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Abstract The Turán number of a graph H, ex(n,H), is the maximum number of edges

in a graph on n vertices which does not have H as a subgraph. Let Pk be the path with k

vertices, the square P 2
k of Pk is obtained by joining the pairs of vertices with distance one or

two in Pk. The powerful theorem of Erdős, Stone and Simonovits determines the asymptotic

behavior of ex(n, P 2
k ). In the present paper, we determine the exact value of ex(n, P 2

5 ) and

ex(n, P 2
6 ) and pose a conjecture for the exact value of ex(n, P 2

k ).
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1 Introduction

In this paper, all graphs considered are undirected, finite and contain neither loops nor

multiple edges. Let G be such a graph, the vertex set of G is denoted by V (G), the edge set

of G by E(G), and the number of edges in G by e(G). We denote the degree of a vertex v

by d(v), the minimum degree in graph G by δ(G), the neighborhood of v by N(v) and the

chromatic number of graph G by χ(G).
∗email:chuanqixm@gmail.com
†email:katona.gyula.oh@renyi.hu
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The following graphs will be studied in the present paper. Let Pk be the path with k

vertices, the square P 2
k of Pk is obtained by joining the pairs of vertices with distance one or

two in Pk, see Figure 1. The Turán number of a graph H, ex(n,H), is the maximum number

of edges in a graph on n vertices which does not have H as a subgraph. Our goal in this

paper is to study ex(n, P 2
k ) and the extremal graphs for P 2

k . The Erdős-Stone-Simonovits

Theorem [3,4] asymptotically determines ex(n,H) for all non-bipartite graphs H:

ex(n,H) = (1− 1
χ(H)−1)

(
n
2

)
+ o(n2).

Since χ(P 2
k ) = 3, k ≥ 3, we have ex(n, P 2

k ) = n2

4 + o(n2). Yet, it still remains interesting to

determine the exact value of ex(n, P 2
k ).

v1 v2 v3 v4 v5 vk−2 vk−1 vk

Figure 1: Graph P 2
k

The very first result of extremal graph theory gave the value of ex(n, P 2
3 ).

Theorem 1 (Mantel [8]). The maximum number of edges in an n-vertex triangle-free graph

is bn2

4 c, that is ex(n, P 2
3 ) = bn2

4 c. Furthermore, the only triangle-free graph with bn2

4 c edges

is the complete bipartite graph Kbn
2 c,d

n
2 e.

The case k = 4 was solved by Dirac in a more general context.

Theorem 2 (Dirac [1]). The maximum number of edges in an n-vertex P 2
4 -free graph is

bn2

4 c, that is ex(n, P 2
4 ) = bn2

4 c, (n ≥ 4). Furthermore, when n ≥ 5, the only extremal graph

is the complete bipartite graph Kbn
2 c,d

n
2 e.

For k = 5, our results are given in the next two theorems, where we separate the result

for the Turán number and the extremal graphs for P 2
5 .

Theorem 3. The maximum number of edges in an n-vertex P 2
5 -free graph is bn2+n

4 c, that is

ex(n, P 2
5 ) = bn2+n

4 c, (n ≥ 5).

Definition 1. Let Ei
n denote a graph obtained from a complete bipartite graph Ki,n−i plus a

maximum matching in the class which has i vertices, see Figure 2.
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Theorem 4. Let n be a natural number, when n = 5, the extremal graphs for P 2
5 are

E2
5 , E3

5 and G0, where G0 is obtained from a K4 plus a pendent edge. When n ≥ 6, if

n ≡ 1, 2 (mod 4), the extremal graphs for P 2
5 are Ed

n
2 e

n and Eb
n
2 c

n , otherwise, the extremal

graph for P 2
5 is Ed

n
2 e

n .

. . .

. . . Y

i

n− i

Ki,n−i

X

Figure 2: Graph Ei
n

Definition 2. Let T denote the flattened tetrahedron, see T in Figure 3.

Although the determination of ex(n, T ) is not within the main lines of our paper, we

need the exact value of ex(n, T ) in order to determine ex(n, P 2
6 ).

Theorem 5. The maximum number of edges in an n-vertex T -free graph (n 6= 5) is,

ex(n, T ) =



⌊
n2

4

⌋
+
⌊
n

2

⌋
, n 6≡ 2 (mod 4),

n2

4 + n

2 − 1, n ≡ 2 (mod 4).

a

fd e

cb

T

· · ·

· · · Y

i

n− i

Ki,n−i

X

T in

. . .

. . . Y

Ki,n−i

i

n− i

X

Sin

Figure 3: Graphs T , T in and Sin
Definition 3. Let T in denote a graph obtained from a complete bipartite graph Ki,n−i plus

a maximum matching in the class X which has i vertices and a maximum matching in the

class Y which has n − i vertices, see T in in Figure 3. Let Sin denote a graph obtained from

Ki,n−i plus an i-vertex star in the class X, see Sin in Figure 3.
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Theorem 6. Let n (n 6= 5, 6) be a natural number,

when n ≡ 0 (mod 4), the extremal graph for T is T
n
2
n ,

when n ≡ 1 (mod 4), the extremal graphs for T are T d
n
2 e

n and Sd
n
2 e

n ,

when n ≡ 2 (mod 4), the extremal graphs for T are T
n
2
n , T

n
2 +1
n and S

n
2
n ,

when n ≡ 3 (mod 4), the extremal graphs for T are T d
n
2 e

n and Sd
n
2 e

n .

These two results are known for sufficiently large n′s [7], here we are able to determine

the value for small n′s.

Using Theorems 5 and 6, we are able to prove the next two results for P 2
6 .

Theorem 7. The maximum number of edges in an n-vertex P 2
6 -free graph (n 6= 5) is:

ex(n, P 2
6 ) =



⌊
n2

4

⌋
+
⌊
n− 1

2

⌋
, n ≡ 1, 2, 3 (mod 6),⌊

n2

4

⌋
+
⌈
n

2

⌉
, otherwise .

Definition 4. Suppose 3 6 | n, and 1 ≤ j ≤ i. Let F i,j
n be the graph obtained by adding vertex

disjoint triangles (possibly 0) and one star with j vertices in the class X of size i of Ki,n−i,

see Figure 4 (Of course 3 | (i− j) is supposed). On the other hand if 3 | i then add i
3 vertex

disjoint triangles in the class X of size i. The so obtained graph is denoted by H i
n, see Figure

4.

Theorem 8. Let n ≥ 6 be a natural number. The extremal graphs for P 2
6 are the following

ones.

· · ·· · ·

. . . Y

i

n− i

Ki,n−i

X

F i,j
n

· · ·

· · · Yn− i

i

Ki,n−i

X

H i
n

Figure 4: Graphs F i,j
n and H i

n

4



When n ≡ 1 (mod 6) then F d
n
2 e,j

n and Hb
n
2 c

n ,

when n ≡ 2 (mod 6) then F
n
2 ,j
n and F

n
2 +1,j
n ,

when n ≡ 3 (mod 6) then F d
n
2 e,j

n and Hd
n
2 e+1

n ,

when n ≡ 0, 4, 5 (mod 6) then H
n
2
n , H

n
2 +1
n and Hd

n
2 e

n , respectively. (j can have all the

values satisfying the conditions j ≤ i and 3 | (i− j)).

On the basis of these results let us pose a conjecture for the general case.

Conjecture 1.

ex(n, P 2
k ) ≤ max

i
(⌊

2k
3

⌋
− 2

)
2 + i(n− i)

 .
If
⌊

2k
3

⌋
−1 divides i then the following graph gives equality here. Take a complete bipartite

graph with parts of size i and n− i, add vertex disjoint complete graphs on
⌊

2k
3

⌋
− 1 vertices

to the part with i elements.

Observe that Theorems 1, 2, 3 and 7 justify our conjecture for the cases when k =

3, 4, 5, 6. We will give some hints in Section 3 how we arrived to this conjecture. A weaker

form of this conjecture is the following one.

Conjecture 2.

ex(n, P 2
k ) = n2

4 +

(⌊
k
3

⌋
− 1

)
n

2 +Ok(1)

where Ok(1) depends only on k.

2 Proofs of the main results

2.1 The Turán number and the extremal graphs for P 2
5

Proof of Theorem 3. The fact that ex(n, P 2
5 ) ≥

⌊
n2+n

4

⌋
follows from the construction Ed

n
2 e

n .

We prove the inequality

ex(n, P 2
5 ) ≤

⌊
n2 + n

4

⌋
(n ≥ 5) (1)

by induction on n.
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We check the base cases first. Since our induction step will go from n− 4 to n, we have

to find a base case in each residue class mod 4.

Let G be an n-vertex P 2
5 -free graph. When n ≤ 3, Kn is the graph with the most

number of edges and does not contain P 2
5 , e(Kn) ≤

⌊
n2+n

4

⌋
. This settles the cases n = 1, 2, 3.

However, when n = 4, e(K4) = 6 > b42+4
4 c, the statement is not true. Then we show that

the statement is true for n = 8. If P 2
4 * G, e(G) ≤ b82

4 c. If P
2
4 ⊆ G and K4 * G, each vertex

v ∈ V (G−P 2
4 ) can be adjacent to at most 2 vertices of the copy of P 2

4 , since e(G−P 2
4 ) ≤ 5,

we have e(G) ≤ 5 + 8 + 5 ≤ 18 = b82+8
4 c. If K4 ⊆ G, then each vertex v ∈ V (G −K4) can

be adjacent to at most one vertex of the K4, since e(G− P 2
4 ) ≤ 6, we have e(G) ≤ 16.

Suppose (1) holds for all k ≤ n− 1, the proof is divided into 3 parts,

Case 1. If P 2
4 * G, then by Theorem 2, e(G) ≤ bn2

4 c.

Case 2. If P 2
4 ⊆ G and K4 * G, then each vertex v ∈ V (G − P 2

4 ) can be adjacent to

at most 2 vertices of the copy of P 2
4 , otherwise, P 2

5 ⊆ G. Since G− P 2
4 is an (n− 4)-vertex

P 2
5 -free graph, we have

e(G) ≤ 5 + 2(n− 4) + e(G− P 2
4 ) ≤ 2n− 3 + ex(n− 4, P 2

5 ).

By the induction hypothesis, ex(n− 4, P 2
5 ) ≤

⌊
(n−4)2+n−4

4

⌋
then

e(G) ≤ 2n− 3 + ex(n− 4, P 2
5 ) ≤ 2n− 3 +

⌊
(n− 4)2 + n− 4

4

⌋
=
⌊
n2 + n

4

⌋
(n ≥ 5). (2)

Case 3. If K4 ⊆ G, then each vertex v ∈ V (G −K4) can be adjacent to at most one

vertex of the K4, otherwise, P 2
5 ⊆ G. Since G −K4 is an (n − 4)-vertex P 2

5 -free graph, we

have

e(G) ≤ 6 + (n− 4) + e(G−K4) ≤ n+ 2 + ex(n− 4, P 2
5 ).

By the induction hypothesis, ex(n− 4, P 2
5 ) ≤

⌊
(n−4)2+n−4

4

⌋
, thus

e(G) ≤ n+ 2 +
⌊

(n− 4)2 + n− 4
4

⌋
= 5 +

⌊
n2 − 3n

4

⌋
≤
⌊
n2 + n

4

⌋
(n ≥ 5). (3)

Proof of Theorem 4. We determine the extremal graphs for P 2
5 by induction on n. Let G be

an n-vertex P 2
5 -free graph satisfying (1) with equality. It is easy to check, when n = 5, the
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extremal graphs for P 2
5 are G0, E2

5 and E3
5 . When n = 6, 7, 8, the extremal graphs for P 2

5

are E3
6 and E4

6 , E4
7 , E4

8 , respectively.

Suppose Theorem 4 is true for k ≤ n− 1, when n ≥ 9, the proof is divided into 3 parts.

Case 1. If P 2
4 * G, the equality in (1) cannot hold, then we cannot find any extremal

graph for P 2
5 in this case.

Case 2. If P 2
4 ⊆ G and K4 * G, the equality holds in inequality (2) if and only if each

vertex v ∈ V (G−P 2
4 ) is adjacent to 2 vertices of the P 2

4 and G−P 2
4 is an extremal graph on

n− 4 vertices for P 2
5 . Let a, b, c and d be four vertices of a copy of P 2

4 , dP 2
4
(b) = dP 2

4
(c) = 3.

By the induction hypothesis, G − P 2
4 is obtained from a complete bipartite graph Ki,n−4−i

plus a maximum matching in X ′ , where X ′ is the class of G − P 2
4 with size i. It is easy to

check that every vertex v ∈ V (G− P 2
4 ) can be adjacent to either a and d or b and c.

Since |V (G−P 2
4 )| ≥ 5, we have |V (X ′)| ≥ 2. The endpoints of an edge in G−P 2

4 cannot

be both adjacent to b and c, otherwise, they form a K4. Also, the endpoints of an edge in

G−P 2
4 which have one end vertex as a matched vertex in X ′ and one end vertex in Y ′ can be

both adjacent to none of {a, b, c} and d, otherwise, these would create a P 2
5 . If there exists

a matched vertex v ∈ X ′ which is adjacent to b and c, then all vertices w ∈ N(v) should be

adjacent to a and d, these form a P 2
5 . Hence, it is only possible that all matched vertices

in X ′ are adjacent to both a and d, all vertices in Y ′ are adjacent to b and c. When there

exists an unmatched vertex v0 ∈ X
′ , since N(v0) = Y

′ , if v0 is adjacent to b and c, we have

P 2
5 ⊆ G. Thus G is obtained from a complete bipartite graph Ki+2,n−i−2 plus a maximum

matching in X, where X = X
′ ∪ {b, c} and Y = Y

′ ∪ a ∪ d. Therefore, if G − P 2
4 is Ed

n−4
2 e

n−4

then G is Ed
n
2 e

n , if Eb
n−4

2 c
n−4 then G is Eb

n
2 c

n .

Case 3. If K4 ⊆ G, the inequality in (3) can be equality only when n = 5 and the

vertex v ∈ V (G−K4) is adjacent to one vertex of the K4, that is G0.

2.2 The Turán number and the extremal graphs for T

To prove Theorem 5, we need the following lemmas.
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Lemma 9. Let G be an n-vertex T -free nonempty graph such that for each edge {x, y} ∈

E(G), d(x) + d(y) ≥ n+ 2 holds, then we have K4 ⊆ G.

Proof. From the condition we know that each edge belongs to at least two triangles. Let abc

and bcd be two triangles, if a is adjacent to d then a, b, c and d induce a K4, if not, since

edge {b, d} is contained in at least two triangles, there exists at least one vertex e such that

bde is a triangle. Similarly, edge {c, d} is also contained in at least two triangles, then, either

there exists a vertex f which is adjacent to c and d, this implies that vertices a, b, c, d, e and

f induce a T , or c is adjacent to e, this implies that vertices b, c, d and e induce a K4.

Lemma 10. Let G be an n-vertex (n ≥ 7) T -free graph and K4 ⊆ G, then e(G) ≤ 2n −

2 + ex(n − 4, T ). For n ≥ 8, the equality might hold only if each vertex v ∈ V (G −K4) is

adjacent to 2 vertices of the K4.

Proof. If there exists vertex v ∈ V (G−K4), such that v is adjacent to at least 3 vertices of

the K4, it is simple to check that every other vertex u ∈ V (G −K4) can be adjacent to at

most one vertex of the K4, otherwise T ⊆ G, then e(G) ≤ 6 + 4 + (n − 5) + e(G −K4) ≤

n + 5 + ex(n − 4, T ). If not, each vertex in G − K4 is adjacent to at most 2 vertices of

the K4, then e(G) ≤ 6 + 2(n − 4) + e(G − K4) ≤ 2n − 2 + ex(n − 4, T ). When n ≥ 8,

e(G) ≤ 2n − 2 + ex(n − 4, T ), the equality holds only if each vertex v ∈ V (G − K4) is

adjacent to 2 vertices of the K4.

Proof of Theorem 5. Let

fT (n) =



⌊
n2

4

⌋
+
⌊
n

2

⌋
, n 6≡ 2 (mod 4),

n2

4 + n

2 − 1, n ≡ 2 (mod 4).

The fact that ex(n, T ) ≥ fT (n) follows from the construction T d
n
2 e

n . Next, we show the

inequality

ex(n, T ) ≤ fT (n) (4)
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by induction on n.

Let G be an n-vertex T -free graph. first, we show the induction steps, in the end we

will show the base cases which are needed to complete the induction.

Suppose (4) holds for all l ≤ n − 1, in the following cases, we will assume that k ≥ 2,

the proof is divided into 4 cases.

Case 1. When n = 4k, we divide the proof of ex(4k, T ) ≤ fT (4k) = 4k2 + 2k into 2

subcases. Let G be a 4k-vertex T -free graph.

(i) If δ(G) ≤ 2k + 1, after removing a vertex of minimum degree and by the induction

hypothesis ex(4k − 1, T ) = 4k2 − 1, we get

e(G) ≤ ex(4k − 1, T ) + 2k + 1 ≤ 4k2 − 1 + 2k + 1 = fT (4k). (5)

(ii) If δ(G) ≥ 2k + 2, then for each edge {u, v} ∈ E(G), d(u) + d(v) ≥ 4k + 4. By Lemmas

9 and 10 and the induction hypothesis ex(4k − 4, T ) = 4(k − 1)2 + 2(k − 1), we get

e(G) ≤ 2n− 2 + ex(4k − 4, T ) = 8k − 2 + 4(k − 1)2 + 2(k − 1) = fT (4k). (6)

Therefore, ex(4k, T ) ≤ fT (4k).

Case 2. When n = 4k+1, we divide the proof of ex(4k+1, T ) ≤ fT (4k+1) = 4k2 +4k

into 3 subcases. Let G be a (4k + 1)-vertex T -free graph.

(i) If δ(G) ≤ 2k, after removing a vertex of minimum degree and by the induction hypothesis

ex(4k, T ) = 4k2 + 2k, we have

e(G) ≤ ex(4k, T ) + 2k ≤ fT (4k + 1). (7)

Now, we assume that in the following two cases δ(G) ≥ 2k+ 1. Then for any pair of vertices

{u, v} ∈ E(G), d(u) + d(v) ≥ 4k + 2 holds.

(ii) Suppose that there exists an edge {u, v} ∈ E(G), such that d(u) + d(v) = 4k + 2. This

implies that u and v have at least one common neighbor. Deleting {u, v} we can use the

induction hypothesis ex(4k − 1, T ) = 4k2 − 1. Then

e(G) ≤ 4k + 1 + ex(4k − 1, T ) = fT (4k + 1). (8)
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(iii) For each edge {u, v} ∈ E(G), d(u) + d(v) ≥ 4k + 3 holds. By Lemmas 9 and 10 and

the induction hypothesis ex(4k − 3, T ) = 4(k − 1)2 + 4(k − 1) we get

e(G) ≤ 2n− 2 + ex(4k − 3, T ) = 8k + 4(k − 1)2 + 4(k − 1) = fT (4k + 1). (9)

Therefore, ex(4k + 1, T ) ≤ fT (4k + 1).

Case 3. When n = 4k+2, we divide the proof of ex(4k+2, T ) ≤ fT (4k+2) = 4k2+6k+1

into 2 subcases. Let G be a (4k + 2)-vertex T -free graph.

(i) If δ(G) ≤ 2k + 1, after removing a vertex of minimum degree and by the induction

hypothesis ex(4k + 1, T ) = 4k2 + 4k, we get

e(G) ≤ ex(4k + 1, T ) + 2k + 1 ≤ 4k2 + 6k + 1 = fT (4k + 2). (10)

(ii) If δ(G) ≥ 2k + 2, then for each edge {u, v} ∈ E(G), d(u) + d(v) ≥ 4k + 4. By Lemmas

9 and 10 and the induction hypothesis ex(4k − 2, T ) = 4(k − 1)2 + 6(k − 1) + 1, we get

e(G) ≤ 2n− 2 + ex(4k − 2, T ) = 8k + 2 + 4(k − 1)2 + 6(k − 1) + 1 = fT (4k + 2). (11)

Therefore, ex(4k + 2, T ) ≤ fT (4k + 2).

Case 4. When n = 4k+3, we divide the proof of ex(4k+3, T ) ≤ fT (4k+3) = 4k2+8k+3

into 2 subcases. Let G be a (4k + 3)-vertex T -free graph.

(i) If δ(G) ≤ 2k + 2, after removing a vertex of minimum degree and by the induction

hypothesis ex(4k + 2, T ) = 4k2 + 6k + 1, we get

e(G) ≤ ex(4k + 2, T ) + 2k + 2 ≤ 4k2 + 8k + 3 = fT (4k + 3). (12)

(ii). If δ(G) ≥ 2k + 3, then for each edge {u, v} ∈ E(G), d(u) + d(v) ≥ 4k + 6. By Lemmas

9 and 10 and the induction hypothesis ex(4k − 1, T ) = 4(k − 1)2 + 8(k − 1) + 3, we get

e(G) ≤ 2n− 2 + ex(4k − 1, T ) = 8k + 4 + 4(k − 1)2 + 8(k − 1) + 3 = fT (4k + 3). (13)

Therefore, ex(4k + 3, T ) ≤ fT (4k + 3).

Now we show the base cases which are needed to complete the induction steps. Since

our induction steps will go from n − 1 to n, n − 2 to n and n − 4 to n, we will require to

show the statement is true for cases when n = 3, 4, 6 and 9.

10



When n ≤ 4, Kn is the graph with the most number of edges, and e(Kn) = fT (n).

When n = 5, e(K5) = 10 > fT (5), the statement is not true, but we will see that the

statement is true for n = 9.

When n = 6, let v be a vertex with minimum degree. If δ(G) = 1, since e(G− v) ≤ 10,

we get e(G) ≤ 11. If δ(G) = 2 and e(G) = 12, then the only possibility is that G− v is K5,

but then T ⊆ G, and we have e(G) ≤ 11. Suppose now δ(G) ≥ 3. If K4 ⊆ G and there

exists a vertex u ∈ V (G−K4) which is adjacent to at least 3 vertices of the copy of K4, then

w ∈ V (G−K4−u) can be adjacent to at most one vertex of the K4, otherwise, T ⊆ G. This

contradicts δ(G) ≥ 3. Then in this case it is only possible that {u,w} ∈ E(G) and both u

and w are adjacent to 2 vertices of the K4 which implies that e(G) ≤ 11. If K4 * G, then

by Turán’s Theorem, we have e(G) ≤ 12 and the Turán graph T (6, 3) is the unique K4-free

graph which has 12 edges, however, T ⊆ T (6, 3), then e(G) ≤ 11 = fT (6). Summarizing:

e(G) ≤ 11 ≤ fT (6).

When n = 9, suppose first that there exists a pair of vertices {u, v} ∈ E(G), such that

d(u)+d(v) ≤ 10. Deleting {u, v} and using ex(7, T ) = 15, we get e(G) ≤ 9+15 = 24 = fT (9).

If for each pair of vertices {u, v} ∈ E(G), d(u) + d(v) ≥ 11 holds, by Lemma 9, we obtain

K4 ⊆ G. Let G′ denote the graph G−K4. If e(G
′) ≤ 8, since the number of edges between

K4 and G′ is at most 10, we have e(G) ≤ 6 + 10 + 8 = 24. If e(G′) ≥ 9, then K4 ⊆ G
′ and

the vertex w ∈ G′−K4 is adjacent to at least 3 vertices of the copy of K4 in G′ . This implies

that each vertex from G−G′ can be adjacent to at most 1 vertex of G′−w, then the number

of edges between G−G′ and G′ is at most 8, we can conclude that, e(G) ≤ 6 + 8 + 10 = 24,

e(G) ≤ 24 = fT (9).

It is easy to see that the case n = 7 can be proved using n = 3 and n = 6 (Case 4).

Similarly, the case n = 8 follows by n = 7 and n = 4 (Case 1). Hence the cases n = 6, 7, 8, 9

are settled forming a good bases for the induction.

Now, we determine the extremal graphs for T .

Proof of Theorem 6. Similarly to the proof of Theorem 5, first, we show the induction steps,
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in the end we will show the base cases which are needed to complete the induction.

Suppose that the extremal graphs for T are as shown in Theorem 5 for l ≤ n − 1. In

the following cases, we will assume that k ≥ 2.

Let G be an n-vertex T -free graph with e(G) = fT (n). The proof is divided into 4 cases

following the steps of the proof of Theorem 5.

Case 1. When n = 4k, fT (n) = 4k2 + 2k.

(i) If δ(G) ≤ 2k+ 1, the equality in (5) holds only when there exists a v ∈ V (G), such

that d(v) = δ(G) = 2k + 1 and G− v is an extremal graph for T on 4k − 1 vertices. By the

induction hypothesis, G − v can be either T 2k
4k−1 or S2k

4k−1. Let X ′ and Y ′ be the classes in

G− v with size 2k and 2k − 1, respectively.

When G − v is T 2k
4k−1, it can be easily checked that v cannot be adjacent to the two

endpoints of an edge which have two matched vertices located in different classes, otherwise,

T ⊆ G, see Figure 5. Let w be the unmatched vertex in Y
′ . Since d(v) = 2k + 1, N(v)

must contain the unmatched vertex w ∈ Y ′ , then the only way to avoid T ⊆ G is choosing

N(v) = w ∪X ′ . Consequently, G = T 2k
4k holds.

x3 x2 x1

y2 y1 v

· · ·

· · ·

X ′

K2k,2k−1

Y ′

x2

vx3 y1

x1y2

Figure 5:

When G− v is S2k
4k−1, let x1 denote the center of the star in X ′ . If v is adjacent to the

two endpoints of the edge {xi, yj} (xi ∈ X ′, yi ∈ Y ′, 2 ≤ i ≤ 2k, 1 ≤ j ≤ 2k − 1), then

T ⊆ G (see Figure 6). We obtained a contradiction. But d(v) = 2k + 1 implies that this is

always the case.
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x2k x3 x2

x1

vy2 y1

· · ·

· · ·

X ′

K2k,2k−1

Y ′

v

x3y2 x1

y1x2

Figure 6:

(ii) If δ(G) ≥ 2k+2, this implies that e(G) ≥ 2k(2k+2) = 4k2 +4k, which contradicts

the fact that ex(4k, T ) = 4k2 + 2k.

That is, G can only be T
n
2
n .

Case 2. When n = 4k + 1, fT (n) = 4k2 + 4k.

(i) If δ(G) ≤ 2k, the equality in (7) holds only if there exists v ∈ V (G), such that

d(v) = δ(G) = 2k and G − v is an extremal graph for T on 4k vertices. By the induction

hypothesis, G− v is T 2k
4k . All neighbors of v should be located in the same class, otherwise,

T ⊆ G, we get that G is T 2k+1
4k+1 , that is T

dn
2 e

n .

If δ(G) ≥ 2k+1, then for any pair of vertices {u, v} ∈ V (G), d(u)+d(v) ≥ 4k+2. Here

we distinguishing two subcases.

(ii) Suppose that there exists an edge {u, v} ∈ E(G) such that d(u) + d(v) = 4k + 2.

The equality in (8) holds only if when d(u) = d(v) = 2k + 1 and G − u − v is an extremal

graph for T on 4k − 1 vertices. By the induction hypothesis, G− u− v can be either T 2k
4k−1

or S2k
4k−1. Let X

′ and Y ′ be the classes in G− u− v with size 2k and 2k − 1, respectively.

When G − u − v is T 2k
4k−1, as in the previous case, neither u nor v can be adjacent to

the two endpoints of an edge which have two matched vertices located in different classes,

see Figure 5. If N(u)− v 6= X
′ , then u is adjacent to the unmatched vertex w in Y ′ and the

other 2k − 1 neighbors of u are all located in X ′ , say, N(u) − v − w = {x1, . . . x2k−1} and

{x2k−1, x2k} ∈ E(X ′), otherwise, T ⊆ G. Since |X ′| ≥ 4, in this case, v cannot be adjacent

to xi (1 ≤ i ≤ 2k − 2), otherwise, T ⊆ G, see Figure 7. Now v should choose 2k neighbors
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among the rest 2k + 1 vertices in V (G − u − v −
2k−2⋃
i=1

xi), which implies that v is adjacent

to the two endpoints of an edge which have two matched vertices locate in different classes

as endpoints, then T ⊆ G. Hence, N(u) − v = X
′ , similarly, N(v) − u = X

′ . Thus, G is

T 2k+1
4k+1 = T 2k

4k+1, that is T
dn

2 e
n .

x2k

x2k−1

x2 x1

w u

v

· · ·

· · ·

X ′

K2k,2k−1

Y ′

x2k−1

vx2 x1

uw

Figure 7:

Let us now consider the case when G− u− v is S2k
4k−1. Let x1 denote the center of the

star in X ′ . If u is adjacent to the two endpoints of the edge {xi, yj} (2 ≤ i ≤ 2k, 1 ≤ j ≤

2k − 1), then T ⊆ G. Thus, there are only two possibilities for T * G: N(u) − v = X
′ or

N(u)−v = Y
′∪x1. The same holds for v and it is easy to check that if N(u)−v = N(v)−u,

then T ⊆ G. From the above, the only possibility for T * G is that when N(u) − v = X
′

and N(v)− u = Y
′ ∪ x1 or in the another way around, which implies that G is S2k+1

4k+1 , that

is Sd
n
2 e

n .

(iii) Suppose that for each edge {u, v} ∈ E(G), d(u) + d(v) ≥ 4k + 3 holds. Let

d(v) = δ(G), then either d(v) = 2k + 1 or d(v) ≥ 2k + 2, but in both cases, each neighbor

of v has degree at least 2k + 2. Then all 4k + 1 vertices have degree at least 2k + 1, but

2k + 1 of them, which are the neighbors of v, have degree at least one larger. This implies

that e(G) ≥ (4k+1)(2k+1)+2k+1
2 = 4k2 + 4k+ 1, which contradicts the fact that ex(4k+ 1, T ) =

4k2 + 4k.

That is, G can be either T d
n
2 e

n or Sd
n
2 e

n .

Case 3. When n = 4k + 2 we have fT (n) = 4k2 + 6k + 1.

(i) If δ(G) ≤ 2k + 1, the equality holds in (10) only if there exists v ∈ V (G), such that

d(v) = δ(G) = 2k + 1 and G − v is an extremal graph for T on 4k + 1 vertices. By the
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induction hypothesis, G− v can be either T 2k+1
4k+1 or S2k+1

4k+1 .

Suppose first that G − v is T 2k+1
4k+1 . Let X ′ any Y

′ be the classes in G − v with size

2k + 1 and 2k, w be the unmatched vertex in X ′ . The vertex v cannot be adjacent to the

two endpoints of an edge which have two matched vertices located in different classes. Since

d(v) = 2k + 1, there are two possibilities to avoid T : N(v) = X
′ or N(v) = Y

′ ∪ w, which

implies that G is either T 2k+1
4k+2 or T 2k+2

4k+2 , that is T
n
2
n or T

n
2 +1
n .

When G− v is S2k+1
4k+1 . Let X

′ be the class in G− v which contains a star and Y ′ be the

other class of the G−v. Also, let x1 denote the center of the star in X ′ . Since, d(v) = 2k+1

and v cannot be adjacent to the two endpoints of an edge which is not incident with x1,

we get either N(v) = Y
′ ∪ x1 or N(v) = X

′ . If N(v) = X
′ , G is S2k+1

4k+2 , that is S
n
2
n . If

N(v) = Y
′ ∪ x1, G is S2k+2

4k+2 , that is S
n
2 +1
n . It is easy to see that S

n
2 +1
n is isomorphic to S

n
2
n .

(ii) If δ(G) ≥ 2k + 2, then e(G) ≥ (k + 1)(4k + 2) = 4k2 + 6k + 2, which contradicts

the fact that ex(4k + 2, T ) = 4k2 + 6k + 1.

Therefore, G can be T
n
2
n , T

n
2 +1
n or S

n
2
n .

Case 4. When n = 4k + 3 we have fT (n) = 4k2 + 8k + 3.

(i) If δ(G) ≤ 2k + 2, the equality holds in (12) only if there exists v ∈ V (G), such that

d(v) = δ(G) = 2k + 2 and G − v is an extremal graph for T on 4k + 2 vertices. By the

induction hypothesis, G− v can be T 2k+1
4k+2 , T 2k+2

4k+2 or S2k+1
4k+2 .

When G− v is T 2k+1
4k+2 or T 2k+2

4k+2 , similarly to Case 1 (i), G can only be T 2k+2
4k+3 , that is T

dn
2 e

n .

When G− v is S2k+1
4k+2 , similarly to Case 2 (ii), G can only be S2k+2

4k+3 , that is S
dn

2 e
n .

(ii) If δ(G) ≥ 2k + 3, then e(G) ≥ (2k+3)(4k+3)
2 > 4k2 + 9k + 4 > 4k2 + 8k + 3, which

contradicts the fact that ex(4k + 3, T ) = 4k2 + 8k + 3.

Therefore, in this case, G is either T d
n
2 e

n or Sd
n
2 e

n .

Now we check the base cases which are needed to complete the induction.

When n = 4, ex(4, T ) = 6, K4 is the extremal graph which has the maximum number

of edges on 4 vertices that does not contain T as a subgraph.

Although the Theorem does not hold for n = 6, we determine the extremal graphs in
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this case because it will help us to determine them for some other n’s.

When n = 6, ex(6, T ) = 11. It follows from the proof of Theorem 5, when δ(G) = 1, the

only extremal graph for T is as shown in Figure 8(a). When δ(G) = 2, the only extremal

graph for T is as shown in Figure 8(b). Since δ(G) ≥ 4 implies e(G) ≥ 12, this is not possible.

The only remaining case is δ(G) = 3. When δ(G) = 3 and K4 ⊆ G, by case analysis we

obtain that the extremal graphs for T can be Figure 8(c) and Figure 8(d), which are T 3
6 and

T 4
6 . Suppose now that δ(G) = 3 and K4 * G. Let d(v) = δ(G) = 3, then e(G− v) = 8, the

only possibility is that G− v is T (5, 3). It is easy to check that G can only be S3
6 , see Figure

8(e).

(a) (b) (c) (d) (e)

Figure 8: Extremal graphs for T when n = 6.

T 3
6 (a) T 4

6 (a)

S3
6 (b)

Figure 9: Extremal graphs for T when n = 7.

Suppose now that n = 7, ex(7, T ) = 15. It is not possible that δ(G) ≤ 3, otherwise,

e(G) ≤ 3 + ex(6, T ) = 14. Also, it is not possible that δ(G) ≥ 5, otherwise, e(G) > 17. Both

are contradict with e(G) = 15. Let d(v) = δ(G), the only possibility is that δ(G) = 4 and
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G− v is a 6-vertex T -free graph. Since d(v) = 4, we have δ(G− v) ≥ 3, which implies that

structures (a) and (b) in Figure 8 are not possible. If G− v is T 3
6 or T 4

6 , then G can only be

(a) in Figure 9, that is T 4
7 . If G− v is S3

6 , then G can only be (b) in Figure 9, that is S4
7 .

Because case n = 8 needs only the case n = 7 (Case 1), case n = 9 needs cases n = 7

and n = 8 (Case 2). These base cases complete the proof.

We will need the following statement later. It express that the "second best" graphs can

be also well described if 4|n.

Proposition 11. Let n (n ≥ 8) be a natural number such that 4|n and G be an n-vertex

T -free graph with n2

4 + n
2 − 1 edges, then G can only be T

n
2
n minus an edge, S

n
2
n or S

n
2 +1
n .

Proof. We can suppose that δ(G) ≤ n
2 , otherwise, e(G) ≥ n2

4 + n
2 . Let v ∈ V (G) and

d(v) = δ(G), then e(G) ≤ d(v) + ex(n − 1, T ) ≤ n2

4 + n
2 − 1, the equality holds only if

d(v) = n
2 and G − v is either T d

n−1
2 e

n−1 or Sd
n−1

2 e
n−1 . When G − v is T d

n−1
2 e

n−1 , let w be the

unmatched vertex in Y ′ and X ′ = {x1, . . . , xdn−1
2 e}, X

′ and Y ′ be the classes of G− v with

size
⌈
n−1

2

⌉
and

⌊
n−1

2

⌋
, respectively. Since d(v) = n

2 and v cannot be adjacent to the two

endpoints of an edge which have two matched vertices located in different classes, no matter

N(v) = X
′ or N(v) = X

′ − xi ∪ w (1 ≤ i ≤
⌈
n−1

2

⌉
), G is T

n
2
n minus an edge in both cases.

When G − v is Sd
n−1

2 e
n−1 , let x1 be the center of the star in X ′, X ′ = {x1, . . . , xdn−1

2 e} and

Y
′ = {y1, . . . , ybn−1

2 c} be the classes of G−v with size
⌈
n−1

2

⌉
and

⌊
n−1

2

⌋
, respectively. Since v

cannot be adjacent to the two endpoints of the edge {xi, yi} (2 ≤ i ≤
⌈
n−1

2

⌉
, 1 ≤ j ≤

⌊
n−1

2

⌋
)

and d(v) = n
2 , which implies that N(v) = x1 ∪ Y

′ or N(v) = X
′ . Therefore, G can be either

S
n
2
n or S

n
2 +1
n .

2.3 The Turán number and the extremal graphs for P 2
6

Proof of Theorem 7. Let

fP 2
6
(n) =



⌊
n2

4

⌋
+
⌊
n− 1

2

⌋
, n ≡ 1, 2, 3 (mod 6),⌊

n2

4

⌋
+
⌈
n

2

⌉
, otherwise.
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The fact that ex(n, P 2
6 ) ≥

⌊
n2

4

⌋
+
⌈
n
2

⌉
, when n ≡ 0, 4, 5 (mod 6), follows from the construc-

tions H
n
2
n , H

n
2 +1
n and H

dn
2 e

n , respectively. The fact that ex(n, P 2
6 ) ≥

⌊
n2

4

⌋
+
⌊
n−1

2

⌋
, when

n ≡ 1, 2, 3 (mod 6), follows from the constructions F d
n
2 e,j

n .

It remains to show the inequality

ex(n, P 2
6 ) ≤ fP 2

6
(n) (14)

by induction on n.

Let G be an n-vertex P 2
6 -free graph. Since our induction step will go from n − 6 to n,

we have to find a base case in each residue class mod 6.

When n ≤ 4, Kn is the graph with the most number of edges and e(Kn) = fP 2
6
(n).

When n = 6, if P 2
5 * G, by Theorem 3, e(G) ≤

⌊
52+5

4

⌋
= 7 < fP 2

6
(6). If P 2

5 ⊆ G,

K5 * G and e(G) ≥ 13, it can be checked that the vertex v ∈ V (G−P 2
5 ) can be adjacent to

at most 3 vertices of the copy of P 2
5 , otherwise P 2

6 ⊆ G, in this case, d(v) ≥ 13− 9 = 4 then

P 2
6 ⊆ G. If K5 ⊆ G, the vertex v ∈ V (G−K5) is adjacent to at most one vertex of the K5,

otherwise, P 2
6 ⊆ G. Therefore, e(G) ≤ 11 < fP 2

6
(6).

When n = 5, since e(K5) = 10 > fP 2
6
(5), the statement is not true, then we show that

the statement is true for n = 11. If P 2
5 * G, by Theorem 3, e(G) ≤

⌊
112+11

4

⌋
< fP 2

6
(11).

If P 2
5 ⊆ G, first suppose that the graph spanned by the vertices of the copy of P 2

5 have at

most 8 edges. It can be checked that every triangle can be adjacent to at most 7 edges of

the P 2
5 , otherwise, P 2

6 ⊆ G. When there exists a triangle as subgraph in G − V (P 2
5 ), we

get e(G) ≤ 8 + 7 + 9 + ex(6, P 2
6 ) = 36 = fP 2

6
(6). If not, e(G) ≤ 8 + 18 + 9 = 35 < fP 2

6
(6).

If K−5 ⊆ G (K5 minus an edge) then each vertex v ∈ V (G − K−5 ) is adjacent to at most

2 vertices of K−5 . We get e(G) ≤ 9 + 12 + ex(6, P 2
6 ) = 33 < fP 2

6
(6). If K5 ⊆ G then each

vertex v ∈ V (G− P 2
5 ) is adjacent to at most one vertex of K5. Altogether we have at most

10 + 6 + ex(6, P 2
6 ) = 28 edges. From the above, e(G) ≤ 36 = fP 2

6
(11).

Suppose (14) holds for all l ≤ n− 1 (l 6= 5), the following proof is divided into 2 parts.

Case 1. If T ⊆ G, then each vertex v ∈ V (G− T ) is adjacent to at most 3 vertices of the

copy of T , otherwise, P 2
6 ⊆ G. The graph spanned by the vertices of the copy of T cannot
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have more than ex(6, P 2
6 ) = 12 edges. Since G − T is an (n − 6)-vertex P 2

6 -free graph and

ex(6, T ) = 12, we have

e(G) ≤ 12 + 3(n− 6) + e(G− T ) ≤ 3n− 6 + ex(n− 6, P 2
6 ). (15)

By the induction hypothesis,

ex(n− 6, P 2
6 ) ≤ fP 2

6
(n− 6) =



⌊
(n− 6)2

4

⌋
+
⌊
n− 7

2

⌋
, n ≡ 1, 2, 3 (mod 6),⌊

(n− 6)2

4

⌋
+
⌈
n− 6

2

⌉
, otherwise.

We get

ex(n, P 2
6 ) ≤


3n− 6 +

⌊
(n− 6)2

4

⌋
+
⌊
n− 7

2

⌋
=
⌊
n2

4

⌋
+
⌊
n− 1

2

⌋
, n ≡ 1, 2, 3 (mod 6),

3n− 6 +
⌊

(n− 6)2

4

⌋
+
⌈
n− 6

2

⌉
=
⌊
n2

4

⌋
+
⌈
n

2

⌉
, otherwise.

Case 2. If T * G, by Theorem 5, e(G) ≤ ex(n, T ) ≤ fP 2
6
(n) holds unless n ≡

8 (mod 12). When n ≡ 8 (mod 12), then e(G) ≤ ex(n, T ) = fP 2
6
(n) + 1, however, by

Theorem 6, the equality holds only if G is T
n
2
n , but P 2

6 ⊆ T
n
2
n (n ≥ 8), which implies that

e(G) ≤ ex(n, T )− 1 = fP 2
6
(n).

Summarizing, we obtain

ex(n, P 2
6 ) = fP 2

6
(n) =



⌊
n2

4

⌋
+
⌊
n− 1

2

⌋
, n ≡ 1, 2, 3 (mod 6),⌊

n2

4

⌋
+
⌈
n

2

⌉
, otherwise .

Proof of Theorem 8. It is obvious that

ex(n, T ) ≤ ex(n, P 2
6 ), except when n ≡ 8 (mod 12). (16)

with strict inequality only when

n ≡ 5, 6, 7, or 11 (mod 12). (17)
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We want to determine the graphs G containing no copy of P 2
6 as a subgraph and satisfying

e(G) = ex(n, P 2
6 ). Therefore suppose that G possesses these properties. We claim that G

either contains a copy of T as a subgraph or it is either F d
n
2 e,d

n
2 e

n or F
n
2 +1,n

2 +1
n . If n belongs

to the set of integers given in (17) then this is obvious, since we have a strict inequality

in (16). On the other hand for the other values of n (except n ≡ 8 (mod 12)) we obtain

ex(n, P 2
6 ) = ex(n, T ) = e(G). Theorem 6 describes these graphs. However G cannot be T d

n
2 e

n

or T
n
2 +1
n , because these graphs contain P 2

6 as a subgraph if n ≥ 7. (In the case of n = 6 we had

strict inequality in (16).) The other possibility by Theorem 6 is that G = S
dn

2 e
n = F

dn
2 e,d

n
2 e

n .

In the exceptional case we can use Proposition 11. According to this G could be T
n
2
n , S

n
2
n or

S
n
2 +1
n . The first of them is excluded since P 2

6 ⊂ T
n
2
n the second and third ones can be written

in the form F
n
2 ,

n
2

n and F
n
2 +1,n

2 +1
n .

From now on we suppose that e(G) = ex(n, P 2
6 ), the graph G contains a copy of T and

no copy of P 2
6 and prove by induction that G is a graph given in the theorem.

Let us list some graphs L (coming up in the forthcoming proofs) containing P 2
6 as a

subgraph:

(α) L is obtained by adding any edge to T different from {a, e}, {d, c} and {b, f} on

Figure 4.

(β) Add the edges {a, e}, {d, c}, {b, f} to T resulting in T ′. The graph L is obtained by

adding a new vertex u to T ′ which is adjacent to three vertices of T ′ different from the sets

{b, c, e} and {a, d, f}.

(γ) L is obtained by adding two new adjacent vertices u and v to T ′, which are both

adjacent to b, c and e. Then e.g. the square of the path {u, v, c, e, b, d} is in L.

(δ) L is obtained by adding 4 new vertices u, v, w, x, forming a complete graph, to T ′,

all of them adjacent to a, d and f . Then e.g. the square of the path {a, u, v, w, x, d} is in L.

(ε) L consists of a complete graph on 5 vertices and a 6th vertex adjacent to two of

them.

(ζ) The vertices of L are pi(1 ≤ i ≤ 4) and qj(1 ≤ j ≤ 2) where p1, p2, p3, p4 span a path
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and all pairs (pi, qj) are adjacent. Then the square of the path {p1, q1, p2, p3, q2, p4} is L.

Let us start with the base cases. Let n = 6 and suppose T ⊂ G. By (α) only the edges

{a, e}, {d, c} and {b, f} can be added to T . To obtain ex(6, P 2
6 ) = 12 edges all three of them

should be added. The so obtained graph T ′ is really H3
6 .

Consider now the case n = 7. It is clear that (15) holds with equality only when the

subgraph spanned by T contains 12 edges and the vertex u not in T is adjacent with exactly

3 vertices of T . Hence the subgraph spanned by T is really T ′. By (β) u can be adjacent to

either b, c, e or a, d, f . In the first case G = H3
7 , in the second one G = F 4,1

7 , as desired.

If n = 8, e(G) = ex(8, P 2
6 ) = 19 and the equality in (15) implies, again, that T must

span T ′ and the remaining two vertices u and v are adjacent to exactly 3 vertices of T ′:

either to the set {b, c, e} or to {a, d, f} and {u, v} is an edge. If both u and v are adjacent

to {b, c, e} then (γ) leads to a contradiction. If one of u and v is adjacent to {b, c, e}, the

other one to {a, d, f}, then G = F 4,1
8 . Finally if both of them are adjacent to {a, d, f}, then

G = F 5,2
8 .

Suppose now that n = 9, when e(G) = ex(9, P 2
6 ) = 24 and (15) implies that the three

vertices u, v, w not in T ′ form a triangle and all three possess the properties mentioned in

the previous case. If two of them are adjacent to {b, c, e} then (γ) gives the contradiction.

If one of the them is adjacent to {b, c, e}, the two other ones are adjacent to {a, d, f}, then

G = F 5,2
9 . Finally if all three are adjacent to {a, d, f}, then G = H6

9 .

The case n = 10 and e(G) = ex(10, P 2
6 ) = 30 is very similar to the previous ones. If one

of the new vertices, u, v, w, x is adjacent to {b, c, e} and the other 3 are adjacent to {a, d, f},

then G = H6
10. Here it cannot happen, by (δ), that all 4 are adjacent to {a, d, f}.

Finally let n = 11 where e(G) = ex(11, P 2
6 ) = 36. This case is different from the

previous ones, since we cannot have all the potential edges (12 in the graph spanned by T ,

10 among the other 5 vertices u, v, w, x, y, and 15 between the two parts) one is missing. We

distinguish 3 cases according the place of the missing edge.

(i) T ′ ⊂ G, {u, v, w, x, y} spans a copy of K5, but there are only 14 edges between the
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two parts. Then T ′ has one vertex z ∈ {a, b, c, d, e, f} incident to at least two of the 14

edges. Then (ε) leads to a contradiction.

(ii) T ′ ⊂ G, {u, v, w, x, y} spans a copy of K5 minus one edge, say {x, y}, and all 15

edges between the two parts are in G.

If two adjacent vertices from the set {u, v, w, x, y} are both adjacent to {b, c, e} then

(γ) gives the contradiction. Therefore if x is adjacent to {b, c, e} then u, v and w must be

adjacent to {a, d, f}. If y is also adjacent to {a, d, f} then we have 4 vertices spanning a K4

and all adjacent to {a, d, f}. Then we obtain a contradiction by (δ). Otherwise y is adjacent

to {b, c, e} and G = H6
11.

Suppose now that x is adjacent to {a, d, f}. If u, v, w are all adjacent to {a, d, f} then

(δ) leads to a contradiction. Hence at least one of them, say u is adjacent to {b, c, e}. But

(γ) implies that two adjacent ones from from the set {u, v, w, x, y} cannot be adjacent to

{b, c, e}. Hence v, w, x, y are all adjacent to {a, d, f} giving a contradiction again, by (δ).

(iii) T spans only 11 edges, {u, v, w, x, y} determines a K5 and all 15 edges are con-

necting the two parts. Then T must have a vertex incident to two edges connecting T with

{u, v, w, x, y}. Here (ε) gives a contradiction.

Now we are ready to start the inductional step. Suppose that the statement is true for

n− 6 where n ≥ 12. Prove it for n. Let e(G) = ex(n, P 2
6 ) and suppose that T ⊂ G. We have

to prove that G is of the form described in the theorem. By (15) we know that the equality

implies that T must span the the subgraph T ′ with 12 edges, every vertex of G′ = G − T ′

is adjacent either to the vertices b, c, e or the vertices a, d, f and G′ is an extremal graph for

n − 6. That is G′ is one the following graphs: F d
n−6

2 e,j
n , F

n−6
2 +1,j

n , H
bn−6

2 c
n , H

dn−6
2 e

n , H
dn−6

2 e+1
n .

All these graphs have n− 6 vertices, their vertex sets are divided into two parts, X ′ and Y ′

where |X ′| is either bn−6
2 c or d

n−6
2 e or d

n−6
2 e+ 1, there is a bipartite graph between X ′ and

Y ′ and X ′ is covered by vertex-disjoint triangles and at most one star.

Color a vertex of G′ by red if it is adjacent to the vertices b, c, e and blue otherwise. By

(γ) two red vertices cannot be adjacent. On the other hand 4 blue vertices cannot span a
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path by (ζ). Suppose that there is a red vertex in X ′. Then all vertices of Y ′ are colored

blue. (It is easy to check that n ≥ 12 implies |Y ′| ≥ 2.) If there are two blue vertices

also in X ′ then they span a path of length 4 that is a contradiction. We can have one

blue vertex in X ′ only when it contains no triangle and the center s of the star is blue, the

other vertices are all red. This is called the first coloring. It is easy to see that the choice

X = {b, c, e, s} ∪ Y ′, Y = {a, d, f} ∪ (X ′ − {s}) defines a graph possessing the properties of

the expected extremal graphs: X and Y span a complete bipartite graph, there are no edges

within Y , and X is covered by one triangle and one star which are vertex disjoint.

The other case is when all vertices of X ′ are blue. In this case no vertex of Y ′ can be

blue, otherwise this vertex and the 3 vertices of a triangle or the center of the star with

two other vertices would span a path of length 4. That is all vertices of Y ′ are red. This is

the second coloring. Then the choice X = {b, c, e} ∪X ′, Y = {a, d, f} ∪ Y ′ defines a graph

possessing the properties of the expected extremal graphs.

We have seen that G has the expected structure in both cases. We only have to check

the parameters. If n ≡ 0, 4, 5 (mod 6) then X ′ contains no star, the first coloring cannot

occur, in the case of the second coloring 3-3 vertices are added to both parts, containing a

triangle ({b, c, e}) in the X-part. The upper index increases by 3 in all cases when moving

from n− 6 to n.

Consider now the case n ≡ 1 (mod 6). If G′ = H
bn−6

2 c
n−6 then we can proceed like in the

previous cases, and G = H
bn

2 c
n is obtained. Suppose that G′ = F

dn−6
2 e,j

n−6 . If j < dn−6
2 e then,

again, the second coloring applies and we obtain G = F
dn

2 e,j
n . If, however, j = dn−6

2 e then

both colorings result in G = F
dn

2 e,d
n
2 e−3

n . Let us recall that G = F
dn

2 e,d
n
2 e

n was obtained in the

case when T 6⊂ G.

The cases n ≡ 2, 3 (mod 6) can be checked similarly.

3 Open problems

The following paragraphs show why we think that Conjecture 1 is true.
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Lemma 12. If the graph G is obtained by adding a path of r vertices to one of the classes

of the complete bipartite graph Kn,n(n ≥ r) then G contains the square of a path containing

b3r
2 c+ 1 vertices.

Proof. Suppose first that r = 2s is even. Let X and Y be the two parts, where |X| = |Y | = n

all edges {x, y}(x ∈ X, y ∈ Y ) are in G. Moreover, X contains the path {x1, x2, . . . , x2s}.

Then the square of the path {y1, x1, x2, y2, x3, x4, y3, . . . , x2s−1, x2s, ys+1} is in G for an ar-

bitrary set of distinct vertices y1, y2, . . . , ys+1 ∈ Y . The number of vertices of this path is

really 3s+ 1.

If k = 2s + 1 is an odd number then the desired path is {y1, x1, x2, y2, x3, x4, y3, . . . ,

x2s−1, x2s, ys+1, x2s+1}.

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4

P6

y1 x2 x3 y3 x6

y2 x4x1 x5 y4

P 2
10

Figure 10:

It is easy to see, on the basis of Lemma 12 that if this graph does not contain P 2
k then

X cannot contain a path of length b2k
3 c. Now the obvious question is that at most how

many edges can be chosen in X without having a path of given length. As one of the earliest

results in extremal Graph Theory Erdős and Gallai [2] proved the following result on the

extremal number of paths.

Theorem 13 (Erdős and Gallai [2]). The maximum number of edges in an n-vertex Pl-

free graph is n(l−2)
2 , that is ex(n, Pl) ≤ n(l−2)

2 with equality if and only if (l − 1)|n and the

graph is a vertex disjoint union of n
l−1 complete graphs on l − 1 vertices.
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Faudree and Schelp [5] and independently Kopylov [6] improved this result determining

ex(n, Pl) for every n > l > 0 as well as the corresponding extremal graphs.

Theorem 14 (Faudree and Schelp [5] and independently Kopylov [6]). Let n ≡ r

(mod l − 1), 0 ≤ r ≤ l − 1, l ≥ 2. Then

ex(n, Pl) = 1
2(l − 2)n− 1

2r(l − 1− r).

Faudree and Schelp also described the extremal graphs which are either

(a) vertex disjoint union of m (n = m(l − 1) + r) complete graphs Kl−1 and a Kr or

(b) l is even and r = l
2 or l

2 − 1 then another extremal graph can be obtained by taking

a vertex disjoint union if t copies of Kl−1 (0 ≤ t ≤ m) and a copy of K l
2−1 +Kn−(t+ 1

2 )(l−1)+ 1
2
.

Where G denotes the edge complement of the graph G, and G + H is defined as the graph

obtained from the vertex disjoint union of G and H together with all edges between G and

H.

We believe that the extremal graph for ex(n, P 2
k ) is a complete bipartite graph plus one

of the constructions above in the larger class. Check now the cases solved.

If k = 4, by Lemma 12 we cannot have a path of length 2 (that is an edge) in one side.

If k = 5 then l = 3, a path of length 3 is forbidden in one side. According to statements

above we can have only vertex disjoint edges.

If k = 6 then l = 4 and a path of length 4 is forbidden in one side. Now the extremal

constructions for Pl are either (a) triangles plus eventually one edge or (b) t triangles plus a

star with n− 3t vertices.

These are in accordance with our results. Note that in the case of k = 7, the value l = 4

obtained again. The expected maximum value is the same as in the case of k = 6, but the

assumptions are weaker!
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