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Abstract
We prove, that for n # 2 the maximum possible [2"/2n| edges

can be chosen simultaneously from each parallel class of the n-cube in
such a way, that no two edges have a common vertex.

1 Introduction

We consider the following problem for the n dimensional hypercube. Select
as many edges as possible from each parallel class simultaneously in such a
way, that the set of edges form a matching of the hypercube. Here, matching
is a subset of the edges, such that no two edges have a common vertex. More
precisely, among all matchings of the hypercube maximize the minimum
number of edges of the n parallel classes of the edges. Obviously, no more
than |2"/2n| is possible, since each n edges of a matching, one from each
parallel class, need 2n of the 2" vertices of the hypercube. A matching is
called a mazimum balanced matching if it contains [2"/2n] edges from each
parallel class. Our main result is the following.
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Theorem 1.1. There exists a maximum balanced matching of the n-cube for

n # 2.

The problem emerged as a possible solution for a question of the authors
([2]) in combinatorial search theory.

There is a similar, well examined problem. List all words of length n
over the binary alphabet ¥ = {0,1} in such a way, that for each word the
succeeding word differs only by a single bit, that is for each consecutive pair
of words their Hamming distance is 1. (The Hamming distance of words
u =ty ---t, and v = t]---t/ over the alphabet ¥ is defined by H(u,v) =
{i € {1,...,n}|t; # t;}|.) In other formulation, construct a Hamiltonian
path (or cycle) in the n dimensional hypercube.

One such Hamiltonian cycle for the n-cube is generated recursively from
the Hamiltonian cycle for the (n — 1)-cube. Take the same Hamiltonian path
(eliminate an edge from the Hamiltonian cycle for n — 1) in two parallel
hyperplanes and add two edges, that connect their first and last vertices.
This results in a Hamiltonian cycle for the n-cube. For the list of words this
construction corresponds to the following recursive recipe: take two copies of
the list for the words of length n — 1, add a 0 prefix to each word in the first
copy, reflect the order of the words in the second copy of the list and add a
1 prefix to each word, concatenate the two modified lists to get the list for
word length n.

This list of words is called the binary-reflected Gray code. The name
“Gray” refers to F. Gray, who patented this list of words as a solution to a
communication problem involving digitization of analogue data ([3]).

More generally, any Hamiltonian path (cycle) in the n-cube is called a
(cyclic) Gray code. There are many papers on Grey codes satisfying certain
properties, for a survey see [1].

A long standing open problem on Gray codes was to construct a (cyclic)
balanced one, i.e., one that contains a balanced number of edges from each
of the n parallel classes of edges. Since the number of edges in each parallel
class must be even for a cyclic Gray code, the smallest possible positive
difference is two. So for word lengths of non-2-powers, a balanced Grey code
must have either the smallest even integer larger, or the largest even integer
smaller than 2" /n edges in each parallel class. Finally, G. S. Bhat and C. D.
Savage ([4]) constructed a balanced Gray code for all n using a proposed
construction of J. Robinson and M. Cohn ([5]).

Note, that despite the similarity neither a balanced Grey code, nor a



maximum balanced matching imply the existence of the other.

In section 2 we introduce some notations and prove our main lemma in
proving Theorem 1.1. We complete its proof in section 3. In section 4 we
introduce a generalization of the problem and prove some initial results in
section 5. However, the problem remains open in general.

2 Balanced cycle cover of the hypercube

First, let us introduce some notations. Let [n] = {1,...,n} and ([Z]) ={SC
[n] ||S] = r}. Furthermore let [z], = r|z/r|. If r = 2 we write shortly [z]
instead of [z],. If ¥ is an alphabet let X" denote the set of words of length
n over Y.

Let B,, be the n dimensional hypercube, B,,=(V(B,),E(B,)), where V(B,,) =
{0, 1}™ is the set of binary words of length n and £(B,,) = {{u,v} | H(u,v) =
1}.

€ = &(B,) has a natural decomposition & = U &; according to the
directions, formally

by by, by -0} €& if and only if b; = V., j # i and b; # b,
1 n J 7 7
For & C £ and i € [n] let

furthermore let
X((C:/) = ()\1, e )\n)

be the profile vector of £'.
For a subgraph G = (V, &) of B,, and b € {0, 1} let

G’ = ({vb|v € VY, {{vib, v:b} | {v1, 12} € E}).

If G ={Gy,...,Gy}, then let Gt = {Gl{, . ,GZ} and £(G) = Ule E(G)).
Forv=10y---b, € V(B,) let

0'i<U) = bl s b,-_ll;l-biﬂ cee bn (B =1 b)
It £ € £(B,) let

gy - Mo o)} i {u 0} €&
") {{u,v} if {u,v} €&



Let us introduce the notations o;(V’) = {o;(v) |v € V'} for V! C V(B,) and
0i(E) ={o;(E)|E € &'} for & C E(B,). Given a subgraph G = (V,E) of
By, let 0,(G) = (04(V),0:(E)). So o; gives nothing else, but the mirror image
w.r.t. direction 7.

We know ([4]) that, there exists a balanced Grey code. On one hand, the
following lemma states less, the existence of a balanced cover of cycles instead
of a single balanced Hamiltonian cycle. On the other hand, the lemma gives
us a small; specific cycle, containing edges in all direction, that will be used
for correcting a later specified almost balanced matching.

Lemma 2.1. For n > 3 there exist a set of cycles C,, = {Cy,C1,...,Ci} of
By, for some t = t(n) having the following properties.

(i) U, V(C:) = V(B,).
(i) V(C)NV(C) =0 (i £ 40 <i.j < 1),

(iii) Co = (v1, B, ..., Von, Eoy), Ei = {0i, Vitmod 2041} (1 € [2n]),
EiyEQn—i € gi7 (Z € [’I’L - 1])7 E’n7 E2n S g’rm

A set of cycles satisfying (i) — (iv) is called a balanced cycle cover (bcc).

Note, that since B, is a bipartite graph, it has only even cycles so the
value of \; is even as well (1 < j <n). Furthermore, X;(£(C;)) is even, too,
for0<i<t,1<7<n.

Circuits of the form (vi, E, vy, E),v1,v9 € V(B,),E = {v,0},E €
E(B,) are considered to be cycles, as well.

Proof of Lemma 2.1. The proof is by induction. It is easy to construct a bec
for n = 3 or n = 4. Suppose that we have a bcc for B, and let us construct
one for B, 1.

The edges of £,,1 connect two disjoint copies of B, in B,, ;1 since &, 11 =
{{u0,ul}|uw € {0,1}"}. By the induction hypothesis there exist a bee C,, =
{Cy,...,C;} in B, so that it has a profile

X(E(Cn)) = (A1, -5 An),

where \; = -+ = Ag, A\gi1 = -+ Ay, A1 = As + 2, for some s € [n] and all
A;’s are even.



Then let C be the following cover of V(B,+1) by vertex disjoint cycles
C=C0ucl ={CQ,....C0,Ct...,C}}. So Cf = {vib, E?, ... vonb, ES ¥,
where E? = {vb, Vitmod 20)+10} (b € {0,1}). By the induction hypothesis
EYES €&, EVES €&, (i€n—1],b€{0,1}).

Observe, that C has the property
CelC&o,41(0) €, (1)

Ec&C) s o,01(E) € &C) (2)

holds as well.
C has properties (i)-(ii), but does not satisfy properties (iii)-(iv). We have

Y(EQ) = 2\, ..., 2\, 0).

Replace C and C} by two other cycles. Let the set of their edges be

{EY, ... B {vni10, 0011}, EL, .. By {010,011} } (3)
and
{E2+2, ce 7Egn717 {U2n07 U2n1}, E21n717 . ,E}LJFQ, {Un+207 Un+21}}.
By renaming the cycles we get a set of vertex disjoint cycles {Cp, ..., Cory1}

covering V' (By,+1), where £(Cp) equals (3). We use the same notation C for
the new cycle system. Note, that C satisfies (i)-(iii) and (1). Furthermore,

X(E(C)) = (2)\1, .. 72/\71—27 2)\77,—1 - 2, 2/\n — 2, 4)

The first n components of the profile vector differ by maximum 2 and are
at least 4 for n > 4. Take an edge E € £(C \ {Co}) of & (i € [n]), where
Ai(E(C)) is at least as large as any other component. W.l.o.g. suppose, that
E = {u0,v0} (u,v € {0,1}"). Then E' = 0,.1(F) = {ul,v1} € £(C) holds
as well by (2). Replace F and E' by E” = {u0,ul} and E” = {v0,v1}
(see Figure 1). This transformation decreases \;(£(C)) by 2 and increases
An+1(E(C)) by 2, while properties (i)-(iii) still hold.
Observe, that if £ and E’ belong to different cycles

C1 = (wo, Eo, . . . ,wy, Ey) and Cy = 0,41(Cy) = (wy, Ey, . . ., wy, Ey,)



v

z w

Figure 1: The following basic transformation is used many times. Suppose,
that {z,y}, {z,w} € £ and both have color (direction) i, suppose further-
more, that {z, 2z}, {y,w} ¢ £ and both have color (direction) j, then flipping
the pairs of edges decreases A; by 2 and increases \; by 2.

where k > 1, wy = u0,w; =00, Ey = E, E), = F',w, = op01(w;) (0 <1 < k),
then C] and C is replaced by a single, larger cycle

C = (wy, By, ..., wy, Ex,wo, B wy, B, wy, ..., Ep wy, E™).
On the other hand if £ and E’ are edges of the same cycle
C = (wo, Ey, . .., wi, Ey)

satisfying 0,,41(C) = C, where k > 3, Ey = E,E; = E’ (for some 2 < t <
k—1), wg = u0,w; = v0,w; = vl,wyy = ul, than C is replaced by two
smaller cycles

" 1"
Cl = (’lUl,El, ce ,wt_l,Et_l,wt,E ) and 02 = (wt-f—laEt-i—lv' .. ,wk,Ek,wo,E )

Easy to check, that in both cases also (1) holds for the modified family
of cycles. We use the same notation C for for the new cycle system.

Repeat the previous step until the cycle cover becomes balanced. We can
do this, since the preconditions of the transformation (properties (i)-(iii) and
(1)) still hold after each execution.

We also need, that there is at least one pair of edges not belonging to C)
to flip. But this is true, since

n+1
1E(Co)| + Mn1(E(C)) <2n+2 + 1< 2" = 1E(C)] (n >4).
For that actual C let C,,1 = C. Properties (i)-(iv) hold for C,+1. O



3 Maximum balanced matching in the hyper-
cube

3.1 Caseofn<T7

For n =1 and n = 2 the statement is obvious. For n = 3 a possible solution
is to take the even edges of the following Grey code (Hamiltonian path)
G(3) = Vo, V1,...,0U7.
=000 vy=011 v=101 vg=110
v1=010 v3=001 v5=100 vr=111
Vo V1 VU2 V3 Vg4 Vs Vg Uy

2321321

For n = 4 consider the following cyclic Grey code (Hamiltonian cycle)
G(4) = Vp,V14...,U15.

vp=0000 v4=0110 vg=1111 v12=1001
v1=1000 v5=0100 v9=0111 v13=1011
v2=1010 v6=1100 v10=0101 v14=0011
U3:11]_0 U7:1101 U11:OOO]. U15:0010

Vo V1 V2 V3 Vg Vs Vg Ur Vg Vg V19 V11 V12 V13 V14 Vis
1 3 2 1 3 1 4 3 1 3 2 1 3 1 4 3

(G(4) have some interesting properties, we shall need the following later:

{25, Vasi1} € Es(mod )41 (s=0,...,7). (4)

So the odd edges give a maximum balanced matching, My for n = 4.

For n = 5,6,7 we consider B,, as By X Bs, B3 x B3 and B3 X By, re-
spectively. We use only the edges of the above Grey codes G(3) and G(4)
in the corresponding subcubes to construct maximum balanced matchings
M5, Mg, M7. One possible solution for each n € {5,6,7} can be seen on
Figure 2.

3.2 Case of n >4, nis a power of 2

For n > 4, n is a power of 2, we can construct a complete matching with equal
number of edges in each parallel class. We construct recursively a cyclic Grey

7
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Figure 2: Maximum balanced matchings for n = 5,6,7. The parallel classes
&i(1 < i <7) are denoted shortly by 1,2,3,4,5,6,7.

code G(2) of Bagt, (t > 2), such that its odd edges form the desired complete
matching. Furthermore, the Grey code will have the following property:

the ith and the (i + 2% ~1)th element belong
to the same parallel class (1 <14 < 2%~1). (5)

For n = 4 we have already constructed a cyclic Grey code. By (4) it has
property (5). Suppose, that we have already constructed a Grey code G(2!) =
U1, ..., Uy satisfying (5). We construct a Grey code satisfying (5) for Boi+1 =
Byt x Bgt. By the induction hypothesis, the following Hamiltonian cycle is



1321314313213143

N 00 Ot -J Ot OO = Ot =J 00 Tt = Ot & N Ot

Figure 3: Construction of a cyclic Grey code for the power of 2 (n = 8).
Taking every second edge from the marked one yields a maximum balanced
matching.

appropriate (for n = 8, see Figure 3).

G2 = (vy,v1), (v1,v2), .. ., (01, Vg2t -1), (U, Vgt 1), . . ., (U2, v1), (v, V1),
ey <U3, 'U22t,1)’ (U4, /U2Qi,1), ey ey ('U22t,1’/01), (/0221‘,1_"_1, Ul), (/022t,1+2, Ul),
ey (U22t,vl), <v22t,1}2>, ey (’U22t,1+1,v2), (/U2Qt,1+1, U3)7 ey

ey <v22t,1+17 /U2Qt,1), ('U22t,1+1, (U22t,1+1), (’U22t,1+1, ’U22t,1+2), ceey
(Vgot—14 15 Vgat ), (Vgat—1 g, Vgat )y« oo, (Vgat—1 gy Vgator )5 (Ugot—1 3, Voot —144),
ceeg ey (U22t y /U22t,1+1>7 (U]_7 /U2Qt,1+1), ey (/022t,1, ’U22t,1+1), <022t,17’022t,1+2),

ey (U]_7/U22t,1+2), (’U]_,’U22t,1+3), ey ey (U]_,U22t).



3.3 Case of n > 9, n is not a power of 2

For n > 9, n is not a power of 2, we construct a maximum balanced matching
using a balanced cycle cover of Lemma 2.1 for B,,_4. Note, that in this case
2" — 2n|2"/2n| > 2 holds, so we can afford not to cover at least 2 vertices.

B, = B,_4 X By, so we can assume that the vertices of B, are of the
form (u;,v;),1 <4 < 27740 < j < 15, where G(4) = vy,...,v15. Let
Cn_q ={Cy,C1,...,C} be a balanced cycle cover of B,,_4, such that

t

U V(C;) = {ua,... ugn-a}

1=0

and

S(Co) = {{Uh UQ}, {Uz, U3}, <y {u2n797 u2n78}7 {u2n787 ul}}a
{uwi, wiv1}, {uon—s—i, uon—7—i} € & (1 <i<n-—75), (6)

{un—47 un—3}; {u2n—87 ul} S gn—4-

By (4) we have

{(Uz'7 UZj); (Ui7 U2j+1)}; {(Uz, U2j+8)7 (Uz', U2j+9)} S 5n73+j7
j=0,1,2,3, 1<i<2"4

Let M be the following matching. If ' = {u;, u;} is an odd edge of C;(i > 1),
then let
{(ui’ UO)a (ujv UO)}a SR {(ulv 07)’ (uj7 127)} € M7 (7)

otherwise let
{(ui, vs), (uj,v8)}, - -, {(us, v15), (ug,v15) } € M. (8)
If F/is an odd edge of Y, then let
{(us, v1), (ug, v0) 3, {(uiy vs), (uj, vs)}, - {(ui; 015), (g, v15)} € M,
otherwise let

{(ui, v0), (uj,v0) }, { (wis va), (g, va) by - ooy {(ws, v1a), (uj,v14) } € M.

These edges are called Cy-edges.

10



IfC,_shasaprofile (A}, ..., A, _ ), A ==X, AN ==X _4, N,y =

) ‘n—4
AL+ 2, for some 1 < s < n — 4, then we have

X(M) = (8Xy,...,8X,_4,0,0,0,0).

Take 2 edges E = {(u;,v;), (uy,vj)} and E" = {(u;, vj4+1), (wir,vj41)}, such
that j is even and {u;, uy} € £(Cp—qa \ {Co}). Remove E and E’ from M and
add {(w;,v;), (wi,vj41)} and {(wi,vj), (wir,vj11)}. Soif E,E' € MNEy, then
we are decreased \;(M) by 2, while increased one of the last 4 components
of x(M) by 2 (by (4)).

Repeating the above transformation in an approriate order, we can reach,
that all components of y (M) differ by either 0 or 2 if there are enough edges
initially in £(Cp_q \ {Co}) NE (1 <k < n—4).

In the initial matching there are at least 8[2"~*/(n — 4)] — 16 edges in
E(Cn—4\ {Co}) in each parallel class, while at most [2"/2n] needed. Substi-
tuting n = 9 the first quantity is larger than the second one. For n > 10 we

have
8 2 16 > 8 2 2 16 > 2 > 2"
n—4 - n—4 —2n T (|12n
The middle inequality is equivalent to the inequality 2"~* > n(n — 4), which

holds for n > 10.
So we have a matching M, such that

X(M) = (>‘17 <. -,An),

Where )‘il = e = Ais’)\is+l = - = )\in7)\is+1 = )\is + 2 Wlth 2(n — 8) =
2" —2n|2"/2n] and all \;;’s are even.
Note, that we can set {i,...,is} to be any specific s-subset of [n] and

M still contains all Cp-edges. \;, equals either [2"/2n| — 1 or [2"/2n].
If \;; = [2"/2n] — 1 then the Cp-edges will be used for correction. We
distinguish 5 cases (Figure 4).

Case 1. If s > n/2, then we are either ready, since \;, = [2"/2n| (if
s > n/2) or n is a power of 2 (if s = n/2), since 2"/2n = |2"/2n| can not
hold otherwise. The case of n is a power of 2 is already discussed.

Case 2. Let s < (n —4)/2. Assume, that [2"/2n] —1 =X\ =X3=--- =

11



Case 2 o

Case 3 Cases 4 and 5

Figure 4: Balanceness correction using the Cyp-edges. (The original edges are
replaced by the dotted ones.)

Mos_1. Let us introduce the notation

Dis = {{(uk, v0), (Uk(mod (2n—8))+1:V0) },
{(Uk41(mod (2n—8))+1> V0)s (Ukt2(mod (2n—8))+15 V0) }»
SRR {(uk+2573(mod (2n—8))+1; U0)7 (uk+2572(mod (2n—8))+1; UD)}}-

By (6), (7) and (8) M \ Dyy,_g s+1 U Dy 5 is a maximum balanced matching,
since the Ag;’s are decreased for i = n — 4 and i € [s], while the A\y;_;’s are
increased by 1, for i € [s].

Case 3. If s = (n—4)/2 and [2"/2n] — 1 =Xy = A3 = --- = \,_5 then
M\ D; (n—4)/2 U Dy (n—4)/2 is a maximum balanced matching.

Case 4. s = [(n —4)/2] +1. We can assume, that [2"/2n] — 1 = A3 =
“r0 = Ag|(n—4)/2)]=5 = An—3 = An—2 = A\p_1 = A,, while all other components
of x(M) equal to [2"/2n]| + 1. Let

D, = {{(ug|(n-1)/2)-3, V1) (U2|(n—1)/2]-2, V1) }»
{(UQL(n—4)/2J—27 U2)7 (UQL(n—4)/2J—17 U2)}7 {(UQL(n—4)/2J—17 U3)7 (UQL(n—4)/2J7U3)}7
{(u2((n—a)/2)5 v8); (U2)(n—a)/2)+1, vs) } }

and

Df = {{(u2)n—1)/2)-3,v0); (Ua|(n—1)2) -3, 01) },
{(u2)(n-ay72) -2, v1), (Ua(n-1)/2) -2, V2) }, { (2| (n—1)/2) -1, V2), (U (n-a)2) -1, V3) },
{ (w2 (n—a)/2), V3), (U2|(n—1)2],V8) } }-

12



Note, that in G(4) {vo,v1}, {v1,v2}, {va, v3},{vs,vs} belong to 4 differ-
ent classes of edges. M \ (Dys_3UD;)UDs, 4 UDS is a maximum bal-
anced matching, since the Ay’s for 1 < i < [(n—4)/2] — 2 and the \;’s
for 2|(n—4)/2] — 3 < i < 2|(n—4)/2] are decreased, while the Ay;_;’s for
2 <1< [(n—4)/2] — 2 and the \;’s for n — 3 < ¢ < n are increased by 1.

Case 5. s = |(n —4)/2] + 2 and n is odd. (Note, that the case of even
n was already considered in Case 1.) We can assume, that [2"/2n| — 1 =
Al = A3 =+ = )\Qt(n_4)/2J_5 = A3 = Ao = A\y_1 = A, while all other
components of xy(M) equal to |2"/2n] + 1.

M\ (Dy,, g5 3UD; )UD; . 4UD] is a maximum balanced matching, since
An—4, the Ag;’s for 1 <i < [(n—4)/2] — 2 and the \;’s for 2[(n—4)/2] —3 <
i < 2|(n—4)/2] are decreased, while the Ag;_1’s for 1 < i < |(n—4)/2] — 2
and the \;’s for n — 3 < ¢ < n are increased by 1. (Note, that we have
n—4 # 2| (n—4)/2] in this case.)

We could achieve in all the 5 cases, that each of the parallel classes contain
at least |2"/2n] elements. O

4 Balanceness of hypergraphs

Let us consider the following generalization of our problem. Let H = (V)
be a hypergraph (i.e., &€ C 2Y) and s : £ — [n] be a (total) coloring of the
edges. For i € [n] let

E={Fef&|k(E)=1i}

be the set of those edges that have color i, we call & the ith color class.
If & C € andi € [n]let

furthermore let
X(E) =AM, )

be the profile of £'. The balanceness of an edge set &' C £ w.r.t. the coloring
k is defined by
bal(&') = bal, (&) = 1’11[11}1 Ni(E).
€N
M C €& is called a matching, if Ey, E; € M implies E1 N Ey = () (in other
formulation M is a set of independent edges). The matching balanceness of

13



the hypergraph H w.r.t. the coloring « is defined by

bal(#H) = bal,(H) = max bal(M).

M is a matching in H

Let B, ;4 denote the following k%-uniform hypergraph (k > 2,d € [n]).
The vertices of B, . 4 are words of length n over the alphabet ¥ = {0, ..., k—
1}. The edges are those k-sets E, called d-spaces, that have an index set
I C[n], [I| = d, such that for eachu =1t;---t, € Eand v =1t|---t/ € F the
property t; = t’ holds whenever j ¢ I. For k =2 and d = 1, By, 1 4 is nothing
else, but the n-cube, B, (the edges are those pair of n-bit strings that have
Hamming distance 1).

There is a natural coloring kp. of By, ;4 With (Z) colors, those edges are
colored with the same color that have the same [ in the definition of the
edges of B, ;4. Each color class contains k"% edges. As a special case, the
edges of B,, are colored by n colors according to the n parallel classes, each
color class has 2”71 edges.

Let us introduce the short notation

b(n, k,d) = baly,,,(Bnk.d)-

Given an r-uniform hypergraph H = (V,£) and coloring x : £ — [n] we
call a matching M a mazimum balanced matching if

v
bal(M) = min {min &l V—’J } 9)

i€[n] rn
holds. The balanceness of a matching obviously can not be larger than the

RHS of (9). For the case of B,,, this RHS is equal to |2"/2n]. So, our main
result, Theorem 1.1, can be formulated in the following way.

b(n,2,1) = |2"/2n] (n # 2).

5 Balanced d-spaces
In this section we prove a general lower bound on b(n.k,d). Note, that this

lower bound is an initial result, determining the exact value remains open in
most of the cases.

14



Lemma 5.1. Let § be the multiset, that contain exactly s copies of each
element of ([Z]), where s = d/ ged(d,n —d+ 1). Then for the multiset T of
(n—d+1)s/d copies of (d[ﬁ]l), there exists a bijection ¢ : S — T, such that
S D ¢(S) holds for all S € S.

Proof. The bipartite graph (S,T,E&), where {S,T} € € & T C S is
(n — d + 1)s-regular, therefore it has a matching. O

Corollary 5.1. Given s(}) edges (d-spaces) of By k., where s = d/ ged(d, n—
d+ 1) and ezactly s of the edges have the same color in ke for each color
class. Then we can replace each d-space by k (d—1)-spaces of the same color
class of By k.da—1 in such a way, that there will be exactly k(n—d+1)s/d edges

in each of the (dﬁl) color classes of By, k.d—1 W.T.1 K.

Proof. Let S correspond to the color classes of B, x4, while 7 to the color
classes of By, ;. 4—1. Replace a d-space of color class S € S by k (d — 1)-spaces
of the color class ¢(95). O

The following theorem gives a recursive method to count a general lower

bound for b(n, k, d).

Theorem 5.1.

b(n + 1, k,d) > kb(n, k,d) — ks {Mw :

(n+1)s (10)

where s = d/ ged(d,n —d+1).

Proof. Suppose, that we have a matching M,, having b(n, k,d) d-spaces of
each color. V(Bni1x4) = XoU -+ U Xj_1, where X; = {ui|u € V(B,xa)}
(0 <i<k—1). Let the edge set D consist of k isomorphic copies of M,, on
the vertex sets X; (0 <i <k —1). D have a profile vector

X(D) = (kb(n, k,d), ..., kb(n, k,d),0,...,0),

where we have 0 for those d-sets of [n + 1], that contain n + 1 (let these be
the last (,”,) components).

Replace s d-spaces of each color by (d — 1)-spaces over X according to
Corollary 5.1. Each type of (d—1)-space will occur k(n—d+1)s/d times. Do

exactly the same for X7, ... X;_;. Replace each k corresponding (d—1)-spaces
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in Xy, ..., Xy_1 by asingle d-space. So the first (;) components of x(D) are
decreased by ks, while the last (,",) one are increased by k(n —d + 1)s/d.

Repeating this transformation ¢ times, we have the following profile for
the actual edge set D.

n—d+1)s

(D)= (Kbl )k, . kb )k, e 0D gy TRy,

(
R

Let ¢y be the least integer satisfying

i+l
kb(n, k,d) — loks < MW,

ie., by = [db(n,k,d)/(n+1)s]. Then all components of x(D) is at least the
RHS of (10). O

We omit the elementary, but space and paper consuming counting of the
following.

Corollary 5.2. Let ng > kd/(k —1). Then we have

ke gred () no+1 (no+2—d)k
{WJ = bl d) 2 (b(no’k’d)_dno—dJrl(no+2—d)k—no—2>'

We can see, that there is a big room to improve. For d = 1 the same
inductive argument gives somewhat better.

Theorem 5.2. Forn > 4

V?J > b(n, k, 1) > szlﬂk

Proof. There is a maximum balanced matching for n = 4. Suppose, that we
have a matching M,, (n > 4) having [k"~! /n];. 1-spaces in each direction. Let
V(Bri1ki) = XoU- - -UXg_1, where X; = {ui|u € V(Bui1)} (0<i<k—1).
Take isomorphic copies MY of M,, in each X; and add the 1-spaces that
consist of the corresponding vertices of V( 55)) - X; (0<i<k-—1).

A set of k 1-spaces of direction r, E; = {t1---t,_1xt,p1 - 1,10 < x <
k—1} (0 <i <k —1) can be replaced by another k 1-spaces of direction
n+1, Bl ={ty--t,_qityy1---t,x|0<x<k—1} (0 <i<k—1). Consider
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again the following transformation: replace kn edges, k from each direction
and of the above type, by kn edges of direction n + 1.

Repeat the transformation while the number of edges of direction ¢ (i €
[n]) is bigger than [k™/(n + 1)]. Note, that the initial number of edges of
direction ¢ (i € [n]) in By4141 is divisible by k. The transformations do not
change this property, so the statement follows. O
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