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1 Introduction

Let G = (V,E) be a simple connected graph (without loops and multiple
edges). The distance d(u, v) of two vertices u, v ∈ V is the number of edges
in a shortest path between u and v. The Wiener index w(G) of G is the sum
of these distances for all distinct pairs d(u, v). This concept was introduced
by Harry Wiener, who showed that this graph parameter is closely corre-
lated with some chemical parameters, for instance with the boiling points of
alkane molecules [11]. As an example, the Wiener indices of a large classes of
fullerenes are determined in [6]. The book [7] contains many analogues and
generalizations of the Wiener index, all of them have relevance in chemistry.

Let us introduce a new vector-parameter, the Wiener profile as the
n− 1-dimensional vector (f1, f2, . . . , fn−1) where fk is the number of pairs of
distinct vertices (u, v) with distance d(u, v) = k. It is easy to see that the
Wiener index is equal to

w(G) =
n−1∑
i=1

ifi.

The contribution of a pair (u, v) of vertices (atoms in a molecule) to the
Wiener index is i if their distance is d(u, v) = i. However, if we want to have a
parameter which indicates a certain chemical property then the contribution
of a pair (u, v) could be different from their distance. Suppose that it is some
αi in case when d(u, v) = i. Here we supposed that the contribution of the
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pair (u, v) to the property depends only on their distance. But the choice
of the numbers αi might depend on the chemical property in question. Let
α = (α1, α2, . . . , αn−1) be the vector of these coefficients. Then the weighed
Wiener index with these coefficients is

wα =
n−1∑
i=1

αifi.

The choice α = (1, 2, . . . , n− 1) gives back the Wiener index.
We will study the structure of the set of Wiener profiles of graphs on n

vertices. Suppose e.g. that we want to find the molecule containing n atoms
and having a certain chemical property the most or least, then we have to
maximize or minimize wα under the condition that (f1, f2, . . . , fn−1) is the
Wiener profile of a graph of n vertices (α is fixed!). From the chemical point
of view it makes sense only to consider connected graphs, but technically it is
easier to handle the set of all graphs on n vertices. If a graph is not connected
disregard the pairs in different components. Take all Wiener profiles of the
graphs on at most n vertices (in other words the subgraphs of the n-vertex
complete graph Kn.) Denote this set by Wn. It is a set of points with integer
coordinates in the n− 1-dimensional Euclidean space.

Let us note that profile vectors were also studied in Extremal Set Theory
(see e.g. [5]). There is, however a huge difference between the structures
of the sets of profile vectors there and here. In Extremal Set Theory, if the
coordinates of a profile vectors are decreased (remaining in the non-negative
range) then the new vector is also a profile vector. This is not true here
at all, as the n = 3 shows. There are 4 non-isomorphic graphs on three
vertices: the complete graph K3, the path of two edges, a single edge and the
empty graph. Their profiles in this order are (3, 3), (2, 1), (1, 0), (0, 0). That
is, W3 = {(3, 3), (2, 1), (1, 0), (0, 0)}. One can see that (3, 2) is not a profile
though (3, 3) is.

Our main task is to give necessary and/or sufficient conditions on vectors
to make them Wiener profiles. There is one trivial condition. Since fi is
counting the number of distances i, their sum counts the total number of
distances.

n−1∑
i=1

fi =

(
n

2

)
.

But there are more complex relations among the coordinates fi. We will
introduce them below. However, before that, we suggest a new invariant of
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graphs that intuitively also has significance in chemistry. In the Wiener index
and in the Wiener profile the pairs of vertices with distance k are considered.
The distance is defined by a shortest path between the two vertices. But there
might be more paths of the same (shortest) length between the vertices. The
molecule is probably more rigid if the vertices are connected with more paths.
This motivation makes us to introduce the concept of the path profile. Let
pk be the number of paths of length k in the graph G containing n vertices
(1 ≤ k < n). The path profile is the vector (p1, p2, . . . , pn−1). The path index
is then

π(G) =
n−1∑
i=1

ipi.

Here we will call the attention on some more complex necessary conditions
that pk’s and fk’s must satisfy. Suppose that pk is known, fixed. One can
intuitively feel that pk−1 cannot be too small. Indeed, the graph contains pk
paths of length k, these paths contain many paths of length k− 1. This fact
must give a lower bound on the number pk−1. Let us use a somewhat different
approach, considering the set E of edges. The pk paths are its k-element
subsets. Deleting the first or last edge from such a path, a path of length k−1
is obtained. What is the minimum number of these k − 1-element subsets?
The literature knows a very closely related problem/results. Let A be a
family of k-element sets. The shadow σ(A) is a family of those k−1-element
sets which are obtained from the members of A deleting one (arbitrary)
element. The Shadow Theorem [8], [9] determines the exact minimum of
|σ(A)| for given k and |A| (where |S| denote the size of the set S). We will
study an analogous problem here.

The Path Shadow Problem. Knowing the the number pk of paths of length
k in a graph, determine (or estimate) the minimum number of subpaths of
length k − 1 (or in general of length `. There are substantial differences
between this problem and the traditional Shadow Problem. Here the k-
element subsets of edges are not necessarily paths of length k, in contrast to
the case of the Shadow Problem. On the other hand, in the new problem we
cannot delete edges arbitrarily from a path obtaining a shorter path.

The Distance Shadow Problem is formally very similar. Given fk, the
number of pairs of distinct vertices with distance k, determine the minimum
number of distances k− 1 in a graph. Our present paper is devoted to these
two problems.
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2 Minimization of path and distance shadows

Given a graph G let fk = fk(G) be the number of pairs of distinct vertices
(u, v) with distance d(u, v) = k. Our goal in this section is to find the
minimum of f`(G) for all graphs containing fk pairs with distance k where
k > `. Denote the minimum by M(fk, k, `). If n, the number of vertices
is known then we can define the minimum M(fk, n, k, `). These quantities
are the minimum sizes of the distance shadow. The following inequality is
obvious.

M(fk, k, `) ≤M(fk, n, k, `). (1)

But there is an another variant of this problem. The distance d(u, v) is
defined by a (shortest) path. In our modified problem we consider all paths of
length k, not only the ones which define the distance. Let N(fk, k, `) denote
the minimum number of paths of length ` in a graph containing exactly fk
paths of length k. Similarly, let N(fk, n, k, `) denote the same under the
condition that the number of vertices of the graph is fixed: n. The following
inequality is obvious, again.

N(fk, k, `) ≤ N(fk, n, k, `). (2)

These are the minimum sizes of the path shadows.

2.1 The case ` = 1, paths

The results in this subsection are taken from the literature. We list them for
the sake of completeness.

Here the number of distances 1 and the number of paths of length 1, that
is the number of edges should be minimized in both cases. It is easier to
handle the following inverse problem. The number of edges in the graph is
given, determine the maximum number of distances k or paths of length k
in the graph, either fixing the number of vertices or not.

Let the inverse of N(fk, k, 1) be R(e, k). This is the maximum number
of paths of length k in a graph containing e edges. Similarly, let R(n, e, k)
denote the same under the condition that not only the number of edges, but
also the number of vertices is given: e and n, respectively. It is easy to
determine R(e, 2).

Proposition 1 R(e, 2) =
(
e
2

)
.
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Proof. The star (one ”central” vertex contained in all e edges) gives the
above value, proving R(e, 2) ≥

(
e
2

)
. On the other hand a path of length two

consists of two edges, therefore one cannot have more of them than
(
e
2

)
. �

It is more difficult to determine R(n, e, 2). Paper [1] contains an almost
complete solution. In order to be able to formulate its main statement some
definitions are needed. A quasi-click consists of a click (complete graph) and
an additional vertex adjacent to a subset of the vertices of the click. (If there
is no additional vertex then the quasi-click is simply a click.) A quasi-star is
the complement of a quasi-click.

Theorem 1 [1] R(n, e, 2) is equal to the number of paths of length two either
in a quasi-star or in a quasi-click with e edges. Moreover the extremal graph
is a quasi-star if e ≤ 1

2

(
n
2

)
− n

2
and a quasi-click if e ≥ 1

2

(
n
2

)
+ n

2
.

One can see from this special case that the determination of R(e, k) is
easier than that of R(n, e, k). However in the case of k = 3 the difference is
not so much.

Theorem 2 [3] If 10 ≤
(
a
2

)
≤ e <

(
a+1
2

)
holds then R(e, 3) ≤ 2e(e − a)a−2

a

with equality for the complete graph on a vertices.

Here we do not have the exact value for all e, but this theorem gives a
very good asymptotic estimate for R(e, 3). Moreover, the best (asymptotic)
construction does not depend on n. Therefore the asymptotic solution (that
is sharp for infinitely many e) gives the asymptotically sharp solution for
R(n, e, 3), too.

Based on these results one can guess that the odd and even k’s behave
differently.

Theorem 3 ([2], see also [3]) If k is odd then both R(n, e, k) and R(e, k) are

asymptotically equal to 2
k−1
2 e

k+1
2 and the asymptotically sharp construction is

a complete graph.

Theorem 4 ([3]) If k is even then R(e, k) is asymptotically equal to cke
k
2
+1,

where ck is a constant depending only on k.

If k = 4, then R(e, 4) is basically known.
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Theorem 5 ([4]) If e is large enough then

R(e, 4) =

{
e3

8
− 3e2

4
+ e if e is even,

e3

8
− 7e2

8
+ 15e

8
− 9

8
if e is odd.

The extremal construction is a complete bipartite graph with sizes b e
2
c and 2.

Very little is known on R(n, e, k), but R(n, e, 4) is asymptotically deter-
mined.

Theorem 6 ([10]) R(n, e, 4) is asymptotically equal to the number of paths
either in a quasi-star or in a quasi-click.

2.2 The case ` = 1, distances

We consider the inverse again. The inverse of M(fk, k, 1) is S(e, k): this the
maximum number of distances k in a graph with e edges, while S(n, e, k) is
the maximum number of distances k in a graph with n vertices and e edges.
Of course

S(e, k) ≤ R(e, k) and S(n, e, k) ≤ R(n, e, k) (3)

holds. The inequalities are usually very sharp, since, e.g. the number of
distances is at most quadratic in n, while the number of paths can be much
larger.

Proposition 2 S(e, 2) =
(
e
2

)
.

Proof. The statement follows from Proposition 1, (3) and the fact that
the star with e rays contains this many distances 2. �

Proposition 3

S(n, e, 2) =

{ (
e
2

)
if e ≤ n− 1,(

n
2

)
− e if n ≤ e.

Proof. If e ≤ n− 1 then one cannot have more than
(
e
2

)
paths of length

2, therefore this is an upper bound for the number of distances, as well. The
star of e edges gives equality. On the other hand, if n ≤ e then the distance
between the endpoints of an edge is one, cannot be two. Hence the total
number of distances two cannot be more than

(
n
2

)
− e. The star with n− 1

rays and e− (n− 1) other edges gives the equality. �
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Theorem 7 For fixed k and large n S(e, k) is asymptotically equal to
(
e
2

)
.

Proof. Let us see that the number of finite distances in a graph with
e edges cannot exceed

(
e+1
2

)
. If the graph is connected then the number of

vertices is at most e+ 1, therefore the number of distances is at most
(
e+1
2

)
.

Suppose now that the numbers of edges in the r components are e1, e2, . . . , er
where e1 + e2 + . . . + er = e. The i’s component has at most ei + 1 vertices
therefore at most

(
ei+1
2

)
edges. The total number edges is at most

r∑
i=1

(
ei + 1

2

)
.

This is really at most
(
e+1
2

)
as the following lines show:

r∑
i=1

(
ei + 1

2

)
=

1

2

r∑
i=1

e2i +
1

2

r∑
i=1

ei ≤
1

2

(
r∑
i=1

ei

)2

+
1

2

r∑
i=1

ei =

(∑r
i=1 ei + 1

2

)
=

(
e+ 1

2

)
.

Since
(
e+1
2

)
and

(
e
2

)
are asymptotically equal, the latter one is really an

asymptotical upper bound.
Below we will construct asymptotically optimal graphs, distinguishing

cases according to k.
Suppose first that k is even. Let T (t, k/2) be a complete t-ary tree of

depth k. This is a tree with a root of degree t, all other vertices have degrees
t + 1 and 1. The latter one are the leaves. The distance of the root and a
leaf is k/2. The number of edges is

e = t+ t2 + . . .+ tk/2 = t
tk/2 − 1

t− 1
∼ tk/2 (4)

where it is supposed in the asymptotical calculation that k is fixed and t is
large. Denote the vertices of distance 1 from the root by v1, . . . , vt, while the
set of leaves connected to the root through vi is denoted by Li. It is easy
to see that the distance of the vertices a ∈ Li and b ∈ Lj(i 6= j) in the tree
T (t, k/2) is exactly k. Of course |Li| = tk/2−1. Hence the number of pairs of
vertices with distance k is at least (in fact exactly)(

t

2

)
(tk/2−1)2 ∼ tk

2
.
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Using (4) we really have that the number of distances k is asymptotically
e2

2
∼
(
e
2

)
if k is fixed and t is large. This proves the statement for even k.

Suppose now that k > 3 is odd. Define a graph G(t, k) in the following
way. It will consist of a complete graph Kt and t copies of the rooted tree
T (t, (k− 1)/2), one copy attached to every vertex of Kt. The set of leaves of
the copy attached to the ith vertex is denoted by Li. The number of edges
of G(t, k) is (

t

2

)
+ t(t+ . . .+ t(k−1)/2) ∼ t(k+1)/2. (5)

The distance of the vertices a ∈ Li and b ∈ Lj(i 6= j) in G(t, k) is exactly k.
Of course |Li| = t(k−1)/2. Hence the number of pairs of vertices with distance
k is at least (in fact exactly)(

t

2

)
(t(k−1)/2)2 ∼ tk+1

2
.

Using (5) we obtain that the number of distances is e2

2
∼
(
e
2

)
, as stated.

In the case of k = 3 the construction above should be slightly modified.
Here we attach a star with t2 edges to each vertex of the complete graph Kt.
The endpoints of different stars have distance 3. The number of edges is

e =

(
t

2

)
+ t · t2 ∼ t3. (6)

The number of pairs with distance 3 is(
t

2

)
t2 · t2 ∼ t6

2
∼ e2

2
,

where (6) was used.
Our constructions shows the statement for an infinite sequence of values

of e, namely for the values of form (4), (5) and (6) in the respective cases.
This would be sufficient if we knew that S(e, k) is a monotone function of
e. However it is absolutely non-trivial that adding an edge to a graph this
increases the distances k. Here, however only the monotonity of our con-
struction is needed.

Suppose that k is even and

t+ t2 + . . .+ tk/2 < e < (t+ 1) + (t+ 1)2 + . . .+ (t+ 1)k/2.
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Add
e− (t+ t2 + . . .+ tk/2)

edges to T (t, k/2) without forming a cycle. No distance k can be destroyed in
this way in T (t, k/2). Therefore the number of distances k in this new graph
is at least as much as in T (t, k/2). This proves that the number of distances

k can asymptotically be tk

2
when e is asymptotically at most (t+1)k/2 ∼ tk/2.

The other cases of k can be similarly settled. �

If k is very close to e then there is a hope to get the exact value of S(e, k).

Conjecture 1 If ` ≥ 0 is fixed, e is large enough then S(e, e− `) = b `
2
cd `

2
e.

The construction giving this value is two stars with b `
2
c and d `

2
e edges con-

nected with a path of e − ` edges. One easily prove the conjecture for
` = 0, 1, 2, 3.

2.3 The case ` > 1, paths

Here we consider the inverse problem, again. Let U(p, `, k)(` < k) be the
largest number of paths of length k in a graph containing p paths of length
`. The most important case is ` = k − 1. Having a good upper estimate on
U(p, k − 1, k) (and U(p, k − 2, k − 1)) we get one for U(p, k − 2, k), and so
on. Make our notation shorter: U(p, k) = U(p, k − 1, k).

Proposition 4 U(p, k) is asymptotically lowerbounded by 2
1
k p

k+1
k .

Proof. The complete graph Kn serves as a construction. The number of
paths of length k − 1 is p = n(n−1)...(n−k+1)

2
(choosing an ordered sequence of

vertices of length k, we have to divide the product by 2 because every path
is counted starting from both ends). Hence p ∼ nk

2
that is n ∼ (2p)

1
k . The

number of paths of length k is n(n−1)...(n−k)
2

∼ nk+1

2
∼ (2p)

k+1
k

2
= 2

1
k p

k+1
k . �

Observe that this upper bound is too week if k = 2. It gives
√

2p
3
2 while

we know by Proposition 1 that U(p, 2) = R(e, 2) =
(
e
2

)
=
(
p
2

)
. However we

believe that the bound is asymptotically sharp starting from k = 3.

Conjecture 2 U(p, 3) ∼ 2
1
3p

4
3 .

Theorem 8 Conjecture 1 is true for regular graphs.
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Proof. Let n denote the number of vertices of the regular graph of degree
d. The number of paths of length 2 with middle vertex at a given vertex is(
d
2

)
. The total number of paths of length 2 is

p = n

(
d

2

)
. (7)

The number of paths of length 3 with a fixed edge in the middle is (d− 1)2,
since we have (d−1) ways to continue the path at each end of the fixed edge.
The total number of paths of length 3 is obtained by multiplying this with
the number of edges. The number of edges is nd

2
. Hence the number of paths

of length 3 is
nd

2
(d− 1)2. (8)

We know by Proposition 4 that 2
1
3p

4
3 is an asymptotic lower bound. Here

we will prove that it is also an upper bound for (8) that is for the number of
paths of length 3:

nd

2
(d− 1)2 ≤ 2

1
3p

4
3 . (9)

Use (7) on the right hand side.

nd

2
(d− 1)2 ≤ 2

1
3p

4
3 = 2

1
3

(
n

(
d

2

)) 4
3

.

Writing out the details this becomes

nd(d− 1)2 ≤ n
4
3d

4
3 (d− 1)

4
3 .

Divide both sides by nd(d− 1)
4
3 . We have arrived to

(d− 1)
2
3 ≤ n

1
3d

1
3 .

This is true, since the degree cannot exceed the number of vertices. (9) and
the theorem are proved. �

2.4 The case ` > 1, distances

Let T (p, `, k)(` < k) be the largest number of distances of length k in a graph
containing p distances of length `. The most important case is ` = k − 1.
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Having a good upper estimate on T (p, k − 1, k) (and T (p, k − 2, k − 1)) we
get one for T (p, k − 2, k), and so on. Make our notation shorter: T (p, k) =
T (p, k − 1, k).

Of course T (p, 2) = S(p, 2) and Proposition 2 gives the exact solution.
The number of distances 2 is a quadratic function of the number of distances
1 (edges). We believe that this cannot happen for larger k’s. Actually, it
is difficult to construct a graph in which the number of distances 3 is much
larger than the number of distances 2.

Theorem 9
1

36
(1− o(1))p log p ≤ T (p, 3)

where log means logarithm of basis 2.

The proof will be divided into lemmas.
Let the vertices of a graph Gd� be the sequences of length d formed from

the elements −3,−2,−1, 0, 1, 2, 3. Two vertices are adjacent if the corre-
sponding sequences are equal in all but one place where the difference of the
values is 1 or -1. This is actually a 7×7×. . .×7 ”grid” containing 7d vertices.
Let n(d, t) denote the number of vertices having distance t from the origin
(0, 0, . . . , 0). The case t = 1 is trivial.

n(d, 1) = 2d. (10)

Lemma 1 n(d, 2) = 2d2.

Proof. Let H denote the set of vertices of distance 2 from the ori-
gin in G(d+1)�. Divide H into subsets according to their first coordinates:
H(−2), H(−1), H(0), H(1), H(2). Then

|H| = |H(−2)|+ |H(−1)|+ |H(0)|+ |H(1)|+ |H(2)|. (11)

The elements of H(0) have distance 2 in the rest, that is in Gd�. Hence
we have

|H(0)| = n(d, 2). (12)

The elements of H(1) have a value 1 in the first coordinate. Therefore their
rest have distance 1 from the origin. Hence we have

|H(1)| = n(d, 1). (13)
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The same holds for H(−1):

|H(−1)| = n(d, 1). (14)

Finally, if the first coordinate is 2 or −2 then the other d coordinates must
be all 0. Hence we have

|H(2)| = |H(−2)| = 1. (15)

The equations (10)-(15) give

n(d+ 1, 2) = n(d, 2) + 4d+ 2. (16)

Now use induction on d to prove the statement of the lemma. For d = 1, it
is trivial that there are two vertices of distance 2 from the point 0. Suppose
now that the statement holds for d and prove it for d + 1. By (16) and the
inductional hypothesis we can write

n(d+ 1, 2) = 2d2 + 4d+ 2 = 2(d+ 1)2.

�

Lemma 2 n(d, 3) = 4
3
d3 + 2

3
d.

Proof. The logic of the previous proof will be used again. Let H denote
the set of vertices of distance 3 from the origin in G(d+1)�. Divide H into sub-
sets according to their first coordinates: H(−3), H(−2), H(−1), H(0), H(1),
H(2), H(3). Then

|H| = |H(−3)|+|H(−2)|+|H(−1)|+|H(0)|+|H(1)|+|H(2)|+|H(3)|. (17)

The elements of H(0) have distance 3 in the rest, that is in Gd�. Hence
we have

|H(0)| = n(d, 3). (18)

The elements of H(1) have a value 1 in the first coordinate. Therefore their
rest have distance 2 from the origin. Hence we have

|H(1)| = n(d, 2). (19)

The same holds for H(−1):

|H(−1)| = n(d, 2). (20)
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If the first coordinate of a vertex is 2 then the rest must have distance 1 from
the origin. This proves

|H(2)| = n(d, 1) (21)

and
|H(−2)| = n(d, 1). (22)

Finally, if the first coordinate is 3 or −3 then the other d coordinates must
be all 0. Hence we have

|H(3)| = |H(−3)| = 1. (23)

The equations (17)-(23) give

n(d+ 1, 3) = n(d, 3) + 2n(d, 2) + 4d+ 2 (24)

and, using the statement of Lemma 1,

n(d+ 1, 3) = n(d, 3) + 4d2 + 4d+ 2. (25)

Now use induction on d to prove the statement of the lemma. For d = 1, it
is trivial that there are two vertices of distance 3 from the point 0. Suppose
now that the statement holds for d and prove it for d + 1. By (25) and the
inductional hypothesis we can write

n(d+ 1, 3) =
4

3
d3 +

2

3
d+ 4d2 + 4d+ 2 =

4

3
(d+ 1)3 +

2

3
(d+ 1).

�
Proof of Theorem 9. Modify the graph Gd� at the beginning of our

proof. Let the vertices of the graph Zd�
8 be the sequences of length d formed

from the elements −3,−2,−1, 0, 1, 2, 3, 4 and consider these integers modulo
8. Two vertices are adjacent if the corresponding sequences are equal in all
but one place where the difference of the values is 1 or -1 (mod 8). This
is actually a 8 × 8 × . . . × 8 ”cyclic grid” containing 8d vertices. The 3-
neighborhood of a vertex v in a graph is the subgraph spanned by the set of
vertices of distance at most 3 from v. Observe that the 3-neighborhoods of
the origins in Gd� and Zd�

8 are isomorphic. Moreover the 3-neighborhoods
of two distinct vertices in Zd�

8 are also isomorphic. Hence it follows that the
number of vertices with distance 3 (resp. 2) from a vertex of Zd�

8 is the same
as the number of vertices with distance 3 (resp. 2) from the origin of Gd�.
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Summarising, the number of vertices with distance 3 (resp. 2) from a vertex
of Zd�

8 is n(d, 3) (resp. n(d, 2)). Therefore the total number of distances 2 in
Zd�

8

p =
1

2
8dn(d, 2).

By Lemma 1 this is equal to

p =
1

2
8d · 2d2 = 8d · d2. (26)

Similarly, the total number of distances 3 in Zd�
8

1

2
8dn(d, 3)

and by Lemma 2 this is equal to

8d
(

2

3
d3 +

1

3
d

)
. (27)

Here (26) and (27) lead to

8d
(

2

3
d3 +

1

3
d

)
≤ T (8d · d2, 3). (28)

Equation (26) gives us

p log p = 8dd2(3d+ 2 log d).

Compare this with the left hand side of (28). One can see that

2

9
(1− o(1))p log p =

2

9
(1− o(1))8dd2(3d+ 2 log d) ≤ 8d

(
2

3
d3 +

1

3
d

)
. (29)

The inequalities (28) and (29) prove the statement of the theorem in a
stronger form, but only for some special values of p, which form an exponen-
tial sequence.

Let us prove now the weaker inequality for the intermediate values of p.
Suppose

p1 = 8dd2 < p < 8d+1(d+ 1)2 = p2. (30)

14



Add p− 8dd2 paths of length 2 to Zd�
8 in such a way that they do not form

any cycle neither with Zd�
8 nor with each other. The so obtained graph G

contains p pairs with distance 2 and at least (27) pairs with distance 3.
Observe that

1

8
(1− o(1))p2 log p2 = p1 log p1. (31)

Formulas (30) and (31) imply

1

36
(1− o(1))p log p ≤ 2

9
(1− o(1))p1 log p1.

Combining this with (29) the desired inequality is obtained. �

Open Problem 1 Find a non-trivial upper bound on T (p, 3).
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