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1 Introduction

The underlying set will be {1, 2, . . . , n}. The family of all k-element subsets
of [n] is denoted by

(
[n]
k

)
. Its subfamilies are called uniform. A family F of

some subsets of [n] is called intersecting if F ∩ G 6= ∅ holds for every pair
F,G ∈ F . The whole story has started with the seminal paper of Erdős, Ko
and Rado [7]. Their first observation was that an intersecting family in 2[n]

can contain at most one of the complementing pairs, therefore the size of an
intersecting family cannot exceed the half of the number of all subsets of [n].

Observation 1 (Erdős, Ko, Rado [7]) If F ⊂ 2[n] is intersecting then |F| ≤
2n−1 = 2n/2.

The following trivial construction shows that the bound is sharp.

Construction 1 Take all subsets of [n] containing the element 1.

However there are many other construction giving equality in Observation
1. The following one will be interesting for our further investigations.

Construction 2 If n is odd take all sets of size at least n−1
2

. If n is even
then choose all the sets of size at least n

2
− 1 and the sets of size n

2
not

containing the element n.
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The analogous problem when the intersecting subsets have size exactly k,
that is the case of uniform families, is not so trivial when k ≤ n

2
. (Otherwise

all k-element subsets can be chosen.)

Theorem 1 (Erdős, Ko, Rado [7]) If F ⊂
(
[n]
k

)
is intersecting where k ≤ n

2

then

|F| ≤
(
n− 1

k − 1

)
.

The original proof uses the so called shifting method. There is a shorter
proof based on the cycle method in [20]. It can also be found in the books
[2] and [5]. We will give an algebraic (using eigenvalues) proof in Section 4.
In the case of Theorem 1 there is only one extremal construction, mimicking
Construction 1.

Construction 3 Take all subsets of [n] having size k and containing the
element 1.

It is worth mentioning that the results contained in [7] were obtained
in the late 1930’s when all three authors worked in England, but they did
not publish them because they did not think that the mathematical commu-
nity would find them interesting. They sent the paper for publication only
in 1960 when they realized that the “mathematical climate” has changed:
Combinatorics became a science. It was a very good idea, this paper is the
second most cited paper of Erdős according to MathSciNet, although the
competition is tough.

We say that a family F is trivially intersecting if there is an element
a ∈ [n] such that all members of F contain a. Constructions 1 and 3 are
trivially intersecting. Construction 2 shows that in the non-uniform case
non-trivially intersecting families can be as large as the trivially intersecting
one. But this seemed not to be true for the uniform families. [7] posed the
problem of finding the largest k-uniform non-trivially intersecting family. It
was found by Hilton and Milner.

Theorem 2 [15] If F is an intersecting but not a trivially intersecting fam-
ily, F ⊂

(
[n]
k

)
(2k ≤ n) then

|F| ≤ 1 +

(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
.
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The construction giving equality is the following.

Construction 4 Let K = {2, 3, . . . , k+1}. The extremal family will consist
of all k-element sets containing 1 and intersecting K.

The goal of the present paper is to survey only some directions of this
theory. A comprehensive survey would be a book. (Let us call the reader’s
attention to the forthcoming book of Gerbner and Patkós [14].) The author,
of course, selected the directions according his own interest, covering his own
results. There is an overlapping with the paper [21].

2 t-intersecting families

Already Erdős, Ko and Rado ([7]) considered a more general problem. A
family F ⊂ 2[n] is t-intersecting if |F ∩G| ≥ t holds for every pair F,G ∈ F .
They posed a conjecture for the maximal size of non-uniform a t-intersecting
family. This conjecture was justified in the following theorem.

Theorem 3 (Katona [18]) If F ⊂ 2[n] is t-intersecting then

|F| ≤

{∑n
i=n+t

2

(
n
i

)
if n+ t is even∑n

i=n+t+1
2

(
n
i

)
+
(

n−1
n+t−1

2

)
if n+ t is odd .

Here the generalization of Construction 1 gives only 2n−t, less than the
upper bound in Theorem 3 (if t > 1). In order to obtain a sharp construction
we have to mimic Construction 2.

Construction 5 If n + t is even, take all sets of size at least n+t
2

. If n + t
is odd then choose all the sets of size at least n+t+1

2
and the sets of size n+t−1

2

not containing the element n.

The uniform case is harder, again. A natural trial to obtain the best
construction is the obvious generalization of Construction 3.

Construction 6 Take all subsets of [n] having size k and containing [t] as
a subset.
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This is really t-intersecting, but [7] contains an example when this con-
struction is not the best. Let n = 8, k = 4, t = 2. Divide the underlying
set into two parts [8] = X1 ∪ X2 where X1 = [4], X2 = {5, 6, 7, 8}. Let F
consist of all 4-element subsets F satisfying |X1 ∩ F | ≥ 3. This family is
2-intersecting and has 17 members, while Construction 6 has only

(
6
2

)
= 15

in this case.
But Erdős, Ko and Rado [7] were able to prove that Construction 6 gives

the largest family when n is large with respect to k. The dependence of the
threshold on t is not interesting here since 1 ≤ t < k can be supposed.

Theorem 4 [7] If F ⊂
(
[n]
k

)
is t-intersecting and n ≥ n(k) then

|F| ≤
(
n− t
k − t

)
. (1)

The next step towards the better understanding of the situation was when
Frankl [9] and Wilson [29] determined the exact value of the threshold n(k)
in Theorem 3.

Let us now consider the following generalization of the counter-example
above.

Construction 7 Choose a non-negative integer parameter i and define the
family

A(n, k, t, i) = {A : |A| = k, |A ∩ [t+ 2i]| ≥ t+ i}. (2)

It is easy to see that A(n, k, t, i) is t-intersecting for each i.

Introduce the following notation:

max
0≤i
|A(n, k, t, i)| = AK(n, k, t).

This is the size of the best of the constructions (2). Frankl [9] conjectured that
this construction gives the largest k-uniform t-intersecting family. Frankl and
Füredi [11] proved the conjecture for a very large class of parameters but the
full conjecture remained open until 1996 when it became a theorem.

Theorem 5 (Ahlswede and Khachatrian, [1]) Let F ⊂
(
[n]
k

)
be a t-intersecting

family. Then
|F| ≤ AK(n, k, t)

holds.

Of course Theorem 5 has many consequences. We will exhibit only one
result of us, in Section 3, where this theorem is used and plays a role even in
the formulation of the statement.
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3 Largest union-intersecting families and re-

lated problems

The following problem was asked by János Körner.
Let F ⊂ 2[n] and suppose that if F1, F2, G1, G2 ∈ F , F1 6= F2, G1 6= G2

holds then
(F1 ∪ F2) ∩ (G1 ∪G2) 6= ∅.

What is the maximum size of such a family?
He conjectured that the following construction gives the largest one.

Construction 8 If n is odd then take all sets of size at least n−1
2

. If n is
even then choose all the sets of size at least n

2
and the sets of size n

2
− 1

containing the element 1.

We solved the problem in a more general setting. A family F ⊂ 2[n] is
called a union-t-intersecting if

|(F1 ∪ F2) ∩ (G1 ∪G2)| ≥ t

holds for any four members such that F1 6= F2, G1 6= G2.

Theorem 6 (Katona-D.T. Nagy [24] ) If F ⊂ 2[n] is a union-t-intersecting
family then

|F| ≤

{∑n
i=n+t

2
−1

(
n
i

)
if n+ t is even∑n

i=n+t−1
2

(
n
i

)
+ AK

(
n, n+t−3

2
, t
)

if n+ t is odd .

The following construction shows that the estimate is sharp.

Construction 9 If n+ t is even, take all the sets with size at least n+t
2
− 1.

Otherwise choose all the sets of size at least n+t−1
2

and the sets of size n+t−3
2

following Construction 7 where k = n+t−3
2

and i chosen to maximize (2).

Since the result contains the AK-function, it is obvious that Theorem 5
must be used in the proof of this theorem.

As before, the uniform case is more difficult. Yet, we will treat it in an
even more general form. A family F ⊂ 2[n] is called a (u, v)-union-intersecting
if for different members F1, . . . , Fu, G1, . . . , Gv the following holds:

(∪ui=1Fi) ∩
(
∪vj=1Gj

)
6= ∅.
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Theorem 7 (Katona-D.T. Nagy [24]) Let 1 ≤ u ≤ v and suppose that the
family F ⊂

(
[n]
k

)
is a (u, v)-union–intersecting family then

|F| ≤
(
n− 1

k − 1

)
+ u− 1

holds if n > n(k, v).

The following construction shows that the estimate is sharp.

Construction 10 Take all k-element subsets containing the element 1, and
choose u− 1 distinct sets non containing 1.

The theorem does not give a solution for small values.

Open Problem 1 [21] Is there an Ahlswede-Khachatrian type theorem here,
too?

A new result of Alishahi and Taherkhani [3] gave Theorem 7 a wider
perspective. The Kneser graph K(n, k)(1 ≤ k ≤ n

2
) is the graph whose

vertices are all k-element subsets of an n-element set, where two vertices
are adjacent iff the corresponding sets are disjoint. Using this terminology
Erdős-Ko-Rado theorem claims that the largest independent set of vertices
in this graph has size

(
n−1
k−1

)
. In other words, if a set S of vertices of the

Kneser graph K(n, k) induces the empty graph then |S| ≤
(
n−1
k−1

)
.

What is now the maximum of the size of S if it does not induce a star Sr

(a graph with r+1 vertices, in which one vertex (the center) is adjacent to all
other ones)? This was answered by Gerbner, Lemons, Palmer, Patkós, and
Szécsi [13] in the following theorem. (Formulated by intersecting subsets,
again.)

Theorem 8 [13] Let F ⊂
(
[n]
k

)
be a family in which no member is disjoint

to r other members. If n ≥ n(k, r) then

|F| ≤
(
n− 1

k − 1

)
.

Suppose now that S is such a set of vertices of the Kneser graph K(n, k)
that it does not induce a complete bipartite graph Ku,v(u ≤ v). The max-
imum size of S under this condition is determined by Theorem 7 for large
enough n.
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But [3] solves the problem in full generality, for an arbitrary graph G
instead of a complete bipartite graph. Let χ(G) be the chromatic number of
G, furthermore let η(G) be the size of the smallest color class for all proper
colorings with χ(G) colors.

Theorem 9 [3] Let S be a set of vertices of the Kneser graph K(n, k) not
inducing G as a subgraph. If n is large enough (n ≥ n(k,G)) then

|S| ≤
(
n

k

)
−
(
n− χ(G) + 1

k

)
+ η(G)− 1.

4 Two- or more-part intersecting families

Before starting the real subject of the present section, we will give an alge-
braic proof of Theorem 1. This proof is spectral, based on the approach in
[28] and in [4]. Before really starting the proof we have to remind the reader
some known definitions and facts from the literature.

Let G be a simple graph on N vertices with adjacency matrix A. The
number λ is called an eigenvalue of a matrix A if there is a non-zero vector
x such that Ax = λx. The vector x is the associated eigenvector. If I is
the identity matrix of the same size then det(A − λI) is a polynomial of λ.
All the roots of the equation det(A − λI) = 0 are real. These roots are the
eigenvalues and their number with multiplicities is N . Index them according
to their natural ordering: λ1 ≥ λ2 ≥ . . . ≥ λN . It is known that if G is a
regular graph then λ1 is the common degree. (See e.g. [27].) If α(G) is the
maximum number of independent vertices then (see [16], [28])

α(G) ≤ −N λN
λ1 − λN

(3)

holds.
Proof of Theorem 1. Let n ≥ 2k be positive integers. The Kneser

graph K(n, k) is the graph whose vertices are all k-element subsets of an n-
element set, where two vertices are adjacent iff the corresponding sets are
disjoint. (It was define in the previous section, we repeated here for the case,
the reader did not read the whole paper.) The number of vertices of this
graph is thus N =

(
n
k

)
, and it is known that its eigenvalues are all numbers

of the form (−1)j
(
n−k−j
k−j

)
, for j ∈ {0, 1, . . . , k} (See, e.g., [28] for a proof.

They have different multiplicities.) In particular, the largest eigenvalue is
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the degree of regularity d = λ1 =
(
n−k
k

)
and the smallest (most negative) one

is λN = −
(
n−k−1
k−1

)
= − k

n−k
d. Substituting these values into (3)

−
(
n

k

) − k
n−k

d

d+ k
n−k

d
=

(
n− 1

k − 1

)
is obtained, finishing the elegant algebraic proof of Theorem 1. (See [28].) �

The goal of this section is to consider the problem when the underlying
set is partitioned into two (or more) parts X1, X2 and the sets F ∈ F have
fixed sizes in both parts. For some motivation see [22] (Section 4). More
precisely let X1 and X2 be disjoint sets of n1, respectively n2 elements. [10]
considered such subsets of X = X1 ∪X2 which had k elements in X1 and `
elements in X2. The family of all such sets is denoted by(
X1, X2

k, `

)
=

(
X1

k

)⊎(
X2

`

)
= {F ⊂ X1∪X2 : |F ∩X1| = k, |F ∩X2| = `}.

The construction above, taking all possible sets containing a fixed element
also works here. If the fixed element is in X1 then the number of these sets
is (

n1 − 1

k − 1

)(
n2

`

)
,

otherwise it is (
n1

k

)(
n2 − 1

`− 1

)
.

The following theorem of Frankl [10] claims that the larger one of these is
the best.

Theorem 10 Let X1, X2 be two disjoint sets of n1 and n2 elements, respec-
tively. The positive integers k, ` satisfy the inequalities 2k ≤ n1, 2` ≤ n2. If
F is an intersecting subfamily of

(
X1,X2

k,`

)
then

|F| ≤ max

{(
n1 − 1

k − 1

)(
n2

`

)
,

(
n1

k

)(
n2 − 1

`− 1

)}
.

Actually his theorem is formulated for an arbitrary number of parts.
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Theorem 11 [10] Let p ≥ 2 and suppose n1 ≥ 2k1, n2 ≥ 2k2, . . . , np ≥ 2kp.
Let X1, X2, . . . , Xp be p pairwise disjoint sets, where |Xi| = ni and let X =
∪ki=1Xi be their union. Let F be an intersecting family of subsets of X, where
each F ∈ F has exactly ki elements in Xi for all 1 ≤ i ≤ p. Then

|F| ≤ max
1≤i≤p

ki
ni

p∏
i=1

(
ni

ki

)
.

Proof of Theorem 11 [10]. The (categorical) product G1 × G2 of two
graphs G1 and G2 is the graph whose vertex set consists of the pairs (v1, v2)
where vi is a vertex of Gi and two vertices (u1, u2) and (v1, v2) are adjacent
iff {u1, v1} is an edge in G1 and {u2, v2} is an edge in G2.

Let A = (aij) and B be p× r and s× t matrices, respectively. The tensor
product A⊗B is an ps×rt matrix obtained by blocks of copies of B multiplied
by the entries aij. It is easy to see that the adjacency matrix of G1 × G2 is
the tensor product of the respective adjacency matrices. Suppose that λ and
µ are eigenvalues of A and B, respectively. That is Ax = λx and By = µy
hold for some non-zero vectors x and y. Then we have (A ⊗ B)(x ⊗ y) =
Ax⊗ By = λx⊗ µy = λµx⊗ y showing that λµ is an eigenvalue associated
with the eigenvector x⊗ y. One can see that all eigenvalues of A⊗B can be
obtained in this way, see e.g. [17].

Using the (obvious extension of) our previous notation, the members of
the family in the theorem are elements of(

X1, . . . , Xp

k1, . . . , kp

)
=

p⊎
i=1

(
Xi

ki

)
. (4)

It is easy to see that the vertices of the product graph

K(n1, k1)×K(n2, k2)× . . .×K(np, kp) (5)

are exactly the elements of (4). The number of vertices is N∗ =
∏p

i=1

(
ni

ki

)
.

Two vertices are adjacent iff they are adjacent in every factor that is the
corresponding subsets, elements of F are disjoint. Therefore the aim of the
theorem is to determine the independence number of the graph (5).

The upper estimate (3) will be used. We made some easy remarks above,
on the products of two graphs, their adjacency matrices and eigenvalues.
These statements can be extended to the product of more graphs by induc-
tion. Hence the eigenvalues of the graph (5) will be products of eigenvalues of
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the Kneser graphs, one eigenvalue from each K(ni, ki). Therefore the largest
eigenvalue of the product will be the product of the largest eigenvalues of
K(ni, ki)’s:

λ∗1 = d∗ =
k∏

i=1

(
ni − ki
ki

)
. (6)

The smallest eigenvalue must be negative, therefore the number of odd indices
ji in the corresponding product

p∏
i=1

(−1)ji
(
ni − ki − ji
ki − ji

)
(7)

must be odd. If ji is even then
(
ni−ki−ji
ki−ji

)
can be replaced by

(
ni−ki
ki

)
decreasing

(making more negative) the product (7). If ju and jv are both odd then

(−1)2
(
nu − ku − ju
ku − ju

)(
nv − kv − jv
kv − jv

)
can be replaced by (

nu − ku
ku

)(
nv − kv
kv

)
,

decreasing the product, again. If all these changes are carried out, we have
all ji’s 0 with one exception where it is 1. The smallest of these is the smallest
eigenvalue:

λ∗N∗ = − max
1≤i≤p

{
ki

ni − ki

} p∏
i=1

(
ni − ki
ki

)
= − max

1≤i≤p

{
ki

ni − ki

}
d∗. (8)

Substituting (6) and (8) into (3) gives:

p∏
i=1

(
ni

ki

) max1≤i≤p

{
ki

ni−ki

}
1 + max1≤i≤p

{
ki

ni−ki

} .
The last factor is equal to

max
1≤i≤p

{
ki
ni

}
,

completing the proof of the theorem. �
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Theorems 10 and 11 could be formulated in such a way that the largest
subfamily of (4) is one of the trivially intersecting families. It is natural
to ask what is the largest non-trivially intersecting subfamily. For sake of
simplicity let us first consider the case of two parts.

Take a Hilton-Milner family (Construction 4) inX1, denote it by HM(X1, k).
Extend its members in all possible ways by `-element subsets chosen from
X2:

HM1(X1, k;X2, `) = {F ∪G : F ∈ HM(X1, k), G ⊂ X2, |G| = `}.

Define, similarly,

HM2(X1, k;X2, `) = {F ∪G : F ⊂ X1, |F | = k,G ∈ HM(X2, `)}.

It was conjectured in [22] that either HM1(X1, k;X2, `) or HM2(X1, k;X2, `)
is the largest nontrivially intersecting subfamily of

(
X1,X2

k,`

)
. Kwan, Sudakov

and Vieira [26] showed that this is not true: there are other, “mixed” Hilton-
Milner families which are better in some cases.

Fix an element a ∈ X1, a set A ⊂ X1 such that a 6∈ A, |A| = k and a set
B ⊂ X2 such that |B| = ` and define

HMmix
1 (X1, k;X2, `) = {F : |F∩X1| = k, |F∩X2| = `, a ∈ F, F∩(A∪B) 6= ∅}.

HMmix
2 (X1, k;X2, `) is the symmetric construction.

Theorem 12 (Kwan, Sudakov, Vieira [26]) If both |X1| and |X2| are large
enough then the largest non-trivially intersecting subfamily of

(
X1,X2

k,`

)
is one

of HM1(X1, k;X2, `),HM2(X1, k;X2, `),HMmix
1 (X1, k;X2, `) and

HMmix
2 (X1, k;X2, `).

Their result actually claims the analogous statement for more parts. The
proof uses the shifting method.

Let us consider now the case when other sizes are also allowed that is
the family consists of sets satisfying |F ∩X1| = ki, |F ∩X2| = `i for certain
pairs (ki, `i) of positive integers. Using the notation above, we will consider
subfamilies of

m⋃
i=1

(
X1, X2

ki, `i

)
.
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The generalization is however a little weaker at one point. In Theorem
10 the thresholds 2k ≤ n1, 2` ≤ n2 for validity are natural. If either n1 or
n2 is smaller then the problem becomes trivial, all such sets can be selected
in F . In the generalization below there is no such natural threshold. There
will be another difference in the formulation. We give the construction of the
extremal family rather than the maximum number of sets.

Theorem 13 [22] Let X1, X2 be two disjoint sets of n1 and n2 elements,
respectively. Some positive integers ki, `i(1 ≤ i ≤ m) are given. Define
b = maxi{ki, `i}. Suppose that 9b2 ≤ n1, n2. If F is an intersecting subfamily
of

m⋃
i=1

(
X1, X2

ki, `i

)
(9)

then |F| cannot exceed the size of the largest trivially intersecting family
satisfying the conditions.

The family (9), in general, cannot be given in a product form. This is
why the eigenvalues cannot be as easily determined as in the case above. The
proof of Theorem 13 is based on the cycle method, more precisely on lemmas
on direct products of cycles.

Theorems 1, (10), 11 and 13 state that the largest intersecting subfamily
of a certain uniform family is a trivially intersecting one.

Open Problem 2 Find a general sufficient condition for uniform families
F which ensures that the largest intersecting subfamily of F is trivially in-
tersecting.

We do not even have a conjecture of this type, unlike in the case of non-
uniform families. A family F is called hereditry (or downset) if G ⊂ F ∈ F
implies G ∈ F .

Conjecture 1 (Chvátal, [6]) If F ⊂ 2[n] is a hereditary family then its
largest intersecting subfamily is a trivially intersecting one.

Many special cases are settled, but the conjecture is still open in its full
generality.
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5 Minimum shadows of t-intersecting

families

Suppose that F is a k-uniform family: F ⊂
(
[n]
k

)
. Its shadow is a k − 1-

uniform family obtained by removing single elements from the members of
F .

σ(F) = {G : |G| = k − 1, G ⊂ F for some F ∈ F}.

The shadow problem asks for the minimum of |σ(F)|, given n, k and |F|.
The shadow theorem ([25], [19]) determines the exact minimum for all cases,
but here we give only a special case.

Theorem 14 (Special case of the Shadow Theorem, [25], [19].) Let n, k be
integers and suppose that F ∈

(
[n]
k

)
has the size

(
a
k

)
for some integer a. Then

min |σ(F)| =
(

a

k − 1

)
.

The construction giving equality is simply F =
(
[a]
k

)
that is the family of all

k-element subsets of an a-element part of [n]. (It does not depend on n.)
It is natural to ask what is the minimum of |σ(F)| under the condition

that F is t-intersecting. The old construction does not work here if a > 2k.
The answer is somewhat disappointing: we do not know this minimum value.
But we can answer a more modest question, we are able to determine the
minimum of the ratio

|σ(F)|
|F|

.

Theorem 15 [18] If F ⊂
(
[n]
k

)
is a t-intersecting family, then

|σ(F)|
|F|

≥
(
2k−t
k−1

)(
2k−t
k

) =
k − 1

k − t+ 1
.

The problem is not just for itself. The proof of Theorem 3 is based on (a
more general form of) Theorem 14. This estimate is sharp. If F consists of
all k-element subsets of a 2k − t-element set then the size of the shadow is(
2k−t
k−1

)
, the ratio is exactly the above one. In this construction however the

size |F| of the family is “small”, does not depend on n. What happens if we
suppose that |F| is large? We have a slight improvement in this case.
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Theorem 16 [23]. If F ⊂
(
[n]
k

)
is a t-intersecting family, 1 ≤ t then

|σ(F)| ≥ |F|k − 1

k − t
− c(k, t)

where c(k, t) does not depend on n and |F|.

This is an improvement only when t > 1. A better multiplicative constant
cannot be expected as the following example shows.

Divide [n] into two parts, X1, X2 where |X1| = 2k − t − 2, |X2| = n −
2k + t + 2 and define F as the family of all k-element sets F such that
|F ∩X1| = k− 1, |F ∩X2| = 1. Here |F| =

(
2k−t−2
k−1

)
(n− 2k+ t+ 2), |σ(F)| =(

2k−t−2
k−2

)
(n− 2k + t+ 2) +

(
2k−t−2
k−1

)
. Their ratio tends to k−1

k−t
.
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Theory Ser. A 56(1991) 182-194.

[12] Gerbner, Dániel: Profile polytopes of some classes of families, Combi-
natorica, 33(2013) 199-216.

[13] Gerbner, D., Lemons, N., Palmer, C., Patkós, B. and Szécsi, V.: Almost
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