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INTRODUCTION

Let a,,-.,a, be real numbers with the property lailz1 (A=2isn).
Erdés [l] asked, what is the maximum number of sums Z g;a; which can
lie in an open interval of length h, where ¢; =0 or 1. l-L[e1 proved, that this
number is € sum of the largest binomial coefficients of order n. The example
a;=1 (4=sisn) shows that this estimation is the best possible. Kleitman
[21 and Katona [3] independently proved the same for two dimensions and for

h=1:

If a,,-.,a, are two -dimensional vectors such that |a;] 21,
then at most ({n/ -l) sums Z £;a; can lie in an open circle with unit

diameter. Now we consider the case of diameter \(_

THEOREM 1. If a a are two-dimensional vectors with

1271 G
4] n
the property laglf" (4<i<n), then at most ([n/z])“'([h/z"jﬂ) sums

Z g,a; can lie in a circle of diameter V2, where £¢,=0 or 1.
=1

In the proof we use a Sperner type theorem, which is formulated
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in a more general language. The method of the proof is what we used in [4]

and [5]

DEFINITIONS AND THEOREM 2

Let G be a partially ordered set with rank function, The i-th level
is the set of elements ge G withrank r(g) = i. A chain of length h is a

sequence 91,...,gheG, where r(g; 4) = r(g;)+1 (1<i<h).

A chain is symmetrical if rig,) + r{(g,) = n, where

n = max r(g).
ge G

We say that a partially ordered set is a symmetrical chain set if
we can split G into disjoint symmetrical chains. (It is defined in [4] under a
different name.) It is easy to see, that the partially ordered set of the subsets
of a finite set S is a partially ordered set with rank function r(A)=|Al (JAl

is the number of elements of A .)

If G and H are partially ordered sets, then the direct sum G+H
is the set of ordered pairs (g,h), geG, heH, with the ordering
(gy.hy) <(g,.h,) iff g,<g, and h;<g,, but (g,,h,) # (g,,h,).
If 6 and H has rank function r and s, respectively, then we can define a rank

function on G+ H as follows:
t{(g,h) = r(g) +sCh).

It is easy to see if G is the partially ordered set of the subsets of
a set Sy and H is the same of a set S, (S,NnS,=¢), then G+H is the

partially ordered set of the subsets of S,US, .
Now we can formulate the following theorem:

THEOREM 2. Let G and H be symmetrical chain sets. If we
have a set (p,,q,),---» (Pm,qy) of the elements of G+H, satisfying the

following conditions:

- 688 -



no two different ones of them satisfy the conditions

Pi=Pj» 9i<4qj, $Cqp)<sq;-1
() or

pl:<PJ.’ CLL=GlJ, F(PL)<r(pj)—1,

no four different ones of them satisfy the conditions
(Cz) PL=Pj» Qp=Q{» Py=Py> qk=Q.j7

Qi <9dj» P> Pi» Q> Qe P> Py
then

%S MLy Mg o

where M; denotes the number of elements of the i-th level of G+H and
n = max t({g,h)). The estimation is the best possible.
(g,h)eG+H
PROOFS

The PROOF OF THEOREM 2 follows the ideas of the proof of the

theorem in [4] and of Theorems 2,3 in [5].

By the definition of the symmetrical chain sets, G and H are
divisible into disjoint symmetrical chains, Denote by G' and H’' the partially
ordered sets which have ordering relations only along these chains, that is
§,< 9, canholdonlyif g, and g, lie on the same chain. Thus, the set of
relations in G'(H') is a part of that in G(H) . It follows that the set of re-
lations in G'+ H' is a part of that in G+H . So, it is sufficient to prove the
statement of the theorem for G'+ H’' instead of G+H. However, the direct sum
of two chains g,,---» g, and hg:» hy is a rectangular lattice of pairs

(gi,hj), where (gi.’hj)< (gz,hk) iff i<, j<k but (i,)) # (L4, k).

We will prove in the Lemma, that the maximum number of the

elements of such a rectangular, under conditions (Cl) and (C2) is the number
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of elements of the two maximal levels, that is the number of pairs (gi o hj)

with
. g a+b
i - [52]
and
@) e = [ 252 ]
However, by the symmetricity of the chains
n, = rig)+ r(g,) = 2r(gy)+a
3) .
1—-Q
gl = ===
and
n,-b
) sthy) = —

follow, where n,= maxr(g) and n,= maxs(h).
9€eG heH

Thus, in case (1), using (3) and (4) we get
t{g;,hj) = rigN +slhyd)+i+j=
ny—a ny-b a+b = nqa+ Ny
z " T2 +[ 2 ] = [ TE

Similarly, in the case (2)

) P LU
t(g;hy) = [ 2] +1
holds. So, if we choose the elements in a given maximal way from every
rectangle, then we obtain elements of the [%} -th and [%]+1 -th levels,
It is easy to see, that we obtain every element of M[ﬂ] and H[£]+1 in
3 2

this way. This completes the proof.

LEMMA. Let R be the set of pairs (i,}) (4<gi<a,
1<j<b, a,b,i,j integers), and (p1,q1),._.,(pm‘qm) a subset of it,

such that
no two different ones of them satisfy the conditions
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Pi=Pj, Qi<qj-1

€;)  or
Pi< Pj=1, qi=q;;

no four different ones of them satisfy the conditions
then the maximal m is given by the set of pairs satisfying
i+) =[-Q—;.£j| or i.+j=|:o'-£b:|+1-

PROOF. If a+b, assume a>b. By (Cl’)at most two (p;,q;)

can lie in every row (a row is the subset of elements in R with fixed second
coordinate), thus the maximum is at most 2b, however, it is easy to see that

the maximal set given in the Lemma has exactly 2b element.

But if a=b, the given maximal set has 2a-1 elements. We have to
prove that we can not have 2a elements. We prove it in an indirect way. Let
(p;,0) and (p,,0) be the elements chosen of the first row. We have two
elements in the p,-th column. By (Cl’ ), it must be (p1 ,1). Similarly, we get
(p,,1), too. However, (py»0),(py,0),(pys1),(p,,1) form a configuration

excluded in (Cz( in contradiction by our assumption. The proof is completed.
Let us return now to the PROOF OF THEOREM 1,

It is easy to see that we can reduce the problem to the case the
first coordinates of the vectors are non-negative (transformating to £ = 1,
multiplying some a;’'s by -1, and retransformating to £; =0,1). Let S, and
S, be the set of vectors a; with nonnegative and negative second coordinates,
respectively. We shall use Theorem 2 for G =partially ordered set of subsets
of 5, and H = partially ordered set of subsets of S, . Let us fix an open circle
of diameter V2 and consider the sums lying in the circle. We may correspond
with each such sum a subset of S1 us 29 the subset of a;’s which have
coefficient 1. We have only to verify, that the family of these subsets satisfies

(o 1) and (CZ)'
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Indeed, if two different subsets (p;,q{) = P, U Q;,
Cpj.q;) = pj UQ; of S,uS, satisfye.g.

) Pi =P, Q; ¢ Q, 1Q'L|<1Qj\-1,

then for the corresponding sums

(6)

il
M
e
£

holds. The members of the sum are vectors with nonnegative first and negative
second coordinates and with absolute value 2 1. The number of members is at
least 2 by (5). It is easy to see, that the sum of such vectors has absolute
value > V2. Thus the difference (6) is at least /2 which contradicts our
assumption that both sums lie in the same open circle of diameter V2 . The

proof of holding of (C 1) is completed.
In order to prove the same for (Cz) we have to show that in the case
PL--_-PJ-, Q, = Q; Pk=P£ Qk=Qj
(7)
Q;c QJ-, ProPr, Qu2Qg, PO PJ- (proper subsets)
at least two of the sums
(®) 2. - Bh o e - Bgy e By B iy

uweP. V@ ueruQJ- wePpuQy u.ePkUQk

differ with at least 2 . The difference of the 4-th and 1-st sum is

T oG+ 2 Q= Vv
uwe(P-P)U(Q,-Q;) wePy-P, | weQ;-q;

The difference of the 3-rd and 2-nd sum is
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2 a,- 2. a,= 2 a,- 2 a,=V

U.Epz_—p“' we QJ-Qz U..EPL-pL-’ uer—Ql"

2=Vq -
Here v, (and 2] ) is a (nonvoid) sum of vectors lying in the same

quadrant, with absolute values 21. Thus [v,| 24, |v |21 .

If the angle of v, and v, is < —E,then lvy#v,1 2 V2, conversely,
if the angle 2 % then |v,-v,| 2 V2 . In other words there are always two
sums in (8) with absolute difference 2 V2 . They cannot lie in the same circle

what contradicts our supposition.

The conditions (Cl) and (CZ) are really satisfied in this case, We
may apply Theorem 2, thus, the two middle levels of the partially ordered set
of subsets of S,US, give an optimal set. The two middle levels consists of

the subsets with elements [—%-

([n;zﬂ = ([n/nﬂn) '

The proof is completed.

] or [—;—] + 1. The numper of such subsets is

CONCLUDING REMARKS

The estimation of Theorem 1 is the best possible in the sense that

for a; =1 (1=£{<n) the maximum is attained.
i

It is also true that the theorem does not hold for a larger number
instead of V2, since the vectors (0,1) and (1,0) would provide a

counterexample. However we have the following

CONJECTURE. Theorem 1 holds with 2 instead of 2 in the case
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