Constructing union-free pairs of k-element subsets

Gyula O.H. Katona*
Alfréd Rényi Institute of Mathematics, HAS, Budapest P.O.B. 127 H-1364 HUNGARY
E-mail: ohkatona@renyi.hu

Abstract

It is proved that one can choose $\left\lfloor\frac{1}{2}\binom{n}{k}\right\rfloor$ disjoint pairs of k-element subsets of an n-element set in such a way that the unions of the pairs are all different, supposing that $n>n(k)$.

1 Introduction

The following notations will be used: $[n]=\{1,2, \ldots, n\}$ for an n-element set, and $\binom{[n]}{k}$ for the family of its all k-element subsets.

The main aim of the present paper is to prove the following theorem.
Theorem 1 If $1 \leq k, n$ are integers and n is large enough, that is $n \geq n(k)$, then one can find

$$
\left\lfloor\frac{1}{2}\binom{n}{k}\right\rfloor
$$

unordered pairs $\left\{A_{i}, B_{i}\right\}$ so that all these sets are distinct elements of $\binom{[n]}{k}$, $A_{i} \cap B_{i}=\emptyset$ holds for every pair and

$$
\begin{equation*}
A_{i} \cup B_{i} \neq A_{j} \cup B_{j} \text { holds for all } i \neq j . \tag{1}
\end{equation*}
$$

[^0]Our method however proves the following stronger, perhaps less natural statement.

Theorem 2 If $n \geq n(k)$, then the members of $\binom{[n]}{k}$ can be listed in the following way:

$$
A_{1}, A_{2}, \ldots, A_{N}, A_{N+1}=A_{1}
$$

where $N=\binom{n}{k}, A_{i} \cap A_{i+1}=\emptyset(1 \leq i \leq N)$, and

$$
\begin{equation*}
A_{i} \cup A_{i+1} \neq A_{j} \cup A_{j+1} \text { holds for all } i \neq j \tag{2}
\end{equation*}
$$

Theorem 2 trivially implies Theorem 1: take the pairs $\left\{A_{2 \ell-1}, A_{2 \ell}\right\}(\ell=$ $1,2, \ldots$.).

The proof of Theorem 2 will be based on a Hamiltonian type theorem that is a generalization of the following theorem of Dirac [2].

Theorem 3 If G is a simple graph on $N \geq 3$ vertices and every degree in G is at least $\frac{N}{2}$, then G has a Hamiltonian cycle.

We will use a similar theorem for the graph

$$
G_{1}=\left(\binom{[n]}{k}, E\right)
$$

where two vertices are adjacent (their pair is in E) if the k-element sets are disjoint. The simple application of Dirac's theorem for this graph G_{1} would lead to a cyclic listing of all k-element sets in such a way that the neighboring ones are disjoint. However we have to forbid simultaneous occurrences of certain pairs along the cycle. This will be formulated in a more general context.

The forbidden pairs of edges form a new graph with vertex set E. Let $G_{2}=(E, F)$ be the new graph where F is the set of forbidden pairs of nonadjacent edges (that is edges without common vertices). We need to find a Hamiltonian cycle in G_{1} which contains no two edges whose pair is in F.

Theorem 4 Let $G_{1}=(V, E)$ and $G_{2}=(E, F)$ be graphs where F contains pairs of edges non-adjacent in G_{1}. Let further the minimum degree in G_{1} be δ and the maximum degree in G_{2} be Δ. Suppose that
a path of three edges in G_{1} cannot contain an element of F
and that the inequality

$$
\begin{equation*}
\delta \geq N\left(1-\frac{1}{2(\Delta+1)}\right) \tag{ii}
\end{equation*}
$$

holds. Then there is a Hamiltonian cycle in G_{1} containing no pair of edges $\in F$.

Historical comments and a list of similar results will be given in Section 4.

2 Proof of Theorem 4

We will use an indirect way. Suppose that the desired Hamiltonian cycle does not exist. Delete elements of F one by one. When G_{2} becomes empty then a Hamiltonian cycle is to be found without any restriction. Therefore (ii) and Dirac's theorem implies its existence. On the way from G_{2} to the empty graph there is a place of jump: there is no Hamiltonian cycle if G_{2} is replaced by $G_{2}^{*}=\left(E, F^{*} \cup\{f\}\right)$ but there is one if it is replaced by $G_{2}^{* *}=\left(E, F^{*}\right)$. The Hamiltonian cycle in the latter case must contain two edges which are the elements of f. Deleting one of theses edges from the Hamiltonian cycle a Hamiltonian path is obtained that contains no pair of edges from F^{*}.

Let the vertices in this Hamiltonian path be ordered in the following way: $v_{1}, v_{2}, \ldots, v_{N}$. Let P denote the set of edges along this path: $P=\left\{\left\{v_{i}, v_{i+1}\right\}\right.$: $1 \leq i<N\}$. Then no element of F^{*} is a subset of P. Define $A^{1} \subset P$ as the set of edges along the path having a pair in F^{*} which is incident to v_{1} :

$$
A^{1}=\left\{\left\{v_{i}, v_{i+1}\right\}: 1<i<N,\left\{\left\{v_{1}, v_{\ell}\right\},\left\{v_{i}, v_{i+1}\right\}\right\} \in F^{*} \text { holds for some } \ell\right\} .
$$

Let L denote the set of endpoints of edges in G_{1} with the starting point v_{1} :

$$
L=\left\{\ell:\left\{v_{1}, v_{\ell}\right\} \in E\right\} .
$$

Suppose that $\left\{v_{i}, v_{i+1}\right\} \in A^{1}$ and either $v_{i} \in L$ or $v_{i+1} \in L$ holds. Then $\left\{\left\{v_{1}, v_{\ell}\right\},\left\{v_{i}, v_{i+1}\right\}\right\} \in F^{*}$ holds for some $\ell \neq i, i+1$. Hence $\left\{v_{1}, v_{\ell}\right\},\left\{v_{i}, v_{i+1}\right\}$ and either $\left\{v_{1}, v_{i}\right\}$ or $\left\{v_{1}, v_{i+1}\right\}$ form a path of length 3 in E. Two of them form a pair in F^{*} by the definition of A^{1}. This contradicts (i) therefore $\left\{v_{i}, v_{i+1}\right\}$ cannot be in A^{1}. The conclusion is that the edges $\left\{v_{i}, v_{i+1}\right\}(1<i)$ in the path cannot be in A^{1} if one of their endpoints is in L. The number of
such edges along the path is at least $|L| \geq \delta$. Hence we have $\left|A^{1}\right| \leq N-2-\delta$. Here $A^{1} \subset E$ is a set of vertices of G_{2}. The degrees in G_{2} are $\leq \Delta$ the total number of vertices in G_{2} adjacent to at least one element of A^{1} is $\leq \Delta(N-2-\delta)$. There are at least δ edges in E of the form $\left\{v_{1}, v_{\ell}\right\}$, we have at least $\delta-\Delta(N-2-\delta)$ of them which do not form an edge in G_{2} with an edge in P. Here $\delta-\Delta(N-2-\delta) \geq \frac{N}{2}$ holds by (ii). If B^{1} denotes the set of edges $\left\{v_{1}, v_{\ell}\right\}$ in G_{1} which are not vertices in G_{2} adjacent to vertices $\in P$ then we obtain the conclusion of this paragraph

$$
\begin{equation*}
\left|B^{1}\right| \geq \frac{N}{2} \tag{3}
\end{equation*}
$$

This can be repeated with the other end of the path. Let B^{N} denote the set of edges $\left\{v_{N}, v_{\ell}\right\}$ in G_{1} which are not vertices in G_{2} adjacent to vertices $\in P$. We have

$$
\begin{equation*}
\left|B^{N}\right| \geq \frac{N}{2} \tag{4}
\end{equation*}
$$

The edge $\left\{v_{i}, v_{i+1}\right\}$ is called start-pinned if $\left\{v_{N}, v_{i}\right\} \in B^{N}$. On the other hand, it is end-pinned if $\left\{v_{1}, v_{i+1}\right\} \in B^{1}$. By (3) and (4) there is an edge $\left\{v_{r}, v_{r+1}\right\}$ which is both start- and end-pinned. Hence the edges $\left\{v_{1}, v_{r+1}\right\}$ and $\left\{v_{N}, v_{r}\right\}$ can be added to P without violating the conditions, that is $P \cup\left\{\left\{v_{1}, v_{r+1}\right\},\left\{v_{N}, v_{r}\right\}\right\}$ contains no element of F^{*}. (The relation $\left\{\left\{v_{1}, v_{r+1}\right\},\left\{v_{N}, v_{r}\right\}\right\} \notin F^{*}$ is a direct consequence of (i).) The sequence of vertices $v_{1}, v_{r+1}, v_{r+2}, \ldots, v_{N}, v_{r}, v_{r-1}, \ldots, v_{2}, v_{1}$ determines a Hamiltonian cycle satisfying the conditions. This is a contradiction, the statement is proved.

3 Proof of Theorem 2

Use Theorem 4 for the following graphs G_{1} and G_{2}.

$$
G_{1}=\left(\binom{[n]}{k}, E\right)
$$

where $\{A, B\} \in E$ if and only if $A \cap B=\emptyset, F$ consists of the pairs $\{\{A, B\},\{C, D\}\}(\{A, B\} \neq\{C, D\})$ satisfying

$$
\begin{equation*}
A, B, C, D \in\binom{[n]}{k}, A \cap B=C \cap D=\emptyset, A \cup B=C \cup D \tag{5}
\end{equation*}
$$

Check the conditions of Theorem 4 for these graphs. (i) is obvious: if (5) holds then A and C cannot be disjoint.

The number of vertices of G_{1} is $N=\binom{n}{k}$. Both graphs are regular. $\delta=\binom{n-k}{k}$. Observe that G_{2} is a vertex disjoint union of clicks of size $\frac{1}{2}\binom{2 k}{k}$. Therefore $\Delta=\frac{1}{2}\binom{2 k}{k}-1$. (ii) has the following form:

$$
\begin{equation*}
\binom{n-k}{k} \geq\binom{ n}{k}\left(1-\frac{1}{\binom{2 k}{k}}\right) . \tag{6}
\end{equation*}
$$

For fixed k and large n the two binomial coefficients are asymptotically equal. The coefficient on the right hand side is less than 1 . Therefore (6) holds for large n.

More detailed analysis (see below) of (6) gives that $n(k)=k^{2}\binom{2 k}{k}+k$ is a possible threshold. The following inequality is an equivalent form of (6).

$$
\begin{equation*}
\frac{(n-k)(n-k-1) \ldots(n-2 k+1)}{n(n-1) \ldots(n-k+1)} \geq\left(1-\frac{1}{\binom{2 k}{k}}\right) \tag{7}
\end{equation*}
$$

Apply the inequality

$$
\frac{n-k-i}{n-i} \geq \frac{n-2 k}{n-k}(0 \leq i<k)
$$

on the left hand side of (7) then use the Bernoulli-inequality ($n \geq 2 k$ can be supposed):

$$
\begin{gathered}
\frac{(n-k)(n-k-1) \ldots(n-2 k+1)}{n(n-1) \ldots(n-k+1)} \geq \\
\left(\frac{n-2 k}{n-k}\right)^{k} \geq\left(1-\frac{k}{n-k}\right)^{k} \geq 1-\frac{k^{2}}{n-k} .
\end{gathered}
$$

Here the right hand side gives the right hand side of (7) for $n(k)=k^{2}\binom{2 k}{k}+k$.

4 Historical comments, similar results

The method of using a Hamiltonian type theorem for constructing a family of disjoint pairs satisfying certain properties goes back to [1]. The following theorem was proved there.

Theorem 5 If $1 \leq k, n$ are integers and n is large enough, that is $n \geq$ $n(k)$, then one can find $\left\lfloor\frac{1}{2}\binom{n}{k}\right\rfloor$ unordered pairs $\left\{A_{i}, B_{i}\right\}$ of disjoint k-element subsets ($A_{i} \cap B_{i}=\emptyset,\left|A_{i}\right|=\left|B_{i}\right|=k$) of $[n]$ such that

$$
\min \left\{\left|A_{i} \cap A_{j}\right|,\left|B_{i} \cap B_{j}\right|\right\} \leq \frac{k}{2}
$$

which implies

$$
\min \left\{\left|A_{i} \cap B_{j}\right|,\left|B_{i} \cap A_{j}\right|\right\} \leq \frac{k}{2}
$$

by the symmetry.
The proof of this theorem is based on the following Hamiltonian type statement.

Theorem 6 [1] Let $G_{0}=\left(V, E_{0}\right)$ and $G_{1}=\left(V, E_{1}\right)$ be simple graphs on the same vertex set $|V|=N$, such that $E_{0} \cap E_{1}=\emptyset$. Let r be the minimum degree of G_{0} and let s be the maximum degree of G_{1}. Suppose, that

$$
2 r-8 s^{2}-s-1>N
$$

holds, then there is a Hamiltonian cycle in G_{0} such that if (a, b) and (c, d) are two vertex-disjoint edges of the cycle, then they do not form an alternating cycle with two edges of G_{1}.

It was discovered in [3] that Theorem 5 can be made stronger in the following way.

Theorem 7 If $1 \leq k, n$ are integers and n is large enough, that is $n \geq$ $n(k)$, then one can find $\left\lfloor\frac{1}{2}\binom{n}{k}\right\rfloor$ unordered pairs $\left\{A_{i}, B_{i}\right\}$ of disjoint k-element subsets ($\left.A_{i} \cap B_{i}=\emptyset,\left|A_{i}\right|=\left|B_{i}\right|=k\right)$ of $[n]$ such that

$$
\left|A_{i} \cap A_{j}\right|+\left|B_{i} \cap B_{j}\right| \leq k
$$

which implies

$$
\left|A_{i} \cap B_{j}\right|+\left|B_{i} \cap A_{j}\right| \leq k
$$

by the symmetry.

Its proof was based on a theorem similar to Theorem 6, but it is much more complicated.

Observe that Theorems 5 and 7 require the disjoint pairs $\left\{A_{i}, B_{i}\right\}$ to be "close" to each other. On the other hand our present Theorem 1 does not allow them to be too "close".

Both Theorems 4 and 6 can be interpreted in the following way. Given a graph and a 4 -graph (4-uniform hypergraph) on the same vertex set. Give conditions ensuring the existence of a Hamiltonian cycle in the graph avoiding the given 4 -edges as the union of two edges of the cycle. These interpretations lead to some Hamiltonian problems and theorems involving hypergraphs. The first result of this type was [5]. The survey paper [4] contains similar questions and answers. There are some important newer results in the following papers: [7], [8], [9], [6].

The author is indebted to the anonymous referee for finding several typos and grammatical inaccuracies.

References

[1] J. Demetrovics, G.O.H. Katona and A. Sali, Design type problems motivated by database theory, J. Statist. Planning and Inference 72 (1998) 149-164.
[2] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc., Ser. 3, 2 (1952), 69-81.
[3] H. Enomoto and Gyula O.H. Katona, Pairs of disjoint q-element subsets far from each other, Electronic J. Combin. 8(2001), \# R7
[4] Gyula O.H. Katona, Constructions via Hamiltonian theorems, Discrete Math., 303(2005) 87-103.
[5] G.Y. Katona and H. Kierstead, Hamiltonian Chains in Hypergraphs, J. Graph Theory 30(3)(1999) 205-212.
[6] D. Kühn and D. Osthus, Loose Hamiltonian cycles in 3-uniform hypergraphs of large minimum degree. J. Combin. Theory Series B 96(2006) 767-821.
[7] Vojtěch Rödl, Andrzej Ruciński, Endre Szemerédi, A Dirac-type theorem for 3-uniform hypergraphs, Combin. Probab. Comput. 15(2006) 229-251.
[8] Vojtěch Rödl, Andrzej Ruciński, Endre Szemerédi, An approximate Dirac-type theorem for k-uniform hypergraphs, Combinatorica 28(2008) 229-260.
[9] Vojtěch Rödl, Andrzej Ruciński, Endre Szemerédi, A Dirac-type conditions for Hamiltonian paths and cycles in for 3-uniform hypergraphs, Adv. Math. 227(2011) 1225-1299.

[^0]: *The work of the author was supported by the Hungarian National Foundation for Scientific Research grant number NK78439,

