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Abstract

The cycles of length k in a complete graph on n vertices are col-
ored in such a way that edge-disjoint cycles get distinct colors. The
minimum number of colors is asymptotically determined.
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1 Introduction

Both authors have participated in the series of conferences Cycles and Col-
orings and decided that they should pose a nice new problem to its honor,
that contains both concepts in the title. Of course there are other problems
and results involving colors and cycles but as far as we know they are very
different from the one we suggest below.

Let Kn be the complete graph on n vertices and denote the family of all
cycles of length k in Kn by C(n, k) (3 ≤ k ≤ n). Color the elements of C(n, k)
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in such a way that the colors of two edge-disjoint cycles must be different.
This is called a proper coloring of C(n, k). The minimum number of colors in
a proper coloring is denoted by χ(n, k). Another way to define this number is
the following: partition C(n, k) into the minimum number of classes in such
a way that the cycles in each class are pairwise edge-intersecting.

The goal of the present paper is to determine this number. We were
fully successful in the case of k = 3 while our results for larger k are only
asymptotic (fixed k, large n).

The problem is closely related, as we will see, to Turán type results. The
basic problem of this area is to determine the maximum number of edges of
a graph on n vertices containing no Kk as a subgraph. The Turán graph
T (n, k) has n vertices that are partitioned into k nearly equal classes (the
sizes have difference at most one) and two vertices are joined by an edge if
and only if they are in different classes. It is easy to see that T (n, k − 1)
contains no Kk as a subgraph. The fundamental theorem of the area is the
following one.

Theorem 1 (Turán [20], for k = 3: Mantel [12]) T (n, k − 1) has the largest
number of edges among the graphs with n vertices containing no complete
graph on k vertices.

Several generalizations and extensions of the Turán theorem needed to
our proofs will be presented later.

2 The results

Let us first show a construction giving χ(n, 3). Take the complement T (n, 2)
of the Turán graph for k = 3, that is, the vertex-disjoint union of two com-
plete graphs with bn

2
c and dn

2
e vertices, respectively. It is easy to see that

this graph has
⌊
(n−1)2

4

⌋
edges and contains no empty triangle (3 independent

vertices). Color the edges of T (n, 2) with
⌊
(n−1)2

4

⌋
distinct colors. Color a

triangle C3 ∈ C(n, 3) in Kn with the color of the edge contained in it. In
this way some cycles of length 3 receive 3 colors. Delete 2 of them in an
arbitrary way. It is easy to see that this is a proper coloring of C(n, 3). Our
first theorem claims that this is the best construction.

Theorem 2 If n ≥ 16 then χ(n, 3) =
⌊
(n−1)2

4

⌋
.

2



The Turán number ex(n,H) of a “small” graph H is the maximum num-
ber of edges in a graph with n vertices containing no H as a subgraph. We
will now generalize the construction for k = 3. Let G(n, k) be a graph on
n vertices containing no Ck. Then its complement G(n, k) has the following
important property: if Ck ∈ C(n, k) then it has a common edge with G(n, k).
(Of course the vertex sets of G(n, k) and C(n, k) are the same.) Color the
edges of G(n, k) with distinct colors. Let the color of the edge e be c(e). If e
is a common edge of the cycle Ck and G(n, k) then color the cycle with c(e).
In this way each cycle of length k receives at least one color. If it receives
more than one, choose one arbitrarily. This is a proper coloring using as
many colors as the number of edges of G(n, k). The following proposition is
obtained.

Proposition 1 χ(n, k) ≤
(
n
2

)
− ex(n,Ck).

If k = 3 then ex(n,C3) =
⌊
n2

4

⌋
by Theorem 1. Proposition 1 gives⌊

(n−1)2
4

⌋
as an upper estimate on χ(n, 3). It will be proved in Section 3 that

this estimate is sharp.
We will show that the upper estimate is asymptotically sharp for other

values of k. Since the asymptotical behavior of ex(n,Ck) is very different for
even and odd k’s, the meaning of the “asymptotics” largely depends on the
parity of k. The reason is the following theorem.

Theorem 3 (Erdős-Stone-Simonovits [7], [5]) For a fixed graph H

lim
n→∞

ex(n,H)(
n
2

) = 1− 1

χ(H)− 1

where χ(H) is the chromatic number of H.

If k is odd then χ(Ck) = 3, the theorem above implies that ex(n,Ck) ∼
1
4
n2, hence the proposition gives the asymptotical lower bound 1

4
n2. This is

completed by the following theorem.

Theorem 4 If k is odd then

lim
n→∞

χ(n, k)(
n
2

) =
1

2
.
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For H = Ck (k is odd) there is a theorem stronger than Theorem 3.

Theorem 5 (Simonovits [18] ) If k is odd, n ≥ n0(k) then ex(n,Ck) =
⌊
n2

4

⌋
.

This statement encourages us to pose the following conjecture.

Conjecture 1 If k is odd, n ≥ n1(k) then χ(n, k) =
⌊
(n−1)2

4

⌋
holds.

The situation is very different for even k. In that case Theorem 3 does
not determine the exponent of n in ex(n,Ck) it tells only that it is less than
2. Then the second term in Proposition 1 is negligible in comparison with
the first term, hence the asymptotic value of χ(n, k) is the first term.

Theorem 6 If k ≥ 4 is even then

lim
n→∞

χ(n, k)(
n
2

) = 1

holds.

3 Proof of Theorem 2

We have seen that Proposition 1 implies that

χ(n, 3) ≤
⌊

(n− 1)2

4

⌋
.

To prove the other direction an old theorem will be used.

Theorem 7 (Nordhaus and Steward [15], Moon and Moser [13]) Let G =
(V,E) be a graph where |V | = n, |E| = m. The number of copies of C3 in G
is at least

4

3

m2

n
− mn

3
.

The other ingredient of the proof is the following easy lemma. A family of
triangles is called edge-intersecting or shortly intersecting if any two members
have an edge in common. It is trivially intersecting or book if the intersection
of all of them contains an edge. The edge in the intersection of the triangles
of a book is called its spine. (If the book consists of one triangle then choose
one of its edges as a spine.) On the other hand if the vertices of all triangles
in the family are subsets of a set of 4 elements, and the number of triangles
is at least 3 then we say that the family is a quadruplet.
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Lemma 1 A family of intersecting triangles (C3’s) is either a book or a
quadruplet.

Proof. Choose two triangles from the intersecting family. They have a
common edge e, so their edge sets are, say, {a, b, e} and {c, d, e}. If the
family is not trivially intersecting then there is a third triangle containing
one edge from {a, b} and one from {c, d} . Suppose that it is {a, c, f}. It is
easy to see that if the family has a fourth member it can only be the triangle
{b, d, f}. The 4 endpoints of these 6 edges cover all 3 or 4 triangles therefore
it is a quadruplet. L

Consider a proper coloring of C(n, 3). By Lemma 1 the color classes are
either books or quadruplets. Let their numbers be s and q, respectively. If⌊
(n−1)2

4

⌋
≤ s, we are done, so

s <

⌊
(n− 1)2

4

⌋
(1)

can be supposed. Let G be the graph with n vertices and the spines of the
books as edges. G has

(
n
2

)
−s edges. Using Theorem 10 for G we obtain that

it contains at least
4

3
·
((
n
2

)
− s
)2

n
−
((
n
2

)
− s
)
n

3
(2)

triangles. G contains at least this many empty triangles. These triangles do
not belong to any of the books. They must belong to quadruplets. Since
a quadruplet contains at most 4 triangles, the number of quadruplets is at
least one fourth of (2). Therefore the total number of color classes is at least

s+
1

3

((
n
2

)
− s
)2

n
−
((
n
2

)
− s
)
n

12
. (3)

We have to prove that (3) is at least
⌊
(n−1)2

4

⌋
. To make the algebra easier,

introduce the notation A =
(
n
2

)
− s. Equation (1) implies⌊
n2

4

⌋
< A. (4)

The desired inequality, by (3), becomes⌊
(n− 1)2

4

⌋
≤
(
n

2

)
− A+

A2

3n
− An

12
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or equivalently

0 ≤
⌊
n2

4

⌋
+
A2

3n
− An

12
− A. (5)

For fixed n the right hand side as a function of A takes it minimum at
A = n2+12n

8
. If 12 ≤ n holds then this is less than or equal to our range of A

by (4). Hence the right hand side of (5) is at least

n2 − 1

4
+

(
n2+3
4

)2
3n

−

(
n2+3
4

)
n

12
−
(
n2 + 3

4

)
=

3n2 − 48n+ 9

48n
,

that is positive for n ≥ 16.

T

4 Proof of Theorem 4

All of our other proofs follow the pattern of the proof of Theorem 2. The
upper bounds are consequences of Proposition 1. The proofs of the lower
bounds use the following idea: it is known from certain theorems that if the
number of edges in a graph is more than the Turán number ex(n,Ck) (the
graph is oversaturated) then there are many copies of Ck in the graph. On the
other hand it will be shown that if a color class is not a book ( a collection of
k-element sets sharing one pair of elements) then its size has a smaller order
of magnitude.

The following theorem was proved in a much more general context, we
state it only in the special case needed here. Let hk(n, t) denote the minimum
number of copies of Ck in a graph with n vertices and ex(n,Ck) + t edges.

Theorem 8 (Mubayi [14]) Let k ≥ 3 be an odd integer. Then there is a
constant αk > 0 such that if the number of edges in a graph with n vertices
is at least ex(n,Ck) + t where 0 < t ≤ αkn, and n > n(k) then

hk(n, t) ≥ tc(n,Ck)

where

c(n,Ck) =
⌊n

2

⌋(⌊n
2

⌋
− 1
)
. . .

(⌊n
2

⌋
−
⌊
k

2

⌋
+ 1

)(⌈n
2

⌉
− 2
)
. . .

(⌈n
2

⌉
−
⌊
k

2

⌋)
and the second product is interpreted as empty for k = 3.
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For quadratic t another well-known theorem will be used what is an easy
consequence of Szemerédi’s regularity lemma [19]. First implicitly used in
[16], for a more general version see [2].

Theorem 9 (Graph Removal Lemma) Let F be a graph with f vertices.
Suppose that an n vertex graph H has at most o(nf ) copies of F . Then there
is a set of edges of H of size o(n2) whose removal from H results in a graph
with no copy of F where n→∞.

It will be actually used in the following usual way. Given a real number
ε > 0 there is another real number δ(ε) > 0 such that if the number of copies
of F in H is at most δ(ε)nf then one can delete at most εn2 edges removing
all copies of F .

Using these theorems the following lemma can be proved that ensures the
necessary number of copies of Ck for supersaturated graphs. It is probably
well-known, but we could not find it in the literature in the present form.

Lemma 2 Let k ≥ 3 be an odd integer. There is a threshold n(k,N) (not
depending on t) such that

hk(n, t)

tnk−3
≥ N

(
1 ≤ t ≤

(
n

2

)
− ex(n,Ck)

)
holds for every n > n(k,N) .

Proof. Three cases will be distinguished.
If t ≤ αkn then Theorem 8 implies that

hk(n, t)

t
≥ c(n,Ck) ≥ βkn

k−2

holds for some constant βk. Hence

hk(n, t)

tnk−3
≥ βkn

follows where the right hand side is at least N if n ≥ N
βk

.

If αkn < t ≤ αkβk
2N

n2 then the same theorem gives

hk(n, t)

t
≥ hk(n, bαknc)

αkβk
2N

n2
≥ bαknc

αkβk
2N

n2
βkn

k−2 ≥ Nnk−3,
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proving the desired inequality in this case, if n ≥ 2
αk

.

Finally suppose t > αkβk
2N

n2 and take a graph H with n vertices and

tk(n,Ck) +
⌊
αkβk
2N

n2
⌋

edges. We claim that H contains at least δ(αkβk
4N

)nk

copies of Ck. Otherwise the graph removal lemma could be used: deleting at
most αkβk

4N
n2 edges of H the so obtained graph H ′, with more edges than the

Turán number ex(n,Ck) would contain no copy of Ck, a contradiction. Now,
if

n >
N

δ(αkβk
4N

)

then
hk(n, t)

tnk−3
≥
hk(n,

⌊
αkβk
2N

n2
⌋
)

n2nk−3
≥
δ(αkβk

4N
)nk

nk−1
≥ N

holds, as desired.
A possible choice for n(k,N) is

max

{
n(k),

N

βk
,

2

αk
,

N

δ(αkβk
4N

)

}
.

L

We did give this detailed way of the proof to avoid the appearance of
misusage of the notation o(n).

The next lemma shows that the order of magnitude of the size of a color
class that is not a book is O(nk−3). For further use the lemma is stated and
proved in a more general form.

Let H = (V,E) be a graph where |V | = a, |E| = b. The family of all
subgraphs of Kn isomorphic to H is denoted by H(n,H). We say that G ⊂
H(n,H) that is edge-intersecting or shortly intersecting if any two members
have an edge of Kn in common. It is called non-trivially intersecting if the
intersection of the edge sets of the members is empty.

Lemma 3 If G ⊂ H(n,H) is non-trivially intersecting then |G| ≤ γ(H)na−3

holds with a positive constant γ(H), independent of n.

Proof. Let R denote the set of edges of Kn. Define the b-uniform hypergraph
F on the vertex set R where F ∈ F if and only if F ⊂ R is the set of edges
of a graph in G. Here F is obviously a non-trivially intersecting hypergraph.

We will repeatedly perform a certain operation on F obtaining a new
hypergraph after every step. They will not be necessarily uniform any more,
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but the sizes of the members (in other terminology hyperedges) will be at
most b. Set F0 to be F , assume that F0, . . .Fi are defined. Construct Fi+1

as follows. Suppose that there is a pair (x, F ), x ∈ F where F ∈ Fi such
that F −{x} meets all hyperedges of Fi. Then apply the following shrinking
operation:

Fi+1 = (Fi − {F}) ∪ {F − {x}}. (6)

Note that if {F − {x}} ∈ Fi then |Fi+1| < |Fi|. It is easy to see that if Fi is
a non-trivially intersecting hypergraph then so is Fi+1. Let the final hyper-
graph be Fu. A hypergraph is called intersecting critical if every application
of the operation (6) makes the hypergraph non-intersecting. Of course an
intersecting critical hypergraph is non-trivially intersecting (except the un-
interesting case when F consists of one 1-element set). supp(F) denotes the
union of all members of F . The following theorem of Lovász will be used.

Theorem 10 (Lovász [10]) For every positive integer b there is an integer
f(b) such that if F is an intersecting critical hypergraph with hyperedges of
size at most b then |supp(F)| ≤ f(b).

For the (up to now) best estimates on the smallest possible values of f(b) see
[21] and [22]. The theorem above is formulated in the more general case of
ν-critical hypergraphs, where ν is the maximum number of pairwise disjoint
hyperedges and the application of operation (6) increases ν. However we
need here the case ν = 1 only.

This theorem can be applied to Fu: |supp(Fu)| ≤ f(b). Obviously, Fu
contains no empty or one-element member. (Otherwise it would be trivially
intersecting.) Therefore the members of Fu are at least two-element subsets
of a set R0 ⊂ R of edges of size at most f(b). Take all two-element subsets
of the members of Fu. This 2-uniform family is denoted by F∗. If F ∈ F
then there is an Fu ⊂ F with Fu ∈ Fu and an F ∗ ⊂ Fu such that F ∗ ∈ F∗.
Define F(F ∗) as the family of all members of F containing a given F ∗. Then

F =
⋃

F ∗∈F∗

F(F ∗)

implies

|F| ≤
∑
F ∗∈F∗

|F(F ∗)|. (7)

The number of terms in (7) is at most
(
f(b)
2

)
. The two elements of an F ∗ are

two edges in Kn.
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Suppose that these two edges meet and their vertices in Kn are x, y, z. If
F ∗ ⊂ F ∈ F then the elements of F as edges in Kn form a copy of the graph
H. Two adjacent edges of H are equal to the elements of F ∗ therefore the
vertices of this copy of H are x, y, z and a− 3 other, different vertices out of
the n− 3 possibilities. Hence

|F(F ∗)| ≤ v(H)

(
n− 3

a− 3

)
= Ω(na−3) (8)

where v(H) is the number of adjacent pairs of edges in H, independent on
H.

If the two edges in F ∗ are vertex-disjoint, the situation is similar. Then

|F(F ∗)| ≤ p(H)

(
n− 4

a− 4

)
= Ω(na−4) (9)

holds where p(H) is the number of vertex-disjoint pairs of edges in H. (7)-(9)
result in

|F| ≤
(
f(b)

2

)
Ω(na−3)

proving the statement, since |F| = |G|. L

Let us finish the proof of the lower bound in the theorem. Consider a
proper coloring of C(n, k) with the minimum number of colors. A family of
cycles (of length k) is a book if they all have at least one common edge. If
there is exactly one common edge, it is called the spine of the book. If there
are more than one common edges, choose one arbitrarily. Let s(n) denote
the number of color classes forming a book and r(n) the number of other
color classes. Suppose

s(n) ≤
(

1

2
− ε
)(

n

2

)
(10)

holds, with a fixed ε > 0. Let G be the graph with n vertices and the spines
of the books as edges. G has

(
n
2

)
− s(n) edges. Hence the number of edges

exceeding the Turán number is

t(n) =

(
n

2

)
− ex(n,Ck)− s(n).

Theorem 3 and (10) imply that

t(n) ≥ ε

2

(
n

2

)
(11)
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when n is larger than a certain n(ε). By Lemma 2 and (11) G contains at
least

ε

2

(
n

2

)
nk−3N

copies of Ck. In other words G contains at least this many empty Ck’s. They
do not belong to any of the books. They must belong to color classes of other
type. By Lemma 3 their sizes are at most γ(Ck)n

k−3 = γkn
k−3 therefore

r(n) ≥
ε
2

(
n
2

)
nk−3N

γknk−3
=
ε

2

(
n

2

)
N

γk

Choose

N >
2γk
ε
.

Then

r(n) >

(
n

2

)
holds, showing that if (10) holds for n ≥ n(ε) then the number of colors must
be too large. T

5 Proof of Theorem 6

The following theorem will be used.

Theorem 11 (Erdős and Simonovits [6], Sidorenko [17]) Let k ≥ 4 be an
even number, ε > 0. There is a constant λk such that the number of copies
of Ck in a graph on n vertices and at least ε

(
n
2

)
edges is at least

λkε
knk

for n ≥ n(k, ε).

This is a special case of the Erdős-Simonovits-Sidorenko conjecture stated
for bipartite graphs.

Consider a proper coloring of C(n, k) with the minimum number of colors.
Let s(n) denote the number of color classes forming a book and r(n) the
number of other color classes. If s(n) > (1− ε)

(
n
2

)
holds for every positive ε
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and for all n > n(ε) then we are done. Therefore we can suppose that there
is a fixed ε > 0 such that

s(n) ≤ (1− ε)
(
n

2

)
(12)

holds for an infinite sequence Σ of n’s. Let G be the graph with n vertices and
the spines of the books as edges. G has

(
n
2

)
− s(n) ≥ ε

(
n
2

)
edges. Theorem

11 implies that G contains at least λkε
knk copies of Ck if n ∈ Σ. In other

words G contains at least this many empty Ck’s. They do not belong to any
of the books. They must belong to color classes of other type. By Lemma 3
their sizes are at most γ(Ck)n

k−3 = γkn
k−3 therefore

r(n) ≥ λkε
knk

γknk−3
=
λkε

k

γk
n3

holds which implies

r(n) >

(
n

2

)
if n ∈ Σ, n > n1(ε). This contradicts the minimality of the coloring, com-
pleting the proof. T

6 Remarks

1. Our problem is closely related to the Kneser-Lovász problem. Let
[n] = {1, 2, . . . , n} be the set of the first n natural numbers and let N =(
[n]
k

)
denote the family of all k-element subsets of an n-element set. Kneser

suggested to color the members of N in such way that disjoint subsets must
get distinct colors. One such coloring is the following. Color the sets with
minimum element i with color i if 1 ≤ i ≤ n − 2k + 1. The sets which are
subsets of {n−2k+2, . . . , n} are pairwise intersecting, they are colored with
the last color, n− 2k + 2. Kneser conjectured and Lovász ([11]) proved that
this n − 2k + 2 is the minimum number of colors. The problem suggested
in the present paper is very similar, since we are coloring k-element subsets
of the set of edges of Kn and the definition of proper coloring is the same.
Here, however we color only those subsets of edges which form a cycle.

2. The problem can be asked for any other graph not only for cycles. Let
H be a graph, color all the copies of H in Kn with the minimum number of
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colors in such a way that edge-disjoint copies must have different colors. Let
this number be denoted by χ(n,H). The ingredients of the proof of Theorem
4 are formulated for a general H except Theorem 8. But this is also known
([14]) for general graphs H under the additional condition that it contains
an edge whose removal reduces the chromatic number.

Theorem 12 Let H be graph with chromatic number χ(H) at least 3 and
suppose that it contains an edge whose removal reduces the chromatic number.
Then

lim
n→∞

χ(n,H)(
n
2

) =
1

χ(H)− 1

holds.

Theorem 6 can also be generalized for those bipartite graphs for which
the Erdős-Simonovits-Sidorenko conjecture holds.

3. There are good lower and upper estimates on ex(n,Ck) when k is even.

Theorem 13 (Erdős and Rényi [3], Bondy and Simonovits [1])

Ω(n1+ 1
k ) ≤ ex(n,Ck) ≤ O(n1+ 2

k ).

The lower estimate and Proposition 1 result in a lower estimate on χ(n, k).
This suggests the following open problem.

Open problem 1 Let k be even. Does

Ω(n1+ 1
k ) ≤

(
n

2

)
− χ(n, k) ≤ O(n1+ 2

k )

hold?

The problem can be more precisely formulated in the case of k = 4 when
the value of ex(n,C4) is fairly well known.

Theorem 14 (Erdős, Rényi and Sós [4], Kővári, Sós and Turán [9], Füredi

[8]) ex(n,C4) ∼ 1
2
n

3
2 and ex(n,C4) = 1

2
q(q + 1)2 when q is a prime power

and n = q2 + q + 1.

Let us formulate the problem above for this special case.
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Open problem 2 Is the following statement true?

χ(n, 4) =

(
n

2

)
− 1

2
n

3
2 + o(n

3
2 ).

For certain special values of n, based on Füredi’s theorem there a little
hope to find the exact value of χ(n, 4).

Open problem 3 If q is a prime power, n = q2 + q + 1 does

χ(n, 4) =

(
q2 + q + 1

2

)
− 1

2
q(q + 1)2

hold?
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Kut. Int. Közl. 7(1962) 283-286.

[14] Dhruv Mubayi, Counting sustructures I: Color critical graphs, Advances
in Mathematics 225(5)(2010) 2731-2740.

[15] E.A. Nordhaus, B.M. Steward, Triangles in an ordinary graph, Canad.
J. Math. 15(1963) 33-41.
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