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Abstract

A two-part extension of the famous Erdős-Ko-Rado Theorem is
proved. The underlying set is partitioned into X1 and X2. Some
positive integers ki, `i(1 ≤ i ≤ m) are given. We prove that if F is
an intersecting family containing members F such that |F ∩ X1| =
ki, |F ∩ X2| = `i holds for one of the values i(1 ≤ i ≤ m) then |F|
cannot exceed the size of the largest subfamily containing one element.

1 Introduction

Let X be a finite set of n elements. A family F ⊂ 2X is called intersecting
if F,G ∈ F implies F ∩ G 6= ∅. The family of all k-element subsets of X
is denoted by

(
X
k

)
. The celebrated theorem of Erdős, Ko and Rado is the

following.

Theorem 1 [1] Suppose that an integer k ≤ n
2

is given and F ⊂
(
X
k

)
is

intersecting. Then

|F| ≤
(
n− 1

k − 1

)
.

The family of all k-element subsets containing a fixed element x ∈ X shows
that the estimate is sharp.

∗This research was supported by the National Research, Development and Innovation
Office – NKFIH Fund No’s SSN117879 and K116769.
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The goal of our paper is to consider the problem when the underlying set
is partitioned into two parts X1, X2 and the sets F ∈ F have fixed sizes in
both parts. More precisely let X1 and X2 be disjoint sets of n1, respectively
n2 elements. [2] considered such subsets of X = X1∪X2 which had k elements
in X1 and ` elements in X2. The family of all such sets is denoted by

(
X1,X2

k,`

)
.

The construction above, taking all possible sets containing a fixed element
also works here. If the fixed element is in X1 then the number of these sets
is (

n1 − 1

k − 1

)(
n2

`

)
,

otherwise it is (
n1

k

)(
n2 − 1

`− 1

)
.

The following theorem of Frankl [2] claims that the larger one of these is the
best.

Theorem 2 Let X1, X2 be two disjoint sets of n1 and n2 elements, respec-
tively. The positive integers k, ` satisfy the inequalities 2k ≤ n1, 2` ≤ n2. If
F is an intersecting subfamily of

(
X1,X2

k,`

)
then

|F| ≤ max

{(
n1 − 1

k − 1

)(
n2

`

)
,

(
n1

k

)(
n2 − 1

`− 1

)}
.

The goal of the present paper is to generalize Theorem 2 for the case
when other sizes are also allowed that is the family consists of sets satisfying
|F ∩X1| = ki, |F ∩X2| = `i for certain pairs of integers. Using the notation
above, we will consider subfamilies of

m⋃
i=1

(
X1, X2

ki, `i

)
.

The generalization is however a little weaker at one point. In Theorem
2 the thresholds 2k ≤ n1, 2` ≤ n2 for validity are natural. If either n1 or
n2 is smaller then the problem becomes trivial, all such sets can be selected
in F . In the generalization below there is no such natural threshold. There
will be another difference in the formulation. We give the construction of the
extremal family rather than the maximum number of sets. A family is called
trivially intersecting if there is an element contained in every member.
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Theorem 3 Let X1, X2 be two disjoint sets of n1 and n2 elements, re-
spectively. Some positive integers ki, `i(1 ≤ i ≤ m) are given. Define
b = maxi{ki, `i}. Suppose that 9b2 ≤ n1, n2. If F is an intersecting sub-
family of

m⋃
i=1

(
X1, X2

ki, `i

)
then |F| cannot exceed the size of the largest trivially intersecting family
satisfying the conditions.

Section 2 gives the proof of Theorem 3, using the method of “cyclic per-
mutations”. Section 3 contains some open questions, while Section 4 shows
some similar results from the past as motivations.

2 The proof of the main theorem

We will use the method of cyclic permutations [5] giving a simple proof of the
EKR theorem. There the analogous problem is solved for intervals along a
cyclic permutation and then a double counting easily finishes the proof. Here
we need a pair of cyclic permutations: one for X1 and one for X2. A cycle of
size ni will be represented by the integers mod ni. The usual notation is Zni

.
Hence the pair of cycles will be Zn1×Zn2 . The direct product of the intervals
of length k and `, in Zn1 and Zn2 , respectively, will be a k × ` rectangle in
Zn1 ×Zn2 . Problems analogous to our Theorem 3 will be considered for such
rectangles.

The proof will be divided into lemmas. If only one cycle is involved we
use the notation Zn or even forget about this notation.

The distance d(u, v) of the elements u, v ∈ Zn is the smaller distance
along the cycle.

Lemma 1 (Folklore) Suppose 2 ≤ 2k < n and let Gk
n = (Zn, E) be a graph

where two vertices are adjacent if their distance (mod n) is at most k − 1.
Then the largest click (complete subgraph) in Gk

n has k vertices. If k vertices
form a click then these vertices are consecutive (mod n).

Proof. k consecutive elements obviously form a click. In order to prove
that there is no larger click, choose a vertex of a click. By symmetry one can
suppose that 0 is this vertex. The potential other vertices of the click are
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−(k− 1),−(k− 2), . . . ,−1, 1, . . . , k− 2, k− 1. By the assumption 2k < n all
these vertices are distinct. The pairs (−(k−1), 1), (−(k−2), 2), . . . , (−1, k−1)
are not adjacent, therefore the click can contain only one of them, proving
that the click contains at most 1 + (k − 1) = k vertices.

To prove the second statement of the lemma suppose that U ⊂ Zn spans
a click, moreover |U | = k, 0 ∈ U hold. Let i ∈ U(1 < i ≤ k − 1) be in the
click. Its “pair” cannot be chosen: −(k − i) 6∈ U . However the distance of i
and −(k− i− 1) is also at least n− (k+ 1) ≥ 2k+ 1− (k+ 1) = k. Therefore
−(k − i − 1) 6∈ U also holds. Its “pair” i − 1 must be in U . Let j be the
largest element of U . We have seen that j − 1, j − 2, . . . , 1 are in U . On the
other hand, since j + 1, . . . , k− 1 6∈ U , their “pairs” must be in U . It is fully
determined: U = {−(k − j − 1),−(k − j − 2), . . . , 0, 1, . . . , j}. �

An interval of length a in Z is a set of form {i+ 1, i+ 2, . . . , i+ a} (mod
n). The left end of this interval is i+ 1. The distance of two intervals is the
minimum distance between two elements, one from each intervals.

Lemma 2 Let k, b, n be positive integers satisfying 2(k+ b) ≤ n. If k+ b+ 1
distinct intervals of length k are given in Zn then there is a pair among them
whose distance is at least b+ 1.

Proof. Apply Lemma 1 with k+ b. The left ends of our intervals cannot
form a click in Gk+b

n therefore two of them must have a distance at least k+b.
Consequently the distance of these intervals is at least b+ 1. �

Let I be an interval of length k in Zn1 while J is an interval of length `
in Zn2 . The direct product I × J is a k × ` rectangle in Zn1 × Zn2 . We say
that the rectangles I1 × J1 and I2 × J2 are proj-intersecting if either I1 ∩ I2
or J1 ∩ J2 is non-empty. A family of rectangles is proj-intersecting if any two
rectangles in the family are proj-intersecting. If R is a family of rectangles,
let R1 denote the set of intervals obtained by projecting the members of R
on Zn1 . The family R2 is defined similarly. The inequality

|R| ≤ |R1| · |R2| (1)

is obvious.

Lemma 3 Suppose that the positive integers k, `, b, n1, n2 satisfy the inequal-
ities k, ` ≤ b, 2(k+ b) ≤ n1, 2(`+ b) ≤ n2. Let R be a proj-intersecting family
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of size |R| ≥ 9b2 of k × ` rectangles in Zn1 × Zn2. Then either there are two
rectangles R1, R2 ∈ R such that

R1 = I1 × J0, R2 = I2 × J0, d(I1, I2) ≥ b+ 1 (2)

or there are two rectangles R3, R4 ∈ R such that

R3 = I0 × J3, R4 = I0 × J4, d(J3, J4) ≥ b+ 1. (3)

Proof. (1) implies that either |R1| > 2b or |R2| > 2b.
First suppose that |R1| > 2b ≥ k + b. Using Lemma 2 two members of

R1 are obtained such that the distance between these two intervals I5, I6 is
at least b. Let R5 and R6 be two rectangles whose projections to Zn1 are
I5, I6, respectively. Of course I5 ∩ I6 is empty, moreover no interval of length
k can intersect both of them, since k ≤ b. Choose an arbitrary R7 ∈ R
with projection I7. It can intersect at most one of I5 and I6. Since R is
proj-intersecting, J5 ∩ J6 6= ∅ and one of J7 ∩ J5, J7 ∩ J6 is non-empty, too.
The length of J5 ∪ J6 is at most 2`− 1. Here J7 must meet J5 ∪ J6 therefore
there are at most 3`− 2 choices for J7. Hence we have

|R2| ≤ 3`− 2 < 3b. (4)

The multiplicity µ(J) of J ∈ R2 is the number of members of R with
projection J on Zn2 . Obviously

∑
J∈R2 µ(J) = |R| holds. |R| ≥ 9b2 and

(4) imply that there is a member J0 of R2 having multiplicity at least 3b ≥
k+b+1. Lemma 2 implies again that there are two rectanglesR1, R2 ∈ R such
that they both have the same projection J0 on Zn2 while their projections
I1, I2 have distance at least b+ 1. A pair of rectangles of form (2) was found.

The other case when |R2| > 2b is analogous, then a pair of type (3) can
be found. �

We say that the rectangles R1 and R2 in (2) form a b-blocking pair with
base J0.

Lemma 4 Suppose that the rectangles R1, R2 form a b-blocking pair with
base J0 and these two and a third rectangle U×V are pairwise proj-intersecting
where U ⊂ Zn1 , V ⊂ Zn2 are intervals of lengths 1 ≤ |U |, |V | ≤ b. Then
J0 ∩ V 6= ∅.

Proof. Since d(I1, I2) ≥ b + 1, the projection U can meet only one of
them. Suppose U ∩ I2 = ∅.Then the other projections of R2 and U ×V must
meet: J0 ∩ V 6= ∅ , as stated. �

5



Lemma 5 Suppose that the positive integers k, `, b, n1, n2 satisfy the inequal-
ities k, ` ≤ b, 2(k+ b) < n1, 2(`+ b) < n2. Let R be a proj-intersecting family
of k×` rectangles in Zn1×Zn2. Suppose that R contains ` pieces of b-blocking
pairs of form (2) with distinct bases. Then there is a β ∈ Zn2 such that the
projection of every member of R contains it.

Proof. Lemma 4 implies that the bases must pairwise intersect. Let the
bases be B0, B1, . . . , B`−1 . By Lemma 1 B0, B1, . . . , B`−1 are ` consecutive
intervals: all intervals of length ` in an interval A of length 2`− 1. All these
bases contain the middle element of A, this will play the role of β.

Apply Lemma 4 for an arbitrary member of R (that is |U | = k, |V | = `.)
By this lemma V intersects each Bi. It is easy to see that V must be equal
to one of them. Hence it contains β. �

Corollary 1 |R| ≤ `n1 holds under the conditions of Lemma 5.

Proof. `n1 is the total number of k × ` rectangles whose projection on
Zn2 contains a fixed element β. �

Lemma 6 Suppose that the positive integers k, `, b, n1, n2 satisfy the inequal-
ities k, ` ≤ b, 2(k+ b) < n1, 2(`+ b) < n2. Let R be a proj-intersecting family
of k× ` rectangles in Zn1 ×Zn2. Suppose that the number of b-blocking pairs
of form (2) with distinct bases is at least one and at most `− 1. Then

|R| ≤ 4b2 + (`− 1)n1.

Proof. Define a partition of R2 = R2
b ∪ R2

s where R2
b denotes the set

of members of R2 with multiplicity at least k + b + 1. If B ∈ R2
b then, by

Lemma 2 there is a b-blocking pair with basis B. One of the conditions of
the lemma is that |R2

b| ≤ `− 1. These members of R2
b have only the trivial

bound on the multiplicities: n1. We have∑
B∈R2

b

µ(B) ≤ (`− 1)n1. (5)

Choose one member B0 ∈ R2
b. Lemma 4 implies that B0 must meet every

member ofR2
s . There are at most 2`−2 intervals of length ` meeting B0. This

results in |R2
s | ≤ 2`− 2. Suppose J ∈ R2

s . By Lemma 2, if µ(J) ≥ k + b+ 1
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then there is a b-blocking pair with basis J . Therefore µ(J) ≤ k + b holds.
We obtained ∑

J∈R2
s

µ(J) ≤ (2`− 2)(k + b) ≤ (2b)(2b) = 4b2. (6)

We can finish the proof using (5) and (6):

|R| =
∑
J∈R2

µ(J) =
∑
B∈R2

b

µ(B) +
∑
J∈R2

s

µ(J) ≤ 4b2 + (`− 1)n1.

�
The statements of Lemmas 3, 5 and 6 can be summarized in the following

Corollary.

Corollary 2 Suppose that the positive integers k, `, b, n1, n2 satisfy the in-
equalities k, ` ≤ b, 2(k + b) < n1, 2(` + b) < n2. Let R be a proj-intersecting
family of k × ` rectangles in Zn1 × Zn2. Then one of the followings hold.

|R| < 9b2,

|R| ≤ 4b2 + (`− 1)n1,

|R| ≤ `n1,

|R| ≤ 4b2 + (k − 1)n2,

|R| ≤ kn2.

This corollary, however is not sufficient for our final goal when there are
rectangles of different sizes. The reason is that the statements of Corollary
2 cannot be independently used for different sizes, because they strongly
interact. See the lemma below.

Lemma 7 Suppose that the positive integers k1, k2, `1, `2, b, n1, n2 satisfy the
inequalities k1, k2, `1, `2 ≤ b, 4b < n1, 4b < n2. Let Ri(i = 1, 2) be a family
of ki × `i rectangles in Zn1 × Zn2 and suppose that R = R1 ∪ R2 is proj-
intersecting. Then R cannot simultaneously contain a b-blocking pair with
basis in Zn1 (of the form (2)) and another one with basis in Zn2 (of the form
(3)).
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Proof. Let R1, R2 ∈ R1 be a b-blocking pair with basis J0 ⊂ Zn2 . In
other words R1 = I1× J0, R2 = I2× J0 where d(I1, I2) ≥ b+ 1. On the other
hand let R3, R4 ∈ R2 be the other b-blocking pair with basis I0 ⊂ Zn2 where
R3 = I0 × J3, R4 = I0 × J4 with d(J3, J4) ≥ b+ 1.

Here d(I1, I2) ≥ b + 1 implies that I0 can intersect only one of them.
Suppose

I0 ∩ I2 = ∅. (7)

On the other hand, using d(J3, J4) ≥ b+ 1, the interval J0 can meet at most
one of J3 and J4. Suppose

J0 ∩ I4 = ∅. (8)

(7) and (8) show that R2 and R4 are not proj-intersecting. This contradiction
finishes the proof. �

Lemma 8 Suppose that the positive integers ki, `i, b, n1, n2 satisfy the in-
equalities ki, `i ≤ b(1 ≤ i ≤ m), 4b < n1, n2. Let Ri be a family of ki × `i
rectangles in Zn1 × Zn2(1 ≤ i ≤ m). Suppose that R =

⋃m
i=1Ri is a proj-

intersecting family. Assume that there is a b-blocking pair say in R1 with
basis in Zn2. Then either

|Ri| < 9b2 (9)

or
|Ri| ≤ 4b2 + (`i − 1)n1 (10)

or
|Ri| ≤ `in1 (11)

holds for all i(1 ≤ i ≤ m).

Proof. If (9) does not hold for an i then by Lemma 3 there is a b-blocking
pair in Ri. By Lemma 7 it must be one with a basis in Zn2 . Suppose that
the number of distinct bases of b-blocking pairs Ri is `i. Then by Lemma 5
and Corollary 1 we obtain (11). On the other hand if the number of distinct
bases is between 1 and `i − 1 then Lemma 6 implies (10). �

Remark 1 Of course, if the bases of the b-blocking pairs are in Zn1 then
(10) and (11) are replaced by

|Ri| ≤ 4b2 + (ki − 1)n2 (12)

or
|Ri| ≤ kin2. (13)
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Remark 2 The bases of b-blocking pairs for distinct Ri’s must also intersect.
This fact gives a stricter structure for the system of bases, but we will not
use this fact.

Now we get rid of the cases, assuming that n1 and n2 are large enough.

Lemma 9 Suppose that the positive integers ki, `i, b, n1, n2 satisfy the in-
equalities ki, `i ≤ b(1 ≤ i ≤ m), 9b2 < n1, n2. Let Ri be a family of ki × `i
rectangles in Zn1 × Zn2(1 ≤ i ≤ m). Suppose that R =

⋃m
i=1Ri is a proj-

intersecting family. Then either

|Ri| ≤ `in1 (14)

holds for all i(1 ≤ i ≤ m) or

|Ri| ≤ kin2. (15)

Proof. We only have to notice that each of (9) and (10) implies (11)
under the condition 9b2 < n1, n2, while (12) implies (13). �

Corollary 3 Let λi > 0(1 ≤ i ≤ m) be real numbers. Under the conditions
of Lemma 9

m∑
i=1

λi|Ri| ≤ max

{
n1

m∑
i=1

λi`i, n2

m∑
i=1

λiki

}
holds.

Proof. Indeed, summing up (14) for i in Lemma 9

m∑
i=1

λi|Ri| ≤ n1

m∑
i=1

λi`i

is obtained while (15) leads to

m∑
i=1

λi|Ri| ≤ n2

m∑
i=1

λiki.

Since one of them must hold, the statement of the lemma follows. �

Proof of Theorem 3 Define the families

Fi = {F ∈ F : |F ∩X1| = ki, |F ∩X2| = `i}.
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We use double counting for the sum∑
F,C1,C2

s(F ) (16)

where Cj is a cyclic permutation of Znj
(j = 1, 2), F ∈ F and it forms a

rectangle for the product of these two cyclic permutations and the weight
s(F ) is defined in the following way:

s(F ) = si(F ) =
1

n1!
· 1

n2!

(
n1

ki

)(
n2

`i

)
if F ∈ Fi. (17)

For a fixed set F ∈ Fi there are ki!(n1 − ki)!`i!(n2 − `i)! pairs of cyclic
permutations (C1, C2) in which F is a rectangle. That is (16) is equal to

∑
F∈F

∑
C1,C2

s(F ) =
m∑
i=1

∑
F∈Fi

∑
C1,C2

si(F ) =

m∑
i=1

|Fi|ki!(n1 − ki)!`i!(n2 − `i)!
1

n1!
· 1

n2!

(
n1

ki

)(
n2

`i

)
=

m∑
i=1

|Fi| = |F|. (18)

Now fix the permutations in (16):

∑
C1,C2

∑
F

s(F ) =
∑
C1,C2

m∑
i=1

|Ri|si(F ) (19)

where Ri denotes the set of rectangles obtained from Fi in these fixed cyclic
permutations. F is an intersecting family. It is easy to see that this implies
thatR = ∪Ri is proj-intersecting. Corollary 3 can be applied with λi = si(F )
since its conditions are satisfied.

m∑
i=1

|Ri|
1

n1!
· 1

n2!

(
n1

ki

)(
n2

`i

)
≤

max

{
n1

m∑
i=1

1

n1!
· 1

n2!

(
n1

ki

)(
n2

`i

)
`i, n2

m∑
i=1

1

n1!
· 1

n2!

(
n1

ki

)(
n2

`i

)
ki

}
=

max

{
m∑
i=1

1

(n1 − 1)!
· 1

(n2 − 1)!

(
n1

ki

)(
n2 − 1

`i − 1

)
,
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m∑
i=1

1

(n1 − 1)!
· 1

(n2 − 1)!

(
n1 − 1

ki − 1

)(
n2

`i

)}
. (20)

Taking into account that the number of pairs of cyclic permutations C1, C2 is
(n1 − 1)!(n2 − 1)! and using (20) we obtain an upper estimate on (19):

max

{
m∑
i=1

(
n1

ki

)(
n2 − 1

`i − 1

)
,

m∑
i=1

(
n1 − 1

ki − 1

)(
n2

`i

)}
. (21)

Since both (18) and (19) are equal to (16), we arrived to the inequality

|F| ≤ max

{
m∑
i=1

(
n1

ki

)(
n2 − 1

`i − 1

)
,

m∑
i=1

(
n1 − 1

ki − 1

)(
n2

`i

)}
.

The quantities in the max are the numbers of all sets containing a fixed
element of X2 and X1, respectively. �

3 Open problems

The upper bound in the Erdős-Ko-Rado theorem is reached for the family of
all k-element sets containing a fixed element. What happens if we exclude
this construction? Hilton and Milner found the largest intersecting, but not
trivially intersecting family.

Theorem 4 [3] If F is an intersecting but not a trivially intersecting family,
F ⊂

(
[n]
k

)
(2k ≤ n) then

|F| ≤ 1 +

(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
.

The construction giving equality is the following. Fix an element x ∈ X
and a k-element set K such that x 6∈ K,K ⊂ X. The extremal family will
consist of all k-element sets containing x and intersecting K.

This construction can be imitated for two parts, but the size of the family
depends on weather x and K are in X1 or X2. Suppose that x ∈ X1, K ⊂ X1.
Then the construction of the family is the following:

F = {F : x ∈ F, F ∩K 6= ∅, |F ∩X1| = k, |F ∩X2| = `}.

The case when x and K are in X2 is analogous. We conjecture that one of
these constructions is the best.
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Conjecture 1 If F is a non-trivially intersecting subfamily
(
X1,X2

k,`

)
then

|F| ≤ max

{(
1 +

(
n1 − 1

k − 1

)
−
(
n1 − k − 1

k − 1

))(
n2

`

)
,

(
n1

k

)(
1 +

(
n2 − 1

`− 1

)
−
(
n2 − `− 1

`− 1

))}
.

The constructions in this conjecture are non-trivially intersecting, but the
“intersections happen” in one side. Our next question is what happens if
one side is not enough for satisfying the intersection conditions. The families
satisfying the following conditions are called two-sided intersecting: there are
members F11, F12, F21, F22 ∈ F such that F11 ∩ F12 ∩X1 = ∅ and F21 ∩ F22 ∩
X2 = ∅ hold.

To better understand our “best” two-sided intersecting construction one
more notion and one more statement are needed. The families F ,G ⊂

(
[n]
k

)
are cross-intersecting if F ∩ G is non-empty for every pair of members F ∈
F , G ∈ G. Here the total number |F|+ |G| of members should be maximized.
But only for non-empty families, otherwise it is trivial and uninteresting.

Theorem 5 [3] If F ,G ⊂
(
[n]
k

)
are non-empty cross-intersecting families

then |F|+ |G| ≤ 1 +
(
n
k

)
−
(
n−k
k

)
.

This estimate is sharp: let K be a k-element subset, let F1(n) = {K}
and let G1(n) consist of all k-element subsets intersecting K.

Now we are ready to construct a large two-sided intersecting family F .
It will be done in two steps. First the “projection” F2 of our family F for
X2 will be given, formally

F2 = {F ∩X2 : F ∈ F}. (22)

Then we will determine the families F(M) “belonging” to the members M ∈
F2:

F(M) = {F ⊂ X1 : F ∪M ∈ F}.

F2 will be an “almost intersecting” family in which there is only one non-
intersecting pair. Start with a family extremal for Theorem 4 in X2 where x
is a fixed element, L is a fixed `-element subset, not containing x:

{F : x ∈ F, F ∩ L 6= ∅}.
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Add another `-element set L′ such that x ∈ L′ holds. Of course, L ∩ L′ = ∅.
Define the “projection” (22) as

F2 = {F : x ∈ F, F ∩ L 6= ∅} ∪ {L′}.

L∩L′ = ∅, all other pairs are intersecting. Hence F(M) can be chosen to be(
X1

k

)
if M 6= L or L′. However the families F(L) and F(L′) must be a pair

of non-empty cross-intersecting families. To maximize the sum of their sizes
the construction of Theorem 5 should be used. Choose a k-element subset
K ⊂ X1 and define F(L) = {K},F(L′) = {F ⊂ X1 : F ∩ K 6= ∅}. We
believe that either this, or its symmetric version is the largest such family.

Conjecture 2 If F is a two-sided intersecting subfamily of
(
X1,X2

k,`

)
then

|F| ≤ max

{((
n2 − 1

`− 1

)
−
(
n2 − `− 1

`− 1

))(
n1

k

)
+ 1 +

(
n1

k

)
−
(
n1 − k
k

)
,

((
n1 − 1

k − 1

)
−
(
n1 − k − 1

k − 1

))(
n2

`

)
+ 1 +

(
n2

`

)
−
(
n2 − `
`

)}
.

4 Related results from the past

k-part Sperner theorems. Let F be a family of subsets of the n-element
X satisfying the condition that F ∈ F , G ∈ F implies F 6⊂ G. (In other
words F is inclusion-free.) The well-known theorem of Sperner [9] states that
|F| ≤

(
n
bn/2c

)
and this estimate is sharp: take all sets of size bn/2c.

Let now X be a disjoint union of X1 and X2 where |X1| + |X2| = n. It
was noticed in [4] and [6] that Sperner’s bound remains valid if only such
pairs of subsets F ⊂ G are excluded which are equal in one of the parts, that
is either F ∩X1 = G ∩X1 or F ∩X2 = G ∩X2 holds.

But this statement does not generalize to three parts. One can give a
family F containing more than

(
n
bn/2c

)
subsets of X = X1 ∪ X2 ∪ X3 such

that there are no pairs F ∈ F , G ∈ F , F ⊂ G with G − F ⊂ Xi for some i.
It seems to be difficult to determine the largest F under this condition. The
best estimates can be found in [7].

Non-empty intersections in both parts. Sali [8] considered the fol-
lowing problem. Let

F ⊂
(
X1, X2

k, `

)
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be a t + 1-intersecting family with an additional condition: F ∩ G ∩ X1 6=
∅, F ∩ G ∩ X2 6= ∅ for all F,G ∈ F . The exact maximum size of |F| is
determined under this condition if both |X1| and |X2| are large enough. In
spite of formal similarities this problem is very different from our problem in
nature.

Using the two parts differently. The following result is also slightly
related. Let

F ∈
(
X1

k

)
∪
(
X1 ∪X2

`

)
that is the members of the family either have exactly k elements in the first
part, or exactly ` elements in the whole underlying set. Wang and Zhang
[10] determined the maximum size of an intersecting family of this form.

5 Acknowledgement

The author is indebted to Noga Alon, Peter Frankl and Casey Tompkins
for helpful discussions and the anonymous referee for careful reading and
corrections.

References
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