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We have two types of lattice-figures: a "big" and a "small" one,
We should like to cover the "big" figure with disjoint replicas of the "small"
one, An old problem of this type is the well-known chessboard problem: is it
possible to cover with 31 dominoes a chessboard deprived of two diagonal

fields?

The following interesting matching problem of N.G. de Bruijn was

published in 1962 in Matematikai Lapok [1]:

An n-dimensional rectangular parallelotop is to be decomposed in-
to such congruent rectangular parallelotops, the edge-lengths of which are the
given natural numbers a4,a,,--;a, . Under which conditions can we say
that such a decomposition exists if and only if there exists a decomposition
with parallel parallelotops (i.e. the parallel edges of the parallelotops involved

in the decomposition are equal),

(The solution of the problem was sent in by G. Haj6s and the
authors [2].)

In a not too general sense, matching problems deal with the
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coverability and the number od different coverings of a lattice-figure - say B

- with the replicas of another lattice-figure - say A, Rotation and symmetry

are or are not allowed, Sometimes more types of A’s are also allowed., The
notion of coverability can be also generalized (see Definition B). The principal
results of the paper give necessary and sufficient conditions for the coverability

of a lattice parallelotop with
o) lattice-parallelotops of one or more given types;

B) lattice-figures consisting of two cubes (this is a generalization

of the domino),

Here we summarize only the main definitions and results of our

paper being in the press at the Journal of Combinatorial Theory.

The proofs can be found in that paper, and the numbering of

definitions and theorems is also taken from there,

DEFINITIONS

Let us consider the set of n-dimensional lattice points (i, e, the

points with integer coordinates),
An n-dimensional lattice-figure is an arbitrary subset of lattice-
points,

There exists a natural correspondence between the lattice-points
and lattice-fields (unit cubes), Thus, sometimes we shall use the more

illustrative expression "lattice field" instead of "lattice-point",

We accept the usual concept of congruency, that is we allow of

shift, rotation and symmetry,

For the sake of simplicity we suppose (unless we emphasize the
contrary) that the parallelotop which we want to decompose will be situated in

the non-negative octant, and that one of its vertices is the origin, (l.e, a
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parallelotop B with edge-lengths b,,b,,.-., b, consists of the lattice-

points (x4, %5525 %) satisfying the conditions 0O<x;<b; (4<i<n).)
DEFINITION A,

We say that a parallelotop B can be filled up (covered) by the
given lattice-figures A ,A,,..., A if we can decompose B into disjoint

subsets, each of which is congruent to one of AL’ s; and in this case we write
(AL, Ay, ., ADIB.
(If m=1, we write simply A4IB .)

If we use the above natural definition of coverability, then the
necessary and sufficient conditions are valid only if all the edges of the
parallelotop B are large enough., However, in the case of the next definition

we can omit this,
DEFINITION B,

We say that a parallelotop B can be filled up (covered) in the
weak sense by the given lattice-figures A4,A,,..-, A =~ if there exist the
parallelotops A,¢1),..., A (ry), Ag(),., Aplry ) 5 oo A (), s A(r)
and the integers V,M yere v1 I"." \721 PR vzrz PREEE \’m,‘ PRI vmr,,.,

such that

f1 if xeB

LO if xéB ,

1=

1£‘j€r‘l;

xeA ()

where A;(j) (4¢j<r;) is congruentto A; (4<i< m)
In this case we write

(AL Ay, A "B .
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The number VLJ’ is called the multiplicity of A .

It is easy to see that (A,,Ay,..., A _DJ|B implies
(A A, Am)i*B and we can choose the integers "L'j so that Vij =1

(Afism, 1ajer),
DEFINITION C,

We say that a parallelotop B can be filled up (covered) in a parallel
manner by a given parallelotop A if we can decompose B into disjoint subsets,
each of which is congruent to A and the parallel edges are equal. In this case

we write AlPB.
DEFINITION D,

n
are given nonnegative integers ( Z a;>0)

=1

If apa.-,0,
then the lattice points (Xqidgge 3 Xn) (Yy.4yp>---»y,) form a knight-
figure of type a,xo,x...xa, if [ %q=gyly I xg=ysly oy IXp-u, )

is a permutation of the integers a,,a,,--, a, . The knight-figure of type

AyX Qgxee X Ry will be denoted by K(a,,...,a,).

In Part 1 we give a necessary and sufficient condition for the
validity of (A,,A,,... ,Am)l*B (Theorem 2), and for the validity of
(Ap,Ags» A0 B  and AIB if B is large enough (Theorem 3 and Theorem 4,
resp, ). Some Special cases are also explained because of the simpler form of
conditions (Theorem 1, 5, 6, 7). In the course of the proofs we need a
generalization (Lemma 7) of the well-known marriage principle which may be

interesting in itself,

[n Part 2 we give a necessary and sufficient condition for the
validity of K(a,b)|B if B is large enough, (Theorem 12). For the case K(a,1)
a covering is constructed. Two simple n-dimensional generalizations

(Theorem 13, 14) are also given,
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1. COVERINGS WITH PARALLELOTOPS

The simplest but very interesting case is the case of parallelotop
with edge-lengths 1,1,...,4,a ., The following theorem concerning this type is

obviously a special case of general Theorem 2,

Theorem 1. [6],[7] Let A and B be n-dimensional paral-
lelotops and the edge-lengths of A be 4,1,...,4,a , then A|B if and only if at
least one edge of B is divisible by a.

DEFINITION 2,

If e4,...,e, are natural numbers and B is an n-dimensional
parallelotop, then M(B,e,,...,e, ) denotes the divisibility matrix: the j-th
element of the i-th row is 1 if e | bj (where b; is the j-th side of B)and 0
if e; ' bj .

DEFINITION 3,

We say that an nxn matrix M has not independent 0’s (or 1°’s)

if there areno n 0’s (or 1°s) in different rows and columns,

Theorem 2, (A4,A2,...,Am)l*5 holds if and only if, |choosing

in an arbitrary manner k;(>1) edges of A;, denoting by d; their greatest

common divisor and making n sets of the numbers d; in an arbitrary manner,
but using every d; exactly in n-k;+1 sets, finally, denoting by e,,...,e,

the greatest common divisors of the numbers in one set (ej-a-oo if the j-th set

is void), the matrix M(B,e,,...,e,) hasno n independent 0’s,

Theorem 3. Inthe case of

nm

(5) nm.2"M 2 +2

bizs -

(where a is the maximum of edges of A;’s) OBy s a B
holds if and only if (F1) holds.
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DEFINITION 4,

Let &, and &, be equal to 0 or 1. We call the logical sum of €,

and €, the number

e if E4=€,=0
€1V 52 =

il otherwise,

Similarly, if t, and t, are row vectors with 0,1 coordinates
then the coordinates of the logical sum of t, and t, are the logical sums of the

corresponding coordinates,

Lemma 7, Let M,,My,..., M be nxn matrices with elements

m

0 and 1, If they have the property thatlchoosing in an arbitrary manner k; 21

L=

(Fp

rows from M; (1£i<m), denoting by w; the logical sum of these rows and
making n sets of the row vectors w; in an arbitrary manner, but using every
W, exactly in n-k;+1 sets, finally denoting by z; (1<j<n) the logical sum of
the w;’s lying in the j’th set (if the j’th set is void, then w; =(0,0,...,0))

the matrix formed from Zy,Z5,+»2,, @S TOWS has not n independent 0°s,

then there is an index p (#£p<m) such that M, has n independent 1’s, |

REMARK, This lemma is a generalization of the well-known mar-

riage principle [3), which says:

MARRIAGE PRINCIPLE, Let M be an nxn matrix with elements
0 and 1. If choosing in an arbitrary manner k rows, the number of columns
containing a 1in of these rows (or the numbers of 1’s of the logical sum of

these rows) 2k, then M has n independent 4°s,
Now we consider some interesting special cases.

Theorem 4. Inthe case of

b

L

v
%)
o)

(where a is the maximum of edges of A)
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AlB

holds if and only if|choosing k (1<k<n) edges of A in an arbitrary manner

(F) F:heir greatest common divisor d is a divisor of at least k edges of B.

The problem of de Bruijn says that

Theorem 5. A has the property "AlB if and only if AI'B " if

and only if from any two edges of A one of them is the divisor of the other one,

In Theorem 5 we have shown that it is true only in a special case
that we can fill up something only if we can fill it up in a "regular" wav.

However, we may define the term "regular"” in a wider sense,
DEFINITION 5,

A filling up AlB is regular if we can reach to this filling up by
cuts, where cut is the operation when we divide the whole parallelotop by an

n-1-dimensional hyperplane,

Theorem 6. (A,Az,...,A )| B if and only if it is possible
regularly, too,

Another interesting special case of Theorem 3 is the case when we

have n-dimensional cubes with relative prime edges.

Theorem 7., Let C4,Cy,...,C,, be n-dimensional cubes with

edges ¢4,C,,--,C,, satisfying (ca,cj)ﬂ (i#)) and let

znm an 4
bj>5’r1m e 7 (42j<n)
where ¢ =max (¢,,...,C_) . Then
(Cb‘)---,cm)\B

holds if and only if the mxn matrix MCB)C‘\""’cm) has no m independent
0’s.
We have obtained the following modified form of Theorem 7.
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Theorem 7a.Under the condition of Theorem7 (C,,...,C_ )8

if and only if
a)mo>n

b) m<n and there are n-m+1{ edges of B divisible by all the

numbers c,,...,c,, , or we can fill up B by less than m of C;’s,

2, COVERINGS WITH KNIGHT FIGURES
Theorem 12. Let (a,b) = d.

a
1. If =z
(m2m,(a,b),nzn,(@,b)) is coverable with knight-figures of type axb, if and

E% (mod 2), then a rectangular with large enough sizes

only if m and n are divisible by 2d .

2, If % $ -:‘—:’l (mod 2), then a rectangular with large enough sizes
(m2m,(a,b),nzn,(a,b) is coverable with knight-figures of type axb, if and
only if either m or n is divisible by 2d.

Theorem 13. An n-dimensional parallelotop R can be covered
with knight-figures of type ax0x..x O if and only if one of its sizes is divisible

by Za.

Theorem 14, An n-dimensional parallelotop R can be covered

with knight-figures of type ax...xa if and only if its sizes are divisible by 2a,
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