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Abstract

A family F ⊂
([n]
k

)
of k-element subsets of an n-element set is called

intersecting if F,G ∈ F implies F ∩G 6= ∅. The celebrated Erdős-Ko-
Rado theorem says that it has at most

(
n−1
k−1
)

members. Equality can
be obtained for the family of sets containing one fixed element.

Some of the results from the history of the area are surveyed and
some new developments are introduced. One such direction is the
problem of “two-part intersecting” families. The underlying set [n] is
partitioned into X1 and X2. It is still true that the largest intersecting
family, for large n, is the one consisting of members containing one
fixed element. Even in the following very general form when those
sets are considered which satisfy |F ∩X1| = ki, |F ∩X2| = `i for some
ki, `i(1 ≤ i ≤ m). The statement was known for the case m = 2 as a
result of Frankl.

The shadow σ(F) of a family F ⊂
([n]
k

)
is the family of all k − 1-

element subsets of members of F . The shadow theorem determines
the minimum size of the shadow family for fixed n, k and |F|. To find
the smallest shadow of an intersecting family is very different from
the traditional problem. Some old and new results of this kind are
exhibited.

∗The present paper is a slightly modified version of the author’s lecture at the Interna-
tional Conference on Discrete Mathematics 2018, Salem, Tamil Nadu, India. The research
was supported by the National Research, Development and Innovation Office – NKFIH
Fund No’s SSN117879, NK104183 and K116769.
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1 Introduction

The underlying set will be {1, 2, . . . , n}. The family of all k-element subsets of
[n] is denoted by

(
[n]
k

)
. Its subfamilies are called uniform. A family F of some

subsets of [n] is called intersecting if F ∩G 6= ∅ holds for every pair F,G ∈ F .
The whole story has started with the seminal paper of Erdős, Ko and Rado
[4]. The main result of the paper determines the largest intersecting family
consisting of subsets of size exactly k, that is the case of uniform families.
The problem is trivial when k > n

2
: all k-element subsets can be chosen. It

is not so trivial at all when k ≤ n
2
.

Theorem 1 (Erdős, Ko, Rado [4]) If F ⊂
(
[n]
k

)
is intersecting where k ≤ n

2

then

|F| ≤
(
n− 1

k − 1

)
.

The original proof uses the so called shifting method. There is a shorter
proof based on the cycle method in [11]. It can also be found in the books [1]
and [2]. If k < n

2
there is only one extremal family.

Construction 1 Take all subsets of [n] having size k and containing the
element 1.

Construction 2 If k = n
2

one can choose one from each complementing
pair, freely.

We say that a family F is trivially intersecting if there is an element
a ∈ [n] such that all members of F contain a. Construction 1 is trivially
intersecting, Construction 2 not necessarily. [4] posed the problem of finding
the largest k-uniform non-trivially intersecting family. It was found by Hilton
and Milner.

Theorem 2 [8] If F is an intersecting but not a trivially intersecting family,
F ⊂

(
[n]
k

)
(2k ≤ n) then

|F| ≤ 1 +

(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
.

The construction giving equality is the following.

Construction 3 Let K = {2, 3, . . . , k+1}. The extremal family will consist
of all k-element sets containing 1 and intersecting K.

Let me call the reader’s attention to the forthcoming book of Gerbner
and Patkós [7], containg many related results.
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2 Two-part intersecting families

Now we will consider the problem when the underlying set is partitioned into
two parts X1, X2 and the sets F ∈ F have fixed sizes in both parts. For some
motivation see [12] (Section 4). More precisely let X1 and X2 be disjoint sets
of n1, respectively n2 elements. [6] considered such subsets of X = X1 ∪X2

which had k elements in X1 and ` elements in X2. The family of all such sets
is denoted by(
X1, X2

k, `

)
=

(
X1

k

)⊎(
X2

`

)
= {F ⊂ X1∪X2 : |F ∩X1| = k, |F ∩X2| = `}.

The construction above, taking all possible sets containing a fixed element
also works here. If the fixed element is in X1 then the number of these sets
is (

n1 − 1

k − 1

)(
n2

`

)
,

otherwise it is (
n1

k

)(
n2 − 1

`− 1

)
.

The following theorem of Frankl [6] claims that the larger one of these is the
best.

Theorem 3 Let X1, X2 be two disjoint sets of n1 and n2 elements, respec-
tively. The positive integers k, ` satisfy the inequalities 2k ≤ n1, 2` ≤ n2. If
F is an intersecting subfamily of

(
X1,X2

k,`

)
then

|F| ≤ max

{(
n1 − 1

k − 1

)(
n2

`

)
,

(
n1

k

)(
n2 − 1

`− 1

)}
.

Actually his theorem is formulated for an arbitrary number of parts.

Theorem 3 could be formulated in such a way that the largest subfamily
of
(
X1,X2

k,`

)
is one of the trivially intersecting families. It is natural to ask what

is the largest non-trivially intersecting subfamily.
Take a Hilton-Milner family (Construction 3) inX1, denote it by HM(X1, k).

Extend its members in all possible ways by `-element subsets chosen from
X2:

HM1(X1, k;X2, `) = {F ∪G : F ∈ HM(X1, k), G ⊂ X2, |G| = `}.
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Define, similarly,

HM2(X1, k;X2, `) = {F ∪G : F ⊂ X1, |F | = k,G ∈ HM(X2, `)}.

It was conjectured in [12] that either HM1(X1, k;X2, `) or HM2(X1, k;X2, `)
is the largest nontrivially intersecting subfamily of

(
X1,X2

k,`

)
. Kwan, Sudakov

and Vieira [15] showed that this is not true: there are other, “mixed” Hilton-
Milner families which are better in some cases.

Fix an element a ∈ X1, a set A ⊂ X1 such that a 6∈ A, |A| = k and a set
B ⊂ X2 such that |B| = ` and define

HMmix
1 (X1, k;X2, `) = {F : |F∩X1| = k, |F∩X2| = `, a ∈ F, F∩(A∪B) 6= ∅}.

HMmix
2 (X1, k;X2, `) is the symmetric construction.

Theorem 4 (Kwan, Sudakov, Vieira [15]) If both |X1| and |X2| are large
enough then the largest non-trivially intersecting subfamily of

(
X1,X2

k,`

)
is one

of HM1(X1, k;X2, `),HM2(X1, k;X2, `),HMmix
1 (X1, k;X2, `) and

HMmix
2 (X1, k;X2, `).

Their result actually claims the analogous statement for more parts. The
proof uses the shifting method.

Consider now the case when two sizes are also allowed in both parts
(but not independently!) that is the family consists of sets satisfying either
|F ∩X1| = k, |F ∩X2| = ` or |F ∩X1| = r, |F ∩X2| = s. Using the notation
above, we will consider intersecting subfamilies of(

X1, X2

k, `

)⋃(
X1, X2

r, s

)
.

In Theorem 3 (
n1 − 1

k − 1

)(
n2

`

)
≥
(
n1

k

)(
n2 − 1

`− 1

)
holds if and only if

k

n1

(
n1

k

)(
n2

`

)
≥ `

n2

(
n1

k

)(
n2

`

)
that is when

k

`
≥ n1

n2

.
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In this case the best is a trivially intersecting family with fixing one point
on the left hand side. Otherwise the point should be fixed on the right hand
side. Of course the same holds for the pair r, s. Therefore if

k

`
,
r

s
≥ n1

n2

then the best, for both kinds of sets, is to fix one point on the left hand side.
But what happens if

k

`
>
n1

n2

>
r

s
?

For the family of sets having k and ` elements in the two sizes, respectively,
the best construction chooses the fixed element on the left hand side, for
the other family on the right hand side. These two families together are not
intersecting. The answer to our question is that one of them wins! That is
if both n1 and n2 are large then the largest intersecting family is trivially
intersecting, either on the left or on the right hand side.

Let us consider now the more general case when other sizes are also
allowed that is the family consists of sets satisfying |F∩X1| = ki, |F∩X2| = `i
for certain pairs (ki, `i) of positive integers. Using the notation above, we
will consider subfamilies of

m⋃
i=1

(
X1, X2

ki, `i

)
.

The generalization is however a little weaker at one point. In Theorem
10 the thresholds 2k ≤ n1, 2` ≤ n2 for validity are natural. If either n1 or
n2 is smaller then the problem becomes trivial, all such sets can be selected
in F . In the generalization below there is no such natural threshold. There
will be another difference in the formulation. We give the construction of the
extremal family rather than the maximum number of sets.

Theorem 5 [12] Let X1, X2 be two disjoint sets of n1 and n2 elements,
respectively. Some positive integers ki, `i(1 ≤ i ≤ m) are given. Define
b = maxi{ki, `i}. Suppose that 9b2 ≤ n1, n2. If F is an intersecting subfam-
ily of

m⋃
i=1

(
X1, X2

ki, `i

)
then |F| cannot exceed the size of the largest trivially intersecting family
satisfying the conditions.
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Sketch of the proof. The proof uses the so called cycle method used in
a simple proof of Theorem 1 (see [11]). Its basic idea is to find the largest
family of intersecting intervals of length k along a cycle of length n and then a
simple double counting leads to the statement of the theorem. It is convenient
to consider the cycle as Zn and an interval as a set {i, i + 1, . . . , i + k − 1}
mod k. It is easy to prove that the largest intersecting family of such intervals
is trivially intersecting.

In the present proof cyclic permutation will be replaced by a product
of two cyclic permutations. In notation: Zn1 × Zn2 . Of course intervals
will be replaced by direct products of intervals of length ki and `i, that is
by ki × `i rectangles.The “intersecting condition” is that any two rectangles
must meet in one of the coordinates. More precisely, if the two rectangles are
{i1, i1+1, . . . , i1+ku−1}×{i2, i2+1, . . . , i2+`u−1} and {j1, j1+1, . . . , j1+kv−
1}×{j2, j2+1, . . . , j2+`v−1} then either {i1, i1+1, . . . , i1+ku−1}∩{j1, j1+
1, . . . , j1 +kv−1} or {i2, i2 +1, . . . , i2 + `u−1}∩{j2, j2 +1, . . . , j2 + `v−1} is
non-empty. We call a pair of rectangles having this property proj-intersecting.

Let Ri be a family of ki × `i rectangles in Zn1 × Zn2(1 ≤ i ≤ m). We
say that R =

⋃m
i=1Ri is a proj-intersecting family if, any two members are

proj-intersecting.
One can prove the statement analogous to the theorem for the rectangles,

that is, the largest R is trivially intersecting (if n1 and n2 are large) either
in the projections in Zn1 or in the projections in Zn2 .

In other words

m∑
i=1

|Ri| ≤ max

{
n1

m∑
i=1

`i, n2

m∑
i=1

ki

}
holds. However this is not sufficient for the proof of the theorem. A weighted
version is needed.

Lemma 1 Suppose that the positive integers ki, `i, b, n1, n2 satisfy the in-
equalities ki, `i ≤ b(1 ≤ i ≤ m), 9b2 < n1, n2. Let Ri be a family of ki × `i
rectangles in Zn1 × Zn2(1 ≤ i ≤ m). Suppose that R =

⋃m
i=1Ri is a proj-

intersecting family. Let λi > 0(1 ≤ i ≤ m) be real numbers. Then

m∑
i=1

λi|Ri| ≤ max

{
n1

m∑
i=1

λi`i, n2

m∑
i=1

λiki

}
holds.
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Define the families

Fi = {F ∈ F : |F ∩X1| = ki, |F ∩X2| = `i}.

We use double counting for the sum∑
F,C1,C2

s(F )

where Cj is a cyclic permutation of Znj
(j = 1, 2), F ∈ F and it forms a

rectangle for the product of these two cyclic permutations and the weight
s(F ) is defined in the following way:

s(F ) = si(F ) =
1

n1!
· 1

n2!

(
n1

ki

)(
n2

`i

)
if F ∈ Fi.

Some tedious calculations and the usage of the lemma leads to the proof
of the theorem.

3 A small detour: shadows

Let F ⊂
(
[n]
k

)
be a family of k-element subsets of [n]. Its shadow is defined

as
σ(F) = {G : |G| = k − 1, G ⊂ F for some F ∈ F}.

The shadow problem is the following: given n, k and |F|, minimize |σ(F)|.
It is obvious to believe that if we are lucky and |F| =

(
a
k

)
holds for an integer

a then the best construction is “to push all these k-element subsets into the
corner” that is to take all k-element subsets of an a-element set A. Then the
shadow will be min |σ(F)| =

(
a

k−1

)
.

This is really true and this pattern can be continued using the following
lemma.

Lemma 2 If 0 < k,m are integers then one can find integers ak > ak−1 >
. . . > at ≥ t ≥ 1 such that

m =

(
ak
k

)
+

(
ak−1
k − 1

)
+ . . .+

(
at
t

)
and they are unique.
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This is called the canonical form of m. Now we can formulate the solution
to the shadow problem.

Theorem 6 (Shadow Theorem, [14], [10] ) . If n, k and |F| are given,
the canonical form of |F| is

|F| =
(
ak
k

)
+

(
ak−1
k − 1

)
+ . . .+

(
at
t

)
then

min |σ(F)| =
(

ak
k − 1

)
+

(
ak−1
k − 2

)
+ . . .+

(
at
t− 1

)
.

We might also want to minimize the “deeper” shadow, the so called s-
shadow: σs(F) = {G : |G| = k − s,G ⊂ F for some F ∈ F}. Theorem 6
can be formulated in this general form.

Theorem 7 (Shadow Theorem, [14], [10] ) . If n, k and |F| are given,
the canonical form of |F| is

|F| =
(
ak
k

)
+

(
ak−1
k − 1

)
+ . . .+

(
at
t

)
then

min |σs(F)| =
(

ak
k − s

)
+

(
ak−s

k − 1− s

)
+ . . .+

(
at
t− s

)
.

Lovász [16] found an estimate which is not sharp in most cases but is easier
to handle. We need to generalize the binomial coefficients for real numbers.

If x is a real number,
(
x
k

)
= x(x−1)...(x−k+1)

k! .

Theorem 8 (Lovász’ version of the Shadow theorem, [16]). If A is
a family of k-element sets,

|A| =
(
x

k

)
then

|σs(A)| ≥
(

x

k − s

)
.
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This estimate is sharp only when x is an integer.
Daykin [3] noticed that the shadow theorem implies the Erdős-Ko-Rado

theorem.
Proof. Let F ⊂

(
[n]
k

)
be intersecting (2k ≤ n). Define the complementing

family F− = {[n] − F : F ∈ F} ⊂
(

[n]
n−k

)
where k ≤ n − k. If A ∈ F then

A ∈ F− has n − k elements. Deleting s = n − 2k elements from the n − k-
element set A we obtain a k-element shadow set. Hence σn−2k(F−) ⊂

(
[n]
k

)
.

The members of σn−2k(F−) are all disjoint to A therefore they cannot be in
the intersecting F . We obtained

F ∩ σn−2k(F−) = ∅. (1)

Suppose |F−| = |F| >
(
n−1
k−1

)
=
(
n−1
n−k

)
. Then by Theorem 7 |σn−2k(F−)| ≥(

n−1
k

)
and by (1), the number of k-element subsets is at least |F|+|σn−2k(F−)|

>
(
n−1
k−1

)
+
(
n−1
k

)
=
(
n
k

)
. This contradiction proves the statement. �

4 Shadows of intersecting families

Suppose F is intersecting and |F| =
(
a
k

)
where 2k < a < n. If we want to

find the minimum of σ(F) it is easy to see that the old construction does not
work here since one cannot choose all k-element sets of the a-element set,
since there are disjoint ones among them.

Let us consider the following more general case. F is t-intersecting if
F,G ∈ F implies |F ∩ G| ≥ t. Our question is, again what is the minimum
of |σs(F)| under the condition that F is t-intersecting?

The disappointing answer is that we do not know! This is why we must
ask a more modest question. What is the minimum of

|σs(F)|
|F|

under the condition that F is t-intersecting?

Theorem 9 (Intersecting shadow theorem, [9]) If F ⊂
(
[n]
k

)
is a t-

intersecting family, s ≤ t then

|σs(F)|
|F|

≥
(
2k−t
k−s

)(
2k−t
k

) .
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The family F =
(
2k−t
k

)
gives equality in the theorem.

Now we will show that the Intersecting shadow theorem implies EKR.
This has an importance because it is a less difficult theorem than the Shadow
theorem, yet it has the same implication at this place.

Proof ([9]). We will start in the same way as in the proof of Daykin.
(Observe that [9] was published earlier than [3].) As before let F ⊂

(
[n]
k

)
be

intersecting (2k ≤ n) and F− = {[n]−F : F ∈ F} ⊂
(

[n]
n−k

)
where k ≤ n−k.

We saw that (1) holds.
F is intersecting therefore F− = {[n]−F : F ∈ F} ⊂

(
[n]
n−k

)
is n−2k+1-

intersecting. Here 2(n − k) − (n − 2k + 1) = n − 1 and by the intersecting
shadow theorem we obtain

|σn−2k(F−)|
|F−|

≥
(
n−1
k

)(
n−1
n−k

) =
n− k
k

.

Hence by (1):(
n

k

)
≥ |σs(F−)|+ |F| ≥ |F|

(
n− k
k

+ 1

)
= |F|n

k
,

which implies EKR. �
Return now to Theorem 9. The problem answered by it is not just for

itself. The solution of the maximization of the non-uniform t-intersecting
family was based on that (see [9]). Repeat the result of Theorem 9 for the
case s = 1.

|σ(F)|
|F|

≥
(
2k−t
k−1

)(
2k−t
k

) =
k − 1

k − t+ 1
.

It was mentioned above that this estimate is sharp. If F consists of all k-
element subsets of a 2k− t-element set then the size of the shadow is

(
2k−t
k−1

)
,

the ratio is exactly the above one. In this construction however the size |F|
of the family is “small”, does not depend on n. What happens if we suppose
that |F| is large? We have a slight improvement in this case.

Theorem 10 [13]. If F ⊂
(
[n]
k

)
is a t-intersecting family, 1 ≤ t then

|σ(F)| ≥ |F|k − 1

k − t
− c(k, t)

where c(k, t) does not depend on n and |F|.
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This is an improvement only when t > 1 and F| is large. A better multi-
plicative constant cannot be expected as the following example shows.

Divide [n] into two parts, X1, X2 where |X1| = 2k − t − 2, |X2| = n −
2k + t + 2 and define F as the family of all k-element sets F such that
|F ∩X1| = k− 1, |F ∩X2| = 1. Here |F| =

(
2k−t−2
k−1

)
(n− 2k+ t+ 2), |σ(F)| =(

2k−t−2
k−2

)
(n− 2k + t+ 2) +

(
2k−t−2
k−1

)
. Their ratio tends to k−1

k−t .
Let us mention that there is a similar result of Frankl [5]. See also a

forthcoming papers of Frankl and the present author.
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cula Mathematica 37(4)(2017) 577-588.

[13] Katona, Gyula O.H.: Results on the shadow of intersecting families, in
preparation.

[14] Kruskal, J.B.: The number of simplices in a complex, Mathematical
Optimization Techniques, (University of California, 1963) 251-278.

[15] Kwan, Metthew, Sudakov, Benny and Vieira, Pedro: Non-trivially inter-
secting multi-part families, J. Combin. Theory Ser A 156(2018) 44-60.
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