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Eötvös University
Budapest, Hungary

ktichler@inf.elte.hu

1 Introduction

Let us start with the basic model of Search Theory. An n-element set S
is given, one of its elements, say x, is distinguished, the goal is to find x.
Questions of type ”x ∈ A?” can be asked, where A is a subset of S. The
unknown x should be determined on the base of the answers to these ques-
tions. In general one cannot use every subset A. A family A ⊂ 2S is given,
the question sets A can be chosen only from A.

We show some ”practical examples”.
1.1. Twenty question. Alfred chooses a person x, Paul has to find out

who he/she is and he can ask questions like ”is x a man?”, ”is x alive?”, and
so on... Alfred answers honestly, and Paul has to determine the person based
on the answers to his questions. Obviously, S is the set of persons, A is the
set of men, or the set of living persons, etc.

1.2. Chemical analysis. It is known that the given solution contains
exactly one metal. This should be determined by chemical tests. Then S is
the set of all metals, x ∈ S is the one contained in the solution. A chemical
test is e.g. when a certain other specific chemical is added to the solution.
If x ∈ A where A is a subset of S then the solution turns red, otherwise it
does not.
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1



A recent important variant of this example when the solution contains an
unknown genetic sequence.

1.3. Criminal investigation. Given a crime, we have a set S of possible
perpetrators. The real perpetrator, x ∈ S should be found. Each evidence
restricts x to be in a set A ⊂ S. For instance if a witness says that the
perpetrator is bold then we know x ∈ A, where A is the set of bold ones
among the possible perpetrators.

There are two basic ways to use the questions. In the adaptive model
the choice of the next question may depend on the answers to the previous
questions. The search algorithm starts with a question set A. If the answer
is that x 6∈ A then the next question is a certain A0, otherwise A1. If the
answer to the question ”x ∈ A0?” is no then the question set A00 comes,
and so on. That is the search algorithm consists of a binary tree structure of
subsets of S where A is the root. The information obtained along the path
from the root to a leave uniquely determines x. The complexity of such a
search algorithm is the length of the longest path from the root to a leaf.
The mathematical problem is to find the search algorithm with the least
complexity using sets from A. (Shortest algorithm in the worst case.)

In the non-adaptive model the question sets are given in advance: A1, A2,
. . . , Am. Of course the knowledge if x ∈ Ai(1 ≤ i ≤ m) must uniquely deter-
mine x. One can easily see that this holds iff A1, A2, . . . , Am is a separating
family that is, for any x, y ∈ S, x 6= y there is an i such that exactly one of
x ∈ Ai and y ∈ Ai holds. The mathematical problem is to find the minimum
of m that is the size of the smallest separating subfamily of A.

There is a very large number of variants of this basic model. The inter-
ested reader can find them in the survey paper [11] and in the monographs
[10], [3], [2].

An important direction is when the answers to the questions ”x ∈ A?”
can be wrong. The first such problem was independently posed by Rényi
and Ulam. Every subset can be chosen as a question set that is A = 2S, the
search is adaptive, at most one of the answers can be wrong along a path
leading from the root to a leave. The unknown x has to be found surely, with
probability one. What is the minimum number of questions in the worst case?
The problem is called the Rényi-Ulam game ([17], [16]). Berlekamp ([5], [6])
has basically solved the problem (gave good estimates). This problem has
many variants, as well. A general term for these types of problems, when
the answer to the question can be erroneous Search with Lies. [9] is a good
survey paper. The case when A consists of all sets of size at most k is treated
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in [12].

2 Our model

In the models Search with Lies briefly introduced in the first section every
question has the same chance to be incorrectly answered. In other words,
the occurrence of a lie does not depend on the relationship of the question
set A and the unknown element x. In our present model this is not true.
For a given question there are certain unknowns x triggering the possibility
of a false answer. If the unknown x is different from these then the answer
must be correct. Let us show some examples continuing our examples in the
previous section.

2.1. Twenty question. Suppose that Alfred has a famous transsexual in
his mind as the unknown x. Paul asks ”is he a man?”. Alfred has to answer
”yes” or ”no”. He will unintentionally lie, misleading Paul. (When Twenty
Question was played on the Hungarian TV in the nineteen seventies, they
had to introduce the the third possible answer ”not characteristic” because
of the protests concerning incorrect answers of this type.)

2.2. Chemical analysis. The outcome of the chemical test might sensi-
tively depend on a parameter we cannot well control or sense. But only in
the case of certain metals. For ”good” metals the result of the test is correct,
for the ”bad” metals however it might be wrong.

2.3. Criminal investigation. The officer asks the witness if the perpetrator
is bold. The witness might lie only if it is in his/her interest: the perpetrator
is his/her relative or friend.

In the first section a question A divided S into two parts: into A and
A. If the answer was “yes” we learned that x ∈ A, if it was “no” then the
conclusion was x ∈ A. Here a question is a partition of S into three classes:
(A,L,B). If x ∈ A then the answer is “yes” (or 1), if x ∈ B then the answer
is “no” (or 0), finally if x ∈ L then the answer can be either “yes” or “no”.
In other words, if the answer “yes” is obtained then we know that x ∈ A∪L
while in the case of “no” answer the conclusion is x ∈ B ∪ L.

The obvious problem is what the fastest algorithm using such questions
is. If there is no limitation on the choice of these 3-partitions, then the easy
answer is that only partitions with L = ∅ should be used and we are back
to the old, trivial model. Therefore a natural assumption is that every L is
large, that is, |L| ≥ k holds for every partition we can use. On the other
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hand it will be supposed that all the possible partitions (A,L,B) satisfying
|L| ≥ k can be used as questions.

The adaptive case will be solved in Section 3 by exhibiting the best al-
gorithm and proving that there is no better one in the worst case. The
non-adaptive case is more difficult. In Section 4 we reduce the problem to
a graph theoretical problem: a nearly perfect matching in the graph of the
n-dimensional cube should be found which satisfies the additional condition
that the number of edges in the matching is the same in all directions.

The results of this paper were first presented at the ”Workshop on Combi-
natorial search” in Budapest in April 26th, 2005. Professor Rudolf Ahlswede
liked them very much. Each time when we met he urged us to write them
up but we kept postponing it. In the mean time he even solved some closely
related problems in [1]. I hope he will like that this paper is published at
least in his memorial volume.

3 The adaptive search

Suppose that k ≤ n−2 holds. We start with the description of an algorithm.
The starting question is an arbitrary partition (A,L,B) satisfying |L| =
k, |A| = dn−k

2
e, |B| = bn−k

2
c. After obtaining the answer the unknown x will

be restricted either to A∪L or to B∪L where |A∪L| = dn+k
2
e, |B∪L| = bn+k

2
c,

both sizes are < n.
Suppose that x is already limited to a set Z ⊂ S at a certain stage of the

search. The next step of the algorithm will be determined distinguishing two
cases depending on the size of Z. However in both cases the new L is chosen
to minimize |Z ∩L| since the incorrect answer in L is not interesting outside
of Z.

1. |Z| > n−k. Choose L of size k in the following way: S−Z ⊂ L. Divide

Z−L into two parts A and B of sizes
⌈
|Z−L|

2

⌉
and

⌊
|Z−L|

2

⌋
, respectively. This

defines the next question (A,L,B).
2. |Z| ≤ n − k. Choose an L of size k to be disjoint to Z. Divide Z

into two parts U and V of sizes
⌈
|Z|
2

⌉
and

⌊
|Z|
2

⌋
, respectively. Let the next

question (A,L,B) in the algorithm be defined by A = U,B = V ∪(S−Z−L).
After receiving the answer to this last question the unknown element x is

restricted to a set Z ′ of size either dn−k
2
e or bn−k

2
c in the first case and of size

either d |Z|
2
e or b |Z|

2
c in the second case. (Observe that all these four values
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are less than |Z|.)
The algorithm stops when |Z| becomes 1.

Theorem 3.1 Let k ≤ n − 2. The algorithm described above is the fastest
adaptive search.

Proof. A stronger statement will be proved, namely that this algorithm
is the fastest if it is started from a position when the unknown element
is restricted to a z-element subset Z. Let f(n, k, z) denote the minimum
number of questions in this situation in the worst case. Induction on z will
be used.

Suppose that the unknown element is restricted to to a set Z where
|Z| = z. We will prove that our algorithm is the shortest one, using the
assumption that it is the shortest for smaller values of z. Let (A, Y,B) with
|Y | ≥ k be the first question of an arbitrary algorithm. If the answer is “yes”
then the unknown element is restricted to the set Z ∩ (A ∪ Y ), otherwise to
Z ∩ (B ∪ Y ). By the inductional hypothesis at least

max{f(n, k, |Z ∩ (A ∪ Y )|), f(n, k, |Z ∩ (B ∪ Y )|)} (3.1)

more questions are needed.
Since A ∪ Y and B ∪ Y cover Z,

max{|Z ∩ (A ∪ Y )|, |Z ∩ (B ∪ Y )|} ≥
⌈
|Z|
2

⌉
. (3.2)

On the other hand either |A| or |B| is at most
⌊
n−|Y |

2

⌋
≤
⌊
n−k
2

⌋
. Hence the

smaller one of |Z ∩ A| and |Z ∩B| is also at most
⌊
n−k
2

⌋
. This implies

max{|Z ∩ (A ∪ Y )|, |Z ∩ (B ∪ Y )|} ≥ |Z| −
⌊
n− k

2

⌋
. (3.3)

Using the obvious fact that f(n, k, z) is a monotone function of z, (3.1)-(3.3)
imply

f(n, k, z) ≥ 1 + max{f(n, k, |Z ∩ (A ∪ Y )|), f(n, k, |Z ∩ (B ∪ Y )|)} ≥

1 + max

{
f
(
n, k,

⌈z
2

⌉)
, f

(
n, k, z −

⌊
n− k

2

⌋)}
.
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Here
⌈
z
2

⌉
≥ z−

⌊
n−k
2

⌋
holds if and only if z ≤ n−k, following the separation

in the definition of the algorithm proving that we cannot do anything better
than our algorithm. �

One can conclude that the best algorithm decreases the size of Z by bn−k
2
c

in each step until its size becomes at most n− k. Then the usual “halving”
finishes the algorithm. Using the trivial fact f(n, k, 1) = 0, this gives us a
formula for the length of the algorithm.

Consequence 1 Suppose k ≤ n − 2. The length of the fastest adaptive
algorithm is

f(n, k, n) = f(n, k) =

⌈
n

bn−k
2
c

⌉
−2+

⌈
log2

(
n−

⌊
n− k

2

⌋(⌈
n

bn−k
2
c

⌉
− 2

))⌉
.

It is worth mentioning that this formula is basically identical with that
of Theorem 3.8 in [11].

k ≤ n − 2 was supposed in Consequence 1. If k = n, the tests give no
information, the unknown element cannot be found. The case k = n − 1 is
not really better. Let the question contain L as an arbitrary n − 1-element
set , the remaining one-element set is A. If the answer is “yes” then we
obtained no information. On the other hand, if the one-element set is B
then the answer “no” leaves us without information. That is in the worst
case no information is gained from these questions.

4 The non-adaptive search

In this case the ”algorithm” consists of a series of questions

(A1, L1, B1), (A2, L2, B2), . . . , (Am, Lm, Bm) (4.1)

such that the answers to these questions uniquely determine x in all cases.
Take two distinct elements x, y ∈ S. If

either x ∈ Ai, y ∈ Bi or x ∈ Bi, y ∈ Ai (4.2)

holds for the question (Ai, Li, Bi) we say that this question really separates x
and y. If (4.2) holds then the answer to this question will be different when
x is the unknown element and when it is y. In other words this question
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distinguishes x and y. On the other hand, if both x and y are in Ai (Bi)
then the answer to the question is the same in the two cases (when x is the
unknown or it is y). Finally, if one or both x and y are in Li then we might
obtain the same answer in the two cases, this question does not necessarily
distinguishes x and y.

One can see from this that the answers to the set of questions (4.1)
uniquely determine the unknown x iff (4.2) holds for every pair x, y ∈ S. We
say in this case that (4.1) is a really separating set of questions. Our goal is to
minimize m under the conditions that (4.1) is really separating and |Li| ≥ k,
for given n, k. Let this minimum be denoted by N(n, k).

It is useful to consider the ”characteristic matrix” of the set of questions.
The characteristic vector associated with the question (A,L,B) is a vector
containing 1, ∗, and 0 in the jth coordinate if the jth element of S is in
A,L,B, respectively. Let the m×n question-matrix Q have the characteristic
vector associated with (Ai, Li, Bi) in its ith row. Condition (4.2) is equivalent
to the condition that for any pair of distinct columns of Q there is a row
where the entries are 0, 1 or 1, 0 in the crossing points of this row and the
two given columns. We say that that such a matrix is ∗-less separating. In
these terms N(n, k) is the minimum number of rows in an m × n, ∗-less
separating 0,∗,1-matrix containing at least k stars in each row.

The following trivial lemma will be used later.

Lemma 4.1 2x ≥ 2x holds for every non-negative integer x.

Proof. The statement is true for x = 0, 1, 2. For x ≥ 3 one can use
induction: 2x = 2x−1 + 2x−1 ≥ 2(x− 1) + 2 = 2x. �

Lemma 4.2 If Q is an m× n, ∗-less separating 0,∗,1-matrix containing at
least k stars in each row then

2km ≤ 2m (4.3)

holds.

Proof. Let mj denote the number of ∗s in the jth column of Q. Replacing
all ∗s in the jth column by either 0 or 1, 2mj different columns are obtained.
Consider another, say the `th column. Since Q is ∗-less separating, the
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columns obtained from the `th column by replacing the ∗s by 0 or 1 must be
different from the columns obtained from the jth column. Hence we have

n∑
j=1

2mj ≤ 2m. (4.4)

Lemma 4.1 gives a lower estimate on the left hand side:

n∑
j=1

2mj ≥
n∑

j=1

2mj = 2
n∑

j=1

mj. (4.5)

The last sum in (4.5) is just the total number of ∗s in Q therefore it must be
at least km (at least k in each of the m rows).

n∑
j=1

mj ≥ km. (4.6)

Inequalities (4.4)-(4.6) give (4.3). �

Lemma 4.3 If Q is an m× n, ∗-less separating 0,∗,1-matrix containing at
least k stars in each row then

n + km ≤ 2m (4.7)

holds.

Proof. It will be very similar to the proof of the previous lemma. We
use here a tiny bit improved version of Lemma 4.1. When x = 0 then 20 = 1
is used rather than 20 ≥ 2 · 0. (4.5) becomes

n∑
j=1

2mj ≥
n∑

j=1

mj +
n∑

j=1

mj + (the number of js with mj = 0). (4.8)

Here
n∑

j=1

mj + (the number of js with mj = 0) ≥ n (4.9)

since the non-zero mjs are decreased by replacing them by 1. Use (4.6) for
the first term of the right hand side of (4.8) then (4.8) for the two other
terms:

n∑
j=1

2mj ≥ km + n.
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(4.4) finishes the proof. �
It is somewhat surprising that these two easy conditions (Lemmas 4.2

and 4.3) are sufficient for the existence of a good Q.

Theorem 4.1 Suppose 3 ≤ m. A Q m × n, ∗-less separating 0,∗,1-matrix
containing at least k stars in each row exists if and only if both (4.3) and
(4.7) hold.

Proof. Sketching why we need here a graph construction. We only have
to construct a matrix satisfying the conditions if the inequalities (4.3) and
(4.7) hold. The matrix will contain one or zero ∗s in every column, and
exactly k ∗s in every row. The 0,1 columns of the matrix will be considered
as points of the m-dimensional cube Bm. (Here Bm = (V,E) is a graph
where V consists of all 0,1 sequences of length m and two such vertices are
adjacent if the sequence differ in exactly one position.) A column containing
one ∗ can be considered as a pair of points, namely the points corresponding
to the two columns obtained by replacing the ∗ by a 0 and a 1. These points
are adjacent in Bm therefore the column containing exactly one ∗ can be
considered as an edge of Bm. This edge has a direction, namely the index of
the position of the ∗. It is obvious that two such edges cannot have a common
point, otherwise the two columns would not be different by all substitutions.
This shows that our matrix generates a matching in Bm. Since we want to
have exactly k ∗s in every row, the number of edges in the desired matching
should be the same in every direction.

A subgraph (in our case a matching) of Bm is called balanced if the number
of edges in every direction is the same. We showed how these concepts came
into the picture. Let us now formulate our main tool what was developed for
the present purpose but its proof can be found in [14].

Theorem 4.2 Bm(m ≥ 3) contains a balanced matching with⌊
2m−1

m

⌋
(4.10)

edges in every direction.

The construction. Suppose that (4.3) and (4.7) hold. Start with the
balanced matching in Theorem 4.2. By (4.3) k cannot exceed (4.10). Keep
only k edges of the matching in each direction. If e is an edge of the matching
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in direction i then take a a corresponding column in Q having a ∗ in the
ith row, its other 0,1 entries are the joint coordinates of the two endpoints
of e. In this way we obtained an m × km ∗-less separating matrix. We
need to add n − km 0,1 columns (without a ∗) keeping the property. The
existing km columns exclude 2km columns, what are obtained by replacing
the ∗s by 0 or 1. There are 2m − 2km other 0,1 columns for our disposal.
However n − km ≤ 2m − 2km follows from (4.7), the construction of Q can
be completed. �

Consequence 2 If k ≥ n − 2 ≥ 1 then the minimum length of the non-
adaptive algorithm is

N(n, k) = min{m : 2km ≤ 2m, n + km ≤ 2m}.

The conditions on n and k ensure m ≥ 3 by (4.7). Theorem 4.2 can be
applied. �

5 Remarks

1. Pálvölgyi (unpublished) [15] gave an asymptotically good construction
for the non-adaptive case. Bassalygo and Kabatianski (unpublished) [4] also
solved a problem related to the non-adaptive case.

2. There were earlier attempts to model the situation described in the pa-
per. Katona and Szemerédi [13] considered the non-adaptive case (formulated
in terms of graphs), when the partitions (A1, L1, B1), (A2, L2, B2), . . . , (Am, Lm, Bm)
really separate every pair of elements x and y. It was proved that

m∑
i=1

|Ai|+
m∑
i=1

|Bi| ≥ n log2 n

that is if the cost of a test is the number of “real elements” then one cannot
do better than taking Li = ∅ for every i and “halve” the underlying set
log2 n times. For what powers of |Ai| and |Bi| is it still true? For recent
improvements see [7] and [8].

3. We have to admit that the condition that all L’s have size at least k
is not realistic from a practical point of view. In a typical case many Li’s
can be empty. However if the partitions with large Li are numerous and
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situated adversely then it can reduce the ideal minimum length log2 n. Find
conditions for that in both the adaptive and non-adaptive cases.

An interesting generalization of our model in the present paper is the
following. Let a test be a family {A1, A2, . . . , At} where their union covers
the underlying set (set of possible unknown elements). If the only unknown
element is in Ai1 ∩ . . . ∩ Aiu then the result of the test is any one of the
indices i1, . . . , iu. One can ask mathematical questions similar to the ones in
our paper.
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