (5.9) and the obvious formula ‘85%]:0‘ = ‘]:0‘ (tJ;.l) we infer

| . t1 () %)
(5.10)  |PF|= > |ohF| > \fo\< j )HE\HQHB\Hl-
0<i<2

To conclude the proof we need a relation between Fy and Fs.

14



Claim 5.6. (t+1) - |Fo| > | F2|.

Proof of the Claim. First we show that 75 is intersecting. Indeed, if T € 75
then there are at least two choices of G € ([ttl]), G € Gp. Thusfor T, 7" € 7T,

we can choose distinct G, G’ € ([tt”) so that GUT, G'UT € F. Now
}(GUT) N (G’UT’)} =t—14|TNT’|. Since F is t-intersecting, T NT" # ().

Applying Theorem to 75 yields ‘075‘ > ‘TQ} The inequality }]-"2‘ <
(t+1) }75} should be obvious. To conclude the proof of the claim let us show

[Fol = [075.
More is true. Namely
(5.11) Fo D OT.

To prove (B5.11]) pick an arbitrary V' € 97. Then we can choose G € ([tt”),
TeT and x € T sothat V=T\{z} and GUT € F. Let y be the unique
element in [t + 1] \ G. Obviously y < z. Thus [t + 1]UV < G U T whence
[t+1]uV € F. That is, V € F,. O

Now let us rewrite (5.10):

}03']-"} > |f|%—l— {‘]:0‘ ((t“fy‘l) B %) — ‘]—"2‘ (Eﬂilg _ E]_—i‘:li) }

By Claim the quantity in { } is at least

rr1y () (5D (H)
\]:0\(( i )_H—1>_(t+1)<t+2_t+1>

(7)) () -

completing the whole proof. O

6 On the structure and shadow of very large
families
Throughout this section F C ([Z]) is shifted and t-intersecting. We assume

also that n > (k —t + 1)(¢t + 1) which guarantees by Theorem [B.1] (Full
Erdés—Ko-Rado Theorem) that |F| < |Ao|.

15



Since A is a t-star, it is natural to investigate the maximum of F as-
suming F ¢ Ay, i.e., F is not a t-star. Of course, A; is a strong candidate,
but there is an other one.

Definition 6.1. Define H = H(n, k,t) = {H e (MY [t]c HHNt+1,k+
0o {lk+ 1\ {o}: z € [},

Theorem 6.2 (Hilton-Milner—Frankl Theorem). Let n > (k —t+1)(t +1).
Suppose that F C ([Z}) is t-intersecting but F is not a t-star. Then

M}

Moreover, except for the case (n,k,t) = (2k,k,1) equality holds only if F is
isomorphic to Ay or H.

(6.1) | F| < max{|4

The case t = 1 was proved by Hilton and Milner ([HM]). There have
been various shorter proofs given cf. [FEF2|, [KZ], [HK] or [F19]. The case
of t > 15 was proved in [E78], cf. also [E78b]. Ahlswede and Khachatrian
[AK2] gave a different proof valid for the full range.

One should note that for t +2 > k —t+ 1, i.e., k < 2t, |Ay| > |H]|. This
implies

Corollary 6.3. Suppose thatn > (k—t+1)(t+1), k <2t,t>j > 1. Let
F (M) be t-intersecting and |F| > |Ai|. Then

(6.2) F| [ 1F] > [P A ] A > C)

Our aim is to prove a similar result for the case k > 2t as well.

We need quite some preparation. Let us recall a structural result from
[F87]. For a shifted t-intersecting family F C ([Z}) define its base B = B(F)
by

B:{Fﬂ[Qk—t]:FG}"}.

Define BY = {B € B: |B| = (}, b, = |BY)].

Proposition 6.4 ([E87]). (i) ~ (iv) hold.
(i) B is shifted and t-intersecting.
(ii) by =0 for £ <t.
(iii) b < 1 with by = 1 implying that F is a t-star.
() 171 < 3 b(M27).

<1<
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Let us mention that using Theorem I3 (i) implies |88 | > |B®)]. Since
450 < (3,

2k —t
6.3 by < :
(6.3) £= ( (—t )
For ¢ = t 4+ 1 one can analyze the possible structure of B®). Note that

[t + 1] < [t] U {t + 2} are the two smallest (¢ + 1)-sets in the shifting partial
order. The third ex aequo are A3 = [t + 2|\ {t} and D3 = [t] U {t + 3}.

Claim 6.5. If A; € B then F C A;.

Proof. We must show |F'N[t+2]| > t+ 1. If this fails then using shiftedness
we can find F' with FN[t42] = [t]. This implies FN A3 = [t —1] contradicting
Proposition [6.4 (i). O

From now on throughout this section we suppose F ¢ A; and thereby

A3 ¢ B(H_l).
Claim 6.6. If Az ¢ BUD then BUHY = {[{ju{z}:t+1 <2 <t+b}.

Proof. The statement is trivially true by shiftedness for b;,; = 0, 1 or 2.

Suppose b1 > 3. Then Ds € BV, We claim that [t] C B for all B €
B(H'l).

Set D; = [tjU{t+ i} for i = 1,2. By Dy < Dy < Dj, all three are
in B, In view of Proposition (i), |IBND;| > t, i =1,2,3, implying
[t] € B. Now Claim [6.6] follows by shiftedness. O

Now we are ready to state and prove the main result of this section.

Theorem 6.7. Suppose that F C ([Z]) is shifted, t-intersecting, F ¢ Ay and
bt > ¢ 4 1. Then

(6.4) |V F| > (;)|]-"|.

Proof. For simpler notation set s = b;41. If F C Ay, then (6.4]) is evident.
Suppose that F ¢ Ay.

Claim 6.8. If F € F\ A then
(6.5) Flt+sl=[t+s|\{y} forsome yelt.
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Proof. In view of Claim 6.6, B = {[{ju{z} : t < o < t+s}. By
Proposition (i) |[FNB| >tforall B € B, Since [t] ¢ F, x € F for
allt <z <t+sand |[FN[]|=t—1. O

Define /y = {F € F: [FN[t+s]|=t+s—1}. In view of Claim 6.8
F\ Ay C Fi. Setting Fo = F \ Fy, Fo C Ap follows. Defining the restricted
shadow with respect to [t + s] as

é%fzki%ﬁ’w@m %Fz{SE(%ﬁ):S\ﬁ+ﬂ:F\ﬁ+ﬂ}

it should be clear that |F N[t + s]| # |F' N[t + s]| implies 05 F N OLF" = 0.
Consequently,

(6.6) I Fo N ORF) = 0.

For Fy, Fo C Ay implies
| t
(6.7) Fo| > (j) A

To deal with Fy define 7  ({75717)) by

k—t—s+1
T={F\[t+s]:FeF}.

For T' € T define Gy = {G € (tﬁ’f]l) :GUT e .7-"1}.
Now (L)) implies

(erer1-3)

(")

()

t+ s

|°Gr| > |Gr| = |Gr|

By definition
[Fil=>_Igz| and [0hF] =) |Gr|
teT teT
Consequently,
(t—l—s)
. 1
(68) 04| = |72
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Let us show that s > t 4+ 1 implies

) _ (), @)y

t+s J+1 7 74+1 7 \y
Indeed,

2t) .

(- 2t — 1 ;

2 = >2 > j+1.

0 Il 7= =2=i+

J 0<i<y
Thus adding ([67)) and (6.8), and using (6.6) imply (€.4]). O

Remark. For j = 1, 2! = 1 + 1. However for larger values of j one can
considerably relax the condition b1 >t + 1.

Corollary 6.8. Suppose that F C ([Z}) is shifted, t-intersecting, F ¢ Ay,
tr2<k—t+1. If

n—2k4+t 2k —t n
A= 00) 2 (F500)
k—t—1 i (-t k—/

(6.9) & F| > C) 7.

then

Proof. If F C Ay then (69) is evident. Otherwise by = 0 and thereby
biy1 > t+ 1 follow from Proposition Now (6.9) is a consequence of
Theorem [6.7] O

7 A general bound

To make notation simpler let us define v(¢,t,j) = (tﬁ(f__] .t)) / (Hff;t)).

Consider a shifted t¢-intersecting family F C ([Z]). Recall the definition of

wy(F) as the minimal integer w, 0 < w < k — ¢ such that for every F' € F
there exists ¢ = ((F), 0 < ¢ < w, with

(7.1) |[FNt+20] >t + L.

Since () holds with i for F' € A;, wy(F) > i implies F ¢ AgU ... U A,.
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Suppose that
(7.2) | F| [ |F| <~(w,t, ).

By Theorem 210l F ¢ Ay U...U A,. That is, we can find some F' € F
failing (1) for all 0 < ¢ < w.

Define B = [t —1JU(t+1,t+3,...,t+2w+ 1) U[t+2w+2,k+w+1].
Then E < F and by shiftedness £ € F.

Define D = [t]U (t+2,...,t+2w) € ([il_:uﬂ). Note that |[END| =t — 1.
This permits to prove

Proposition 7.1. If G € F then either (i) or (ii) hold.
(i) }Gﬂ[t+1+2h]} >t+ 1+ h for some 0 < h <w.
(ii) |G N2k —t]| > w+t.

Proof. Suppose that (ii) does not hold. Let |G N [2k — t]| =t + h for some
0 <h<w Set Dy =DNI[t+2h]. Since |[EN Dy =t — 1, we infer
Dy, A G N2k — t] by shiftedness and Proposition 64l Thus (i) follows. [

Define the partition F = F;, U Foue by
Fn={F € F:|FN<2k—t]] > w+t},
Four = {F € F:|FN[2k —t]] <w+t}.
With the definition of restricted j-shadows as in Definition we have
(7.3) |7 F| > |0%F | + | % Fous]-

In view of Proposition 6.4 the family {F N [2k —t] : F € F} is t-
intersecting. Thus by Theorem [[.3] we have

As to Fout, Proposition [1] (i) implies that it is pseudo ¢+ 1-intersecting with
Wiiq (fout) < w — 1. By Theorem [2.10] we have

(7.5) |0 Foue| = 7w — 1, ¢+ 1, 5)| Fou|.
Defining «, 3 by
a=~y(w,tj)—vyk—=1ttj) and B=v(w-11t+17)—(w,tj)
we infer from (7.3)), (C4) and (7.5
|7 F| = 3w, £, )IF| + B Fous| = @] Fin-

Thus we proved
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Proposition 7.2. If | Fou| > 4| Fu| then

(7.6) 09 F| = y(w,t, j)|F].

a

Note that « and [ are independent of n, that is, 3 is a constant. Also,

to bound |Fi,| we may use (6.3) and Proposition 6.4}
2k —t\ (n—2k+t 2k —t n—2k+t
in| < = (1+o(1 :
[ wd%_t( ( )(k:—f—t) (Lol ))(w+1)<k—w—t—1)

If (7.6]) fails then

o 2k —t n—2k+t .
Pl < (S0 (200 () e
m<a+ﬁ+o(1)<2k—t>< n—2k+t )
S .

w+1)\k—w—-t—1
That is, we proved the following

Theorem 7.3. Suppose that F C ([Z]) 18 t-intersecting,

a+B+o0(1) (2k—t n—2k+t
(7.7) 71> a (w+1)<k—w—t—1)'
Then
(7.8) | F| = ~(w,t, 5)|F].

There are many ways that Theorem can be improved. The simplest
is to replace (ff;f) by (21;1;1) unless w = k — t (the case that we treated
in Theorem [[4]). More substantial is the improvement that except for the
part of F;, contained in Ay U ApoU ... U A, one can replace the factor
v(k —t,t,7) in (C4) by the larger v(¢,t, j) leading to a considerably smaller
value of a.

For n — oo, Ai+1‘ = O(‘Ai‘ / n) showing that asymptotically only
v(w + 1,¢,j) matters. That is, Theorem [[3 holds with o = y(w+1,t,j) + ¢
for any € > 0 and n > ng(e).

Let us close the paper by an open problem.

Problem 7.4. Determine or estimate the smallest value of ¢ = ¢(k, t, j) such
that (Z.8) holds whenever n > ng(k,t,5) and |F| > c(,_", )

k—w—t—1
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