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Abstract

Color the edges of the n-vertex complete graph red and blue, and suppose that red k-
cliques are fewer than blue k-cliques. We show that the number of red k-cliques is always
less than ckn

k, where ck ∈ (0, 1) is the unique root of the equation zk = (1 − z)k +
kz(1 − z)k−1. On the other hand, we construct a coloring in which there are at least
ckn

k −O(nk−1) red k-cliques and at least the same number of blue k-cliques.
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1. Introduction

Let n and k be positive integers with n > k ≥ 3, and let Kn denote the complete
graph of order n. Let χ : E(Kn) → {red,blue} be a two-coloring, and let rk(n, χ) (resp.
bk(n, χ)) be the number of red (resp. blue) Kk’s (k-cliques). We will find a coloring which
has many monochromatic k-cliques both red and blue. Namely, we want to know the
asymptotic behavior of the following function:

fk(n) := max{min{rk(n, χ), bk(n, χ)} : χ is an edge two-coloring of Kn}.

Let µk be the unique real root in (0, 1)-interval of the following equation

zk = (1− z)k + kz(1− z)k−1. (1)

Now we can state our main result.

Theorem 1. For all n > k ≥ 3 we have fk(n) <
µk
k

k! n
k.

The above upper bound is asymptotically sharp as shown by the example below.

Example 1. There is a coloring χ which gives fk(n) ≥ µk
k

k! n
k −O(nk−1).

Email addresses: peter.frankl@gmail.com (Peter Frankl), mkato@edu.u-ryukyu.ac.jp (Mitsuo
Kato), ohkatona@renyi.hu (Gyula O.H. Katona), hide@edu.u-ryukyu.ac.jp (Norihide Tokushige)

1Supported by JSPS KAKENHI 20340022.

Preprint submitted to Elsevier February 11, 2013



Construction. Let V (Kn) = A ∪B be a partition with |A| = (1− c)n and |B| = cn. Let
χ be a coloring such that all edges in B blue, and all the other edges red. Then we can
count the number of monochromatic k-cliques as follows.

bk(n, χ) =

(
|B|
k

)
=

(
cn

k

)
,

rk(n, χ) =

(
|A|
k

)
+

(
|A|
k − 1

)
|B| =

(
(1− c)n

k

)
+

(
(1− c)n

k − 1

)
cn.

Suppose that the coloring is balanced. Namely, bk(n, χ) = rk(n, χ) +O(nk−1), that is,

(cn)k

k!
=

(
(1− c)n

)k
k!

+

(
(1− c)n

)k−1
(cn)

(k − 1)!
+O(nk−1),

or equivalently, ck = (1− c)k + kc(1− c)k−1 +O(nk−1). We are only interested in terms
of order nk, so c actually satisfies (1). Thus, by setting c = µk, we have

fk(n) ≥ min{rk(n, χ), bk(n, χ)} =

(
µkn

k

)
+O(nk−1) =

µk
k

k!
nk −O(nk−1)

as desired.

In this paper we deal with fk(n). One can consider the opposite problem, namely,
the problem to capture the following function:

f̃k(n) := min{max{rk(n, χ), bk(n, χ)} : χ is an edge two-coloring of Kn}.

In this problem we want to find a balanced coloring with fewest possible monochromatic
k-cliques. Erdős conjectured that the optimal one comes from a random coloring, that
is,

lim
n→∞

f̃k(n)(
n
k

) = 2−(
k
2).

This was known to be true for k = 3 by Goodman [3], but it turned out to be false for
all k ≥ 4 by Thomason, Franěk and Rödl [6, 1, 2].

One can also consider these problems in uniform hypergraphs or with more colors,
which should be interesting and more difficult.

2. Proof

We outline the proof of Theorem 1. In §2.1 we show that the optimal coloring that
gives fk(n) comes from a coloring defined on a unimodal sequence (Theorem 2). This ob-
servation enables us to translate the problem into a problem concerning a degree sequence
of a graph. For this translation we use a result of Gale and Ryser (Theorem 3), which
we will explain in §2.2. Then in §2.3 we restate the problem as a max-min problem of a
function on Young diagrams (Theorem 4). We solve its continuous version (Theorem 5)
in §2.4 and §2.5, then this implies our main result Theorem 1.
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2.1. Unimodal sequences

Let z = (z1, . . . , zn) be a permutation of V (Kn) = [n], where [n] = {1, 2, . . . , n}.
Define an edge two-coloring χ of Kn corresponding to z by

χ(zizj) :=

{
red if i < j and zi < zj

blue if i < j and zi > zj .
(2)

A sequence z = (z1, . . . , zn) is called unimodal if there is some m such that

z1 < z2 < · · · < zm < zm+1 > zm+2 > · · · > zn. (3)

The corresponding coloring to a unimodal sequence z satisfying (3) is as follows: Let
V (Kn) = Vr ∪ Vb where Vr = {z1, . . . , zm} and Vb = {zm+1, . . . , zn}. Color all pairs
in Vr red and all pairs in Vb blue. The remaining pairs are the edges of a complete
bipartite graph Km,n−m with partition Vr ∪ Vb. These pairs are colored according to
the rule (2). For example, the unimodal sequence corresponding to Example 1 is z =
(1, 2, 3, . . . ,m, n, n− 1, . . . ,m+ 2,m+ 1), where m = µn.

Theorem 2. fk(n) is given by a unimodal sequence of permutation of [n].

To prove Theorem 2, it is convenient to consider k-uniform hypergraphs. For a
coloring χ of Kn, we assign a family of red k-cliques F1 ⊂

(
[n]
k

)
by

F1 = {F ⊂ V (Kn) : |F | = k and χ(ij) = red for all i, j ∈ F},

and a family of blue k-cliques F2 ⊂
(
[n]
k

)
similarly. Then we have

|F1 ∩ F2| ≤ 1 for all F1 ∈ F1 and F2 ∈ F2. (4)

Now we forget about the coloring χ for a while, and we will look at (not necessarily
k-uniform) families F1,F2 ⊂ 2[n] satisfying (4).

For a family F ⊂ 2[n] and a, b ∈ [n] the Sa,b shift Sa,b(F) is defined as follows. First
for F ∈ F define

Sa,b(F ) =

{
(F − {b}) ∪ {a} if b ∈ F, a ̸∈ F and ((F − {b}) ∪ {a}) ̸∈ F ,
F otherwise.

Then define Sa,b(F) = {Sa,b(F ) : F ∈ F}. Obviously |Sa,b(F )| = |F | and |Sa,b(F)| = |F|
hold.

Lemma 1. If F1,F2 ⊂ 2[n] satisfy (4), then the same holds for Sa,b(F1) and Sb,a(F2).

Proof. Suppose instead that |Sa,b(F1) ∩ Sb,a(F2)| ≥ 2 for some pair F1 ∈ F1, F2 ∈ F2.
This cannot happen if F1 = Sa,b(F1) and F2 = Sb,a(F2), or if F1 ̸= Sa,b(F1) and F2 ̸=
Sb,a(F2). So we may assume by symmetry that F1 = Sa,b(F1) and F2 ̸= Sb,a(F2).

Since |F1 ∩ F2| ≤ 1 and |Sa,b(F1) ∩ Sb,a(F2)| ≥ 2, we need F1 ∩ {a, b} = {b} and
F2 ∩ {a, b} = {a}. Since F1 = Sa,b(F1), the element b is not removed by the shift
Sa,b. By definition it means that F ′

1 := (F1 − {b}) ∪ {a} was already in F1. Then
|F ′

1 ∩ F2| = |Sa,b(F1) ∩ Sb,a(F2)| ≥ 2, which contradicts (4).
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Starting with two families F1,F2 ⊂ 2[n], and repeated simultaneous shifting in oppo-
site directions we eventually come to a halt, that is, families F1,F2 with Sa,b(F1) = F1

and Sb,a(F2) = F2 holding for all 1 ≤ a < b ≤ n. From now on, let F1,F2 ⊂
(
[n]
k

)
,

satisfying (4) and shifted (in opposite directions).

Lemma 2. Let {x1, . . . , xk} ∈ F1 with x1 < · · · < xk and {y1, . . . , yk} ∈ F2 with
y1 < · · · < yk. Then we have xk−1 < y2.

Proof. Suppose instead that y2 ≤ xk−1. This implies y1 < xk−1 and y2 < xk. Let
A := {x1, . . . , xk−2}. Recall from (4) that no member in F1 contains {y1, y2}, and in
particular A ̸⊃ {y1, y2}. If y2 ∈ A then by shiftedness {y1, y2} ⊂ A ∪ {y1, xk} ∈ F1,
if y1 ∈ A then {y1, y2} ⊂ A ∪ {y2, xk} ∈ F1, and if neither then A ∪ {y1, y2} ∈ F1, a
contradiction.

Let m1 := max{xk−1 : x1 < · · · < xk and {x1, . . . , xk} ∈ F1} and m2 := min{y2 :
y1 < · · · < yk and {y1, . . . , yk} ∈ F2}. By Lemma 2, we have m2 > m1.

Lemma 3. m2 > m1 + 1.

Proof. Suppose instead that m2 = m1+1. Then the defining sets {x1, . . . , xk} ∈ F1 and
{y1, . . . , yk} ∈ F2 satisfy y1 ≤ m2 − 1 = m1 and xk ≥ m1 +1 = m2. Thus by shiftedness
{x1, . . . , xk−2,m1,m2} ∈ F1 and {m1,m2, y3, . . . , yk} ∈ F2, contradicting (4).

We call p ∈ [n] a peak for F1 if for each F1 ∈ F1, p ∈ F1 implies that p is the largest
element of F1, and we call p a peak for F2 if for each F2 ∈ F2, p ∈ F2 implies that p
is the smallest element of F2. By the definition, if p > m1 (resp. p < m2) then p is a
peak for F1 (resp. F2). We simply call p a peak if it is a peak for both F1 and F2. By
Lemma 3 there is at least one peak, in fact, every p with m1 < p < m2 is a peak.

Let π = (z1, z2, . . . , zn) be a unimodal permutation of [z], and let

G1(π) := {{j1, . . . , jk} : j1 < · · · < jk and zj1 < · · · < zjk},
G2(π) := {{j1, . . . , jk} : j1 < · · · < jk and zj1 > · · · > zjk}.

Then clearly G1(π) and G2(π) satisfy (4). Now we are ready to prove a structure result.

Lemma 4. Let the (oppositely) shifted families F1,F2 ⊂
(
[n]
k

)
satisfy (4). Then there is

a unimodal permutation π such that Fi ⊂ Gi(π) holds for i = 1, 2.

Proof. We construct π inductively. First we fix a peak, say, p ∈ [n] and define zp = n.
Suppose now that we have fixed zr, zr+1, . . . , zs (r ≤ p ≤ s) forming an interval and the
value set being {n, n− 1, . . . , n− s+ r}.

Claim 1. At least one of r − 1 and s+ 1 is a peak for the sets disjoint from [r, s].

Proof. Suppose that r−1 is not a peak for F1. Then by shiftedness [k−2]∪{r−1, s+1} ∈
F1. Similarly, if s + 1 is not a peak for F2, then {r − 1, s + 1} ∪ [n − k + 3, n] ∈ F2.
Since these two sets intersect in 2 elements, at least one of them is missing. Thus we
may suppose that s+1 is a peak for F2. If it was not a peak for F1, then by shiftedness
[k − 2] ∪ {s + 1, s + 2} ∈ F1. However, by shiftedness we can replace s + 1 by p and
deduce [k− 2]∪ {p, s+2} ∈ F1, contradicting the choice of p as a peak. This proves the
claim.
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By the claim we can take r − 1 or s + 1 as a peak and define accordingly zr−1 =
n− s+ r − 1 or zs+1 = n− s+ r − 1. Continuing in this way, eventually we obtain the
desired unimodal permutation. This completes the proof of the lemma.

Now Theorem 2 immediately follows from Lemma 4.

2.2. The Gale–Ryser Theorem

To analyze the auxiliary complete bipartite graph defined in the second paragraph of
the previous subsection, we will use the Gale–Ryser theorem on the degree sequence of
bipartite graphs. To state their result we need some definitions.

Let a = (a1, . . . , as) and c = (c1, . . . , ct) be non-increasing non-negative integer se-
quences satisfying n = a1+ · · ·+as = c1+ · · ·+ct. It is sometimes convenient to consider
infinite sequences, and for this purpose we let ai = 0 for i > s and cj = 0 for j > t.
Also we identify (a1, . . . , as) and (a1, . . . , as, 0, 0, . . .). We say that a is dominated by c,

written a ≺ c, if
∑k

i=1 ai ≤
∑k

i=1 ci for all k ≥ 1. The sequence a determines a Young
diagram. For example, the diagram for a = (5, 4, 2, 1) is shown on the left in Figure 1.
(In the diagram we read the length of rows from top to bottom.)

5
4
2
1

4
3
2
2
1

Figure 1: Young diagrams for a = (5, 4, 2, 1) and a∗ = (4, 3, 2, 2, 1)

By transposing the figure, we obtain its conjugate sequence a∗. If a = (5, 4, 2, 1) then
a∗ = (4, 3, 2, 2, 1). Formally, a∗ = (a∗1, a

∗
2, . . .) is defined by a∗j := #{j : ai ≥ j}. We

notice that a ≺ c iff one can get the diagram for c from the diagram a by moving small
squares in the direction of upper right. Then the Gale–Ryser theorem [5, 4] states as
follows.

Theorem 3. Let a = (a1, . . . , as) and c = (c1, . . . , ct) be non-increasing non-negative
integer sequences with the same sum. Then there is a bipartite graph G with partition
V (G) = A ∪ C such that a and c are the degree sequences of A and C if and only if
a ≺ c∗.

2.3. Packed degree sequences

We go back to our coloring problem. Let s+ t = n and let z = (xs, . . . , x1, yt, . . . , y1)
be a permutation of V (Kn) = [n]. Suppose that z is unimodal, that is,

xs < xs−1 < · · · < x1 < yt > yt−1 > · · · > y1.

Let Vr = {x1, . . . , xs} and Vb = {y1, . . . , yt} be the corresponding partition. Namely, the
pairs in Vr are all red, and the pairs in Vb are all blue. We want to find the optimal
s, t and coloring of a complete bipartite graph Ks,t which gives fk(n) (and the goal is to
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show that the best construction comes from Example 1). Let χ be the desired a coloring.
Then the number of red k-cliques in the Kn is

Tr :=

(
|Vr|
k

)
+
∑
y∈Vb

(
|Nred(y)|
k − 1

)
, (5)

where Nred(y) denotes the red neighborhood of y (in Vr). Similarly the number of blue
k-cliques is

Tb :=

(
|Vb|
k

)
+
∑
x∈Vr

(
|Nblue(x)|
k − 1

)
. (6)

Now we forget about all edges inside Vr and Vb, and we will only consider the edges
of Ks,t. Let ai = degblue(xi) and bj = degred(yj). Then a = (a1, . . . , as) is the degree
sequence of blue edges from Vr with a1 ≥ a2 ≥ · · · ≥ as, and b = (b1, . . . , bt) is the degree
sequence of red edges from Vb with b1 ≤ b2 ≤ · · · ≤ bt. By (5) and (6), we have

Tr =
1

k!

(
sk + k

t∑
j=1

bk−1
j +O(nk−1)

)
, Tb =

1

k!

(
tk + k

s∑
i=1

ak−1
i +O(nk−1)

)
.

Let cj = s− bj for 1 ≤ j ≤ t. Then c = (c1, . . . , ct) is the degree sequence of blue edges
from Vb with c1 ≥ c2 ≥ · · · ≥ ct. Notice that a1 + · · · + as = c1 + · · · + ct, which is the
number of blue edges in Ks,t. So, by Theorem 3, we have a ≺ c∗.

We observe that if a ≺ ã then
∑
ak−1
i ≤

∑
ãk−1
i . (This is because ak−1

i is a convex
function. In fact if i < j then we have ak−1

i +ak−1
j ≥ (ai−1)k−1+(aj +1)k−1.) Suppose

that b is fixed (and thus c is fixed, too). In this situation, Tr is fixed and we want to
maximize Tb, or equivalently, we want to maximize

∑
ak−1
i . Since a ≺ c∗ we need to

choose a = c∗. Then we can pack a and b = (s, . . . , s) − c into an s by t rectangle. For
example, if s = 4, t = 5 and b = (0, 1, 2, 2, 3) then c = (4, 4, 4, 4, 4)− b = (4, 3, 2, 2, 1) and
c∗ = a = (5, 4, 2, 1) and the packing is shown in Figure 2. In the figure, ai (1 ≤ i ≤ s) is
the length of the ith row from the left side, and bj (1 ≤ j ≤ t) is the height of the jth
column from the bottom.

a1
a2
a3
a4

b1 b2 b3 b4 b5

Figure 2: Packing a = (5, 4, 2, 1) and b = (0, 1, 2, 2, 3) into 4× 5 rectangle

We restate our problem formally. Let t ≥ a1 ≥ a2 ≥ · · · ≥ as ≥ 0 and 0 ≤ b1 ≤ b2 ≤
· · · ≤ bt ≤ s. We say that a = (a1, . . . , as) and b = (b1, . . . , bt) are packed each other if
a = c∗ where c = (s− b1, s− b2, . . . , s− bt). Let us define

gk(s, t) =
1

k!
max

{
min

(
sk+k

t∑
j=1

bk−1
j , tk+k

s∑
i=1

ak−1
i

)
: a ∈ Ns and b ∈ Nt are packed

}
and gk(n) = max{gk(s, t) : 1 ≤ s ≤ t ≤ n, s+ t = n}. Evidently we have the following.
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Theorem 4. gk(n)−O(nk−1) ≤ fk(n) < gk(n).

For each s, t and b = (b1, . . . , bt) we can uniquely determine the packing partner
a = (a1, . . . , as). So our problem is to find an optimal s, t and b which gives gk(n).

2.4. A continuous version of gk(n)

The rectangle in Figure 2 has a border which separates the sequences a and b. This
border is a zigzag line connecting (0, 0) and (5, 4) = (t, s), and the line is monotone
non-decreasing, and each segment is either a horizontal or vertical line of an integral
length. Here we will consider similar borders, but as a length of horizontal or vertical
line segments we allow any real numbers. To be more precise, we will define a border as
follows. Let p and q be positive reals with p+q = 1. Let x : [0, 1] → [0, q] and y : [0, 1] →
[0, p] be functions of class C1. We say that a zigzag line ℓ = {(x(t), y(t)) : 0 ≤ t ≤ 1} is
a border if

• x(0) = y(0) = 0, x(1) = q and y(1) = p, namely, ℓ connects (0, 0) and (q, p),

• x′(t) ≥ 0 and y′(t) ≥ 0 for all t ∈ [0, 1], namely, ℓ is non-decreasing, and

• x′(t)y′(t) = 0 for all t ∈ [0, 1], namely, each segment of ℓ is a horizontal or vertical
line.

Let L = L(q) be the set of borders, and let L =
∪

i≥1 Li be a partition, where Li

denotes the set of borders having exactly i corners. For example, the border ℓ in Figure 2
has 4 right-up corners and 3 up-right corners, and it belongs to L7 (for q = 5/9, after
shrinking so that the right-upper corner is (5/9, 4/9)). As a continuous version of g(s, t)
we define

hk(q) =
1

k!
max
ℓ∈L

min
{
pk + kIX(ℓ), qk + kIY (ℓ)

}
, (7)

where ℓ = {(x(t), y(t)) : 0 ≤ t ≤ 1} ∈ L, and

IX(ℓ) = IX :=

∫ 1

0

(y(t))k−1 x′(t)dt, IY (ℓ) = IY :=

∫ 1

0

(x(t))k−1 y′(t)dt.

Informally, if we write the border ℓ as y = u(x), then IX(ℓ) =
∫ q

0
(u(x))k−1dx and

IY (ℓ) =
∫ p

0
(u−1(y))k−1dy. In particular, we have

IX(ℓ) ≤ qpk−1 for all ℓ ∈ L with equality holding only if u(x) ≡ p. (8)

Also we have IY (ℓ) ≤ pqk−1 for all ℓ ∈ L. It follows from the definition (7) that

hk(q) = hk(1− q) = hk(p). (9)

We note that p, q and hk(q) are corresponding to s/n, t/n and gk(s, t)/n
k, respectively.

Indeed we have
fk(n) < gk(n) ≤ max

q∈(0,1)
hk(q)n

k. (10)

We will show the following continuous version of Theorem 1.
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Theorem 5. For all k ≥ 3 we have

max
q∈(0,1)

hk(q) =
µk
k

k!
.

The optimal borders are (I) ℓ ∈ L(µk) which has only one (up-right) corner at (0, 1−µk),
and (II) ℓ ∈ L(1− µk) which has only one (right-up) corner at (1− µk, 0).

Then (10) and Theorem 5 immediately imply our main result Theorem 1. We notice
that the border (I) in Theorem 5 consists of two line segments connecting (0, 0), (0, 1−µk)
and (µk, 1− µk), and this border corresponds to the construction in Example 1. On the
other hand, the border (II) corresponds to the one obtained from the same construction
by exchanging the role of red and blue.

Recall that µk is a root of (1), that is, θ(z) := zk − (1− z)k −kz(1− z)k−1 = 0. Since
θ′(z) = k(zk−1 + (k − 1)z(1 − z)k−2) > 0 for z ∈ (0, 1), and θ(1/2) < 0 < θ(1) (in fact
θ(1/2) = −k(1/2)k and θ(1) = 1), we have µk > 1/2. Thus 1− µk < µk.

To prove Theorem 5 we distinguish two cases q ∈ (1 − µk, µk) and q ∈ (0, 1 − µk] ∪
[µk, 1). First we deal with the latter case, which is easier. The extremal configurations
come from only this latter case.

Lemma 5. If q ∈ (0, 1−µk]∪ [µk, 1) then maxq hk(q) = µk
k/k!. The optimal borders are

(I) and (II) in Theorem 5.

Proof. First suppose that q ≥ µk. Since θ(z) is monotone increasing and θ(µk) = 0, it
follows that θ(q) ≥ 0, that is, qk ≥ pk + kqpk−1. On the other hand, using (8), we have
pk + kIX(ℓ) ≤ pk + kqpk−1(≤ qk ≤ qk + kIY (ℓ)) for any ℓ ∈ L. This gives

max
ℓ

min{pk + kIX(ℓ), qk + kIY (ℓ)} = max
ℓ

{pk + kIX(ℓ)} ≤ pk + kqpk−1 =: H(q).

We haveH(µk) = (1−µk)
k+kµk(1−µk)

k−1 = µk
k by (1). SinceH ′(q) = −k(k−1)qpk−2 <

0 we have H(q) ≤ H(µk) = µk
k, and

hk(q) =
1

k!
max

ℓ
min{pk + kIX(ℓ), qk + kIY (ℓ)} ≤ H(q)

k!
≤ H(µk)

k!
=
µk
k

k!
.

Moreover, hk(q) = µk
k/k! iff H(q) = H(µk) = pk + kIX(ℓ). Then we have q = µk and

H(µk) = µk
k = (1− µk)

k + kµk(1− µk)
k−1 = pk + kqpk−1. Thus we have IX(ℓ) = qpk−1

and we can conclude from (8) that the border ℓ is type (I) in this case.
Next suppose that q ≤ 1−µk. Using the symmetry (9) we obtain the desired inequality

and the corresponding border is type (II) in this case.

From now on we assume that

q ∈ (1− µk, µk) (11)

unless otherwise explicitly stated. Then we will show that hk(q) < µk
k/k!. Thus the

extremal configurations will not appear in this range. In this sense the case (11) is less
interesting, but the proof is somewhat more involved, though we will use elementary
calculus only.
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First we will show that an optimal border giving hk(q) has at most two corners (one
right-up corner and one up-right corner). In other words, the border divides the q × p
rectangle into two rectangles (possibly one of them is empty). (This fact is true for all
q ∈ (0, 1) not only for (11).)

Lemma 6. Let n ≥ 3. For every ℓ ∈ Ln there is an ℓ′ ∈ Ln′ with n′ < n such that

IX(ℓ′) > IX(ℓ) and IY (ℓ
′) > IY (ℓ). (12)

Proof. Let ℓ ∈ Ln be given. Let C0 = (x0, y0) and let C1, C2, and C3 be three consecutive
corners on the border ℓ. Consider the case when C1 = (x1, y0) and C3 = (x2, y1) are
right-up corners. Then C2 = (x1, y1) is an up-right corner, and C4 = (x2, y2) could be
also an up-right corner or C4 = (q, p), see Figure 3, left. (One can deal with the case
that C1 and C3 are up-right corners in a similar way and we omit this case.) Notice that
0 ≤ x0 < x1 < x2 ≤ q and 0 ≤ y0 < y1 < y2 ≤ p.

y0

y1

y2

x0 x1 x2(0, 0)

(q, p)

C0
C1

C2
C3

C4

y0

y1

y2

x0 x1 x x2(0, 0)

(q, p)

C ′
2

C ′
3

Figure 3: A border having two right-up corners and a new border

Choose x1 < x < x2 and let C ′
2 = (x, y0) and C ′

3 = (x, y2). Now we construct a
new border ℓ′ = ℓ′(x) from ℓ by replacing a path C1C2C3C4 with a path C1C

′
2C

′
3C4, see

Figure 3, right. Let m = k − 1. Then we have

IX(ℓ′) = IX(ℓ)− (x− x1)(y
m
1 − ym0 ) + (x2 − x)(ym2 − ym1 ).

Thus IX(ℓ′) = IX(ℓ) is equivalent to

x =
x1(y

m
1 − ym0 ) + x2(y

m
2 − ym1 )

ym2 − ym0
=: ξ. (13)

Since IX(ℓ′) is a decreasing function of x we have that

x < ξ implies IX(ℓ′) > IX(ℓ). (14)

Similarly we have

IY (ℓ
′) = IY (ℓ) + (y1 − y0)(x

m − xm1 )− (y2 − y1)(x
m
2 − xm),

and IY (ℓ
′) = IY (ℓ) holds iff

x =

(
xm1 (y1 − y0) + xm2 (y2 − y1)

y2 − y0

)1/m

=: ξ′. (15)
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Since IY (ℓ
′) is an increasing function of x we have that

x > ξ′ implies IY (ℓ
′) > IY (ℓ). (16)

Therefore, by (14) and (16), if ξ′ < ξ, then for all x ∈ (ξ′, ξ) we get (12). But ξ′ ≥ ξ can,
in fact, happen.

Next we choose y0 < y < y1 and let C ′′
1 = (x0, y) and C

′′
2 = (x2, y). We construct yet

another border ℓ′′ = ℓ′′(y) from ℓ by replacing a path C0C1C2C3 with a path C0C
′′
1C

′′
2C3.

Then we have

IY (ℓ
′′) = IY (ℓ)− (y − y0)(x

m
1 − xm0 ) + (y1 − y)(xm2 − xm1 ),

and IY (ℓ
′′) = IY (ℓ) iff

y =
y0(x

m
1 − xm0 ) + y1(x

m
2 − xm1 )

xm2 − xm0
=: η ∈ (y0, y1). (17)

Since IY (ℓ
′′) is a decreasing function of y we have that

y < η implies IY (ℓ
′′) > IY (ℓ).

Similarly we have

IX(ℓ′′) = IX(ℓ) + (x1 − x0)(y
m − ym0 )− (x2 − x1)(y

m
1 − ym),

and IX(ℓ′′) = IX(ℓ) iff

y =

(
ym0 (x1 − x0) + ym1 (x2 − x1)

x2 − x0

)1/m

=: η′. (18)

Since IX(ℓ′′) is an increasing function of y we have that

y > η′ implies IX(ℓ′′) > IX(ℓ).

Therefore if η′ < η, then by choosing y ∈ (η′, η) we get (12). But η′ ≥ η can happen.
We may assume that x0 = y0 = 0. Then we are able to show that one of ξ′ < ξ and

η′ < η necessarily holds in a slightly more general setting as in the next Lemma 7, which
will complete the proof of this Lemma 6.

Let x0 = y0 = 0, s := x1/x2 and t := y1/y2. Then we have

0 < s < 1, 0 < t < 1. (19)

We can rewrite (13) and (17) as

ξ/x2 = stm + 1− tm, η/y1 = 1− sm,

and similarly (15) and (18) as

ξ′/x2 = (smt+ 1− t)1/m, η′/y1 = (1− s)1/m.

10



Thus ξ > ξ′ and η > η′ are equivalent to

(stm + 1− tm)m > smt+ 1− t, and (20)

(1− sm)m > 1− s. (21)

Now to complete the proof of Lemma 6 it suffices to show the following. (In the proof
of Lemma 6, m = k − 1 was an integer, but in the next lemma m is not necessarily an
integer. See also Theorem 6.)

Lemma 7. Let m, s, t be reals with m > 1 and (19). Then one of the two inequalities
(20) and (21) holds.

We defer a rather technical proof of the above lemma in the next subsection. Lemma 6
immediately gives the following.

Lemma 8. Let q ∈ (0, 1). Then hk(q) is attained by a border ℓ ∈ L1 ∪ L2.

Thus we may assume that the optimal border giving hk(q) is either (i) a curve ℓH(α)
with only one horizontal line y = α (0 ≤ α ≤ p) , or (ii) a curve ℓV (β) with only one
vertical line x = β (0 ≤ β ≤ q). (We see ℓH(p) = ℓV (0).)

First consider the case (i). In this case we have IX(ℓH(α)) = qαk−1 and IY (ℓH(α)) =
(p− α)qk−1. Let

F̃ (q, α) := min{pk + kIX(ℓH(α)), qk + kIY (ℓH(α))},

and we will find α = α(q) which maximize F̃ (q, α) for given q ∈ [1− µk, µk]. Recall that
θ(z) is monotone increasing and θ(µk) = 0. Thus 1 − q ≤ µk gives θ(1 − q) = θ(p) ≤ 0,
that is, pk ≤ qk + kpqk−1. Similarly it follows from q ≤ µk that θ(q) ≤ 0, that is,
pk + kqpk−1 ≥ qk. We also notice that

• IX(ℓH(α)) is an increasing function of α,

• IY (ℓH(α)) is a decreasing function of α,

• pk + kIX(ℓH(0)) = pk ≤ qk + kpqk−1 = qk + kIY (ℓH(0)), and

• pk + kIX(ℓH(p)) = pk + kqpk−1 ≥ qk = qk + kIY (ℓH(p)).

Thus there exists a unique point α = αk ∈ [0, p] such that

pk + kIX(ℓH(αk)) = qk + kIY (ℓH(αk)),

and we can define

F (q) := pk + kqαk−1
k = qk + k(p− αk)q

k−1. (22)

Then F (q) = max0≤α≤p F̃ (q, α). By the definition of αk = αk(q), this is a function of
q ∈ [1− µk, µk] with αk(1− µk) = 0 and αk(µk) = 1− µk.

Next we consider the case (ii). Similarly as above there exists a unique point β =
βk ∈ [0, p] such that pk + kIX(ℓV (βk)) = qk + kIY (ℓV (βk)), and we can define

G(q) := pk + k(q − βk)p
k−1 = qk + kpβk−1

k , (23)
11



which gives max0≤β≤q min{pk + kIX(ℓV (β)), q
k + kIY (ℓH(β))}. Note that βk = βk(q)

satisfies βk(1− µk) = 1− µk and βk(µk) = 0.
Here we list some properties about functions defined above. We defer the purely

analytic proof of these properties in the next subsection.

Lemma 9.

αk(1− q) = βk(q) and F (1− q) = G(q). (24)

G(q) < F (q) for q ∈ (1/2, µk). (25)
d
dqF (q) > 0 for q ∈ [1/2, µk). (26)

The following result is a complement of Lemma 5, which easily follows from Lemma 9.

Lemma 10. If q ∈ (1− µk, µk) then hk(q) < µk
k/k!.

Proof. By the symmetry (9) it suffices to show k!hk(q) < µk
k for q ∈ [1/2, µk). So let

1/2 ≤ q < µk. Using αk(µk) = 1 − µk and (1) we have F (µk) = (1 − µk)
k + kµk(1 −

µk)
k−1 = µk

k. By (26) we have F (q) < F (µk) = µk
k. We also have F (1/2) = G(1/2) by

(24), and so G(q) ≤ F (q) by (25). Therefore we have

k!hk(q) = max{F (q), G(q)} = F (q) < F (µk) = µk
k

as desired.

Now Theorem 5 follows from Lemma 5 and Lemma 10. Finally our main result
Theorem 1 follows from (10) with Theorem 5.

2.5. Proof of Lemma 7 and Lemma 9

Let m > 1 be a real. We define the following two functions the unit interval [0, 1]:

ϕm(x) := (1− xm)m − (1− x) and ψm(x) := xm + x− 1.

These functions will play an important role for our proofs below. Let νm ∈ (0, 1) be the
unique real root of the equation ψm(x) = 0.

Claim 2.

ϕm(x) > 0 iff 0 < x < νm. (27)

2αk(1/2) = νk−1. (28)

νk−1 < αk(q)/p < 1 for q ∈ (1/2, µk). (29)

νm > m− 1
m−1 . (30)

Proof. We have
ϕm(0) = ϕm(1) = ϕm(νm) = 0. (31)

We used ϕm(νm) = (1−νmm)m−(1−νm) = νmm −(1−νm) = ψm(νm) for the last equality.
Since

ϕ′m(x) = m(1− xm)m−1(−mxm−1) + 1 = −m2{x(1− xm)}m−1 + 1

12



we have ϕ′m(x) ≥ 0 if x(1− xm) ≤ (1/m2)
1

m−1 (we need m > 1 here), that is, if

Φ(x) := xm+1 − x+ (1/m2)
1

m−1 ≥ 0.

Then Φ′(x) = (m + 1)xm − 1 gives Φ′(x) = 0 if x = ν̃ := ( 1
m+1 )

1
m ∈ (0, 1). Moreover,

Φ′(x) < 0 for 0 < x < ν̃, and Φ′(x) > 0 for ν̃ < x < 1. If Φ(ν̃) ≥ 0 then Φ(x) > 0 and
thus ϕ′m(x) > 0 for all x ∈ (0, 1). So ϕm(x) is monotone increasing, contradicting (31).
Consequently we must have Φ(ν̃) < 0. Then ϕm(x) is increasing-decreasing-increasing in
this order in (0, 1)-interval, and ϕm(x) satisfies (31) as well. This shows (27).

By (22) we have 1
k (F (1/2)− (1/2)k) = 1

2αk(1/2)
k−1 = ( 12 − αk(1/2))(

1
2 )

k−1, that is,

ψk−1(2αk(1/2)) = (2αk(1/2))
k−1 + 2αk(1/2)− 1 = 0.

This gives (28).
Let m = k−1. By differentiating both sides of (22) with respect to q and rearranging,

we have
Aα′

k = B, (32)

where A = mqαm−1
k + qm, B = (pm − αm

k ) + m(p − αk)q
m−1, and α′

k = dαk

dq . Since

A > 0 and B > 0, αk(q) is an increasing function of q. Thus, using (28), we have

νk−1 = αk(1/2)/(1/2) < αk(q)/p <
αk(µk)

µk
= 1−µk

µk
< 1, which proves (29).

Finally we show (30). By a direct computation one can verify that (1 + 1
m )m−1/m

is a decreasing function for m > 1 with supremum 1. This gives (1 + 1
m )m−1 < m, or,

1 + 1
m −m

1
m−1 < 0. Then we have

ψm(m− 1
m−1 ) = m− m

m−1 +m− 1
m−1 − 1 = m− 1

m−1
(

1
m + 1−m

1
m−1

)
< 0.

This implies (30) because ψm(q) is an increasing function of q with ψm(νm) = 0.

Proof of Lemma 7. It follows from (27) that (21) holds for 0 < s < νm. So from now on
we assume that

νm ≤ s < 1, 0 < t < 1 (33)

and we will show (20), or equivalently, we will show f(s, t) > 0, where

f(s, t) := (stm + 1− tm)m − (smt+ 1− t).

If f(s, t) takes a minimal value in the following open set

νm < s < 1, 0 < t < 1,

then ∂f
∂s = 0 must hold. By a direct computation we have

∂f

∂s
= mt{(t(stm + 1− tm))m−1 − sm−1} = mtsm−1

((
t(stm + 1− tm)

s

)m−1

− 1

)
.

Now t(stm+1−tm)
s = t(tm + 1−tm

s ) is a decreasing function of s, and ∂f
∂s |s=1 < 0. This

means that (by increasing s for fixed t) f is either monotone decreasing, or it is increasing-
decreasing in this order. In neither case does f(s, t) take a minimal value (as a function
of s).
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Therefore, the minimum value of f(s, t) in the following compact set

νm ≤ s ≤ 1, 0 ≤ t ≤ 1

can be attained only on the boundaries. Now we look at the boundaries. It is easy to see

f(1, t) = f(s, 0) = f(s, 1) = 0.

As for f(νm, t), using ν
m
m = 1− νm, we have

νmt
m + 1− tm = 1− (1− νm)tm = 1− (νmt)

m,

νmm t+ 1− t = (1− νm)t+ 1− t = 1− (νmt),

and finally we get

f(νm, t) = (νmt
m + 1− tm)m − (νmm t+ 1− t)

= (1− (νmt)
m)m − (1− (νmt)) = ϕm(νmt).

Then, by (27), we have ϕm(νmt) > 0 for 0 < t < 1. This shows f(s, t) > 0 for (33),
which completes the proof of Lemma 7.

Proof of Lemma 9. Fix k and let m = k − 1.
From the equations (22) and (23), we have (24).
To prove (25), suppose, to the contrary, that F (q) ≤ G(q) for some q ∈ (1/2, µk).

Then, from (22) and (23), we have

qαm
k ≤ (q − βk)p

m and (p− αk)q
m ≤ pβm

k .

Let x = βk(q)/q and y = αk(q)/p. Then the above inequalities reduce to

ym ≤ 1− x and 1− y ≤ xm,

which give 1−y ≤ xm ≤ (1−ym)m. This means y ≤ νm by (27), which contradicts (29).
Finally we prove (26). From (22) we have

F ′(q)/k = −(pm − αm
k ) +mqαm−1

k α′
k. (34)

It follows from (32) and (34) that

A(F ′(q)/k) = −A(pm − αm
k ) +mqαk−2

k B = qmC,

where C = m2(p−αk)α
m−1
k −(pm−αm

k ). We show that C > 0 which will give F ′(q) > 0.
Let y = αk(q)/p. By (29) and (30) we have 1− y > 0 and mym−1 − 1 ≥ mνm−1

m − 1 > 0,
and

C

pm
= m2(1− y)ym−1 − (1− ym) = (1− y)

(
m2ym−1 − 1− ym

1− y

)
= m(1− y)

{
mym−1 − 1

m (1 + y + · · ·+ ym−1)
}
> m(1− y)(mym−1 − 1) > 0,

as needed.
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We mention that Lemma 7 can be extended as follows.

Theorem 6. Let ℓ = {(x(t), y(t)) : 0 ≤ t ≤ 1} be a monotone increasing curve connecting
(0, 0) and (1, 1), where x and y are monotone increasing C1 functions from [0, 1] to [0, 1].
Then, for all reals m > 1, one of the following inequalities holds:∫ 1

0

y d(xm) ≥
(∫ 1

0

ym dx

)1/m

and

∫ 1

0

x d(ym) ≥
(∫ 1

0

xm dy

)1/m

.
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Note added in proof
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