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Abstract

Given a search space S = {1, 2, . . . , n}, an unknown element x∗ ∈ S and fixed integers ` ≥ 1 and q ≥ 1,

a q + 1-ary `-restricted query is of the following form: Which one of sets {A0, A1, . . . , Aq} is the x∗ in?

where (A0, A1, . . . , Aq) is a partition of S and |Ai| ≤ ` for i = 1, 2, . . . , q. The problem of finding x∗

from S with q + 1-ary size-restricted queries is called as a q + 1-ary search game with small sets. In this

paper, we consider sequential algorithms for the above problem, and establish the minimum number of

average-case sequential queries when x∗ satisfies uniform distribution on S.

Keywords: Search game; Sequential algorithm; Average-cost; Huffman tree.

1. Introduction

The following combinatorial search problem has been extensively researched and many useful results

have been obtained (see [1, 6]). Two players, say Paul and Carole, fix a search space S = {1, 2, . . . , n},
an integer q ≥ 1. A q + 1-ary query is of the form: Which one of sets {A0, A1, . . . , Aq} is the x∗ in?,

where (A0, A1, . . . , Aq) is a partition of S. An answer of the query i indicates that x∗ ∈ Ai. Carole

chooses x∗ ∈ S as an unknown element (or a target element), and Paul is required to find x∗ by asking

queries. The main goal of the above problem is to design optimal algorithms that finds x∗ with minimum

queries. Traditionally, two measures are commonly utilized to estimate the efficiency of an algorithm:

the worst-case number of queries and the average-case number of queries, and two classes of algorithms

are usually considered: sequential algorithms (or adaptive algorithms) and predetermined algorithms (or

non-adaptive algorithms).

We consider a natural variant of the above problem. The queries will be restricted with the condition

Ai ≤ ` for i = 1, 2, . . . q and a fixed integer ` ≥ 1. Call it a q + 1-ary search game with small sets and

denote it by (S, q + 1, A≤`). A query that satisfies the above condition is called to be `-admissible. An

admissible algorithm of (S, q + 1, A≤`) is said to be an `-admissible for short.

The problem (S, q+ 1, A≤`) was originally raised by Rényi [3] with stricter conditions on the queries,

i.e., Ai ≤ Ki for fixed integers Ki > 0 and i = 1, 2, . . . q. We denote it as (S, q + 1, A≤) throughout the

paper.

For (S, 2, A≤`), an admissible query is equivalent to the following: Is x∗ ∈ A?, where A ∈ S and

|A| ≤ `. Aigner [1] presents a worst-case optimal sequential algorithm, and an average-case optimal
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one when uniform distribution of x∗ on S is assumed. The worst-case lower and upper bounds of

predetermined algorithms are presented in [7], and improved by many scholars (see [8, 11, 16]).

For (S, 3, A≤`), the problem is modeled as a coin-weighting problem, i.e., the queries are restricted

with |A1| = |A2| ≤ `. Aigner [1] presents the minimum number of worst-case sequential weighings and a

lower bound for predetermined weighings. Liu et.al. [10] establish the minimum number of average-case

sequential weighings when the uniform distribution is assumed.

For the general game (S, q + 1, A≤`), based on the model (S, q + 1, A≤), Baranyai [3] generalized the

results of [7] for the case q = 1. He gave lower and upper estimations of the minimum predetermined

worst-case number of queries and prove that the estimations are asymptotically optimal.

To the best of our knowledge, how to construct an optimal sequential algorithm for the general game

(S, q+1, A≤`) is an open problem. In this paper, we focus on the average-case of the problem (S, q+1, A≤`)

and present an average-case optimal sequential algorithm when uniform distribution on S is assumed.

In fact, the algorithm is also worst-case optimal‘and the minimum worst-case sequential queries can be

easily obtained from the results given in this paper.

The rest of this paper is structured as follows. In Section 2, we give some notations and main results

of this paper. Section 3 proposes some lower bounds of the minimum number of average-case `-admissible

sequential queries. Section 4 constructs an average-case optimal `-admissible sequential algorithm when

the uniform distribution on S is assumed. In Section 5, we prove the main results given in Section 2 and

take an example to verify it. In the end, we conclude this paper and point out future research directions.

2. Notations and main results

A sequential search process can be formalized as a directed tree that satisfies the following conditions

(see reference [1]). (1) Each leaf is uniquely assigned with an element of the search space S = {1, 2, . . . , n},
each inner node is assigned with a query, and the corresponding edge indicates its answers to its father

node. (2)Let Aj = (Aj0, A
j
1, . . . , A

j
q, ) be queries for 1 ≤ j ≤ p − 1 and Ap = {i}, if A1 is the root and

A1f1−→
A2f2−→

. . . fp−1−−→
Ap is a path to the leaf i, where fk is the label of the edge (Ak, Ak+1) for 1 ≤ k ≤ p−1,

then {i} =
p−1⋂
k=1

Akfk .

A node A is induced with respect to answer i if A has a father node B and the edge (B,A) is labeled

with i. Let h(T, i) be the path length from the root to node i in the tree T , L(T ) = max{h(T, i)|i ∈ S is

a leaf in the tree T} and h(T ) =
∑
i∈S

h(T, i), which are the number of sequential queries needed to find i,

the worst-case length and the external path length for algorithm T respectively. Therefore the minimum

number of worst-case sequential queries L(n) = min{L(T )|T is an admissible tree with n leaves}, and

the minimum number of average-case sequential queries L̄(n) = H(n)
n , where H(n) = min{h(T )|T is an

admissible tree with n leaves} and we call it Huffman path length.

For the game (S, q + 1, A≤`), an `-admissible algorithm (or say an `-admissible tree,) is a q + 1-ary

directed tree T with the additional restriction: all its subtrees rooted at any node induced with respect

to answer i = 1, 2, . . . , q have at most ` leaves. Obviously, an `1-admissible tree must be an `2-admissible

tree if `1 ≤ `2. Analogously, for an `-admissible tree T , let h≤`(T, i) represent the path length from root

to leaf i, h≤`(T ) =
∑
i∈S

h≤`(T, i) the external path length of T , and L≤`(T ) = max{h≤`(T, i)|i ∈ S} the

worst-case length of the algorithm T . Therefore, for the game (S, q+ 1, A≤`) with |S| = n, the minimum
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number of worst-case sequential queries is L≤`(n) = min{L≤`(T )|T is an `-admissible tree with n leaves}
and the minimum number of average-case sequential queries is L̄≤`(n) =

H≤`(n)

n , where H≤`(n) =

min{h≤`(T )|T is an `-admissible tree with n leaves}.
In other words, for the game (S, q + 1, A≤`) with |S| = n, given its two `-admissible algorithms

T1 and T2, we say that T1 is worst-case ( or average-case) better than T2 if L≤`(T1) ≤ L≤`(T2) (or

H≤`(T1) ≤ H≤`(T2)). An algorithm T ∗ is worst-case (or average-case) optimal if L≤`(T
∗) = L≤`(n) (or

H≤`(T
∗) = H≤`(n)). We say best (or optimal) for short if it does not cause confusion hereafter.

Let bxc and dxe be the maximal integer that ≤ x and the minimal integer that ≥ x respectively, and

µ(j) = 1 for j 6= 0 and µ(j) = 0 for j = 0. The following theorem summarizes the main results of this

paper.

Theorem 1. Given integers n > 0, ` > 0 and q > 0, we have

(1) For ` = 1, H≤`(n) = n(t− 1)− (t−1)(t−2)
2 q +H(n− (t− 1)q), where t = dnq e.

(2) For ` > 1, let ` = (q + 1)η + θq + τ such that 0 ≤ θ < (q + 1)η and 0 < τ ≤ q, and t =

max{1, dn−(q+1)η+1

q` e} and

Ω = {(`, n)|(q + 1)η+1 + q(`− τ) < n− (t− 1)q` ≤ (q + 1)η+1 + q` and n > (q + 1)η+1},
ϕ = n(t− 1)− (t−1)(t−2)

2 q`+ (t− 1)qH(`) +H(n− (t− 1)q`),

δ =
{ dn−(t−1)q`−(q+1)η+1−q(`−τ)

τ e − dn−(t−1)q`−(q+1)η+1−q(`−τ)
q e, (`, n) ∈ Ω,

0, otherwise.

then
H≤`(n) = ϕ+ δ.

3. Lower bounds of H≤`(n)

Lemma 2. Given integers n > 0 and q > 0, then there exist uniquely non-negative integers α, β and γ
such that

n = (q + 1)α + βq + γ

where 0 ≤ β < (q + 1)α and 0 ≤ γ < q.

Proof. See reference [1].

Obviously, for n ≥ 2, if we replace the condition 0 ≤ γ < q with 0 < γ ≤ q, Lemma 2 holds too.

Lemma 3. Given integers n > 0, q > 0 and ` > 0, let n = (q + 1)α + βq + γ where 0 ≤ β < (q + 1)α

and 0 ≤ γ < q, we have (1) L(n) = dlognq+1e; (2) L≤`(n) ≥ L(n); (3) L≤`(m) ≥ L≤`(n) if m ≥ n; (4) if
n ≤ (q + 1)`, then L≤`(n) = L(n).

Proof. (1) See [1].

(2) We obtain it by the following fact: an `1-admissible algorithm is an `2-admissible one if `1 ≤ `2.

(3) Suppose T ∗ is an optimal `-admissible worst-case tree with m leaves such that h(T ∗, 1) ≤ h(T ∗, 2) ≤
. . . ≤ h(T ∗,m). Delete the leaves {n+ 1, . . . ,m} from T ∗, and denote the resulting tree as T ′. Therefore

T ′ is also an `-admissible tree with n leaves and L≤`(m) = L≤`(T
∗) ≥ L≤`(T ′) ≥ L≤`(n).

(4) Let n = x(q+1)+y such that 0 < y ≤ q+1 and n = (q+1)α+βq+γ such that 0 ≤ β < (q+1)α and
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0 ≤ ξ < q. If β = (q+1)α−1, then y = r+1 and n+q+1−y ≤ (q+1)α+q((q+1)α−1)+r+q+1−y =

(q + 1)α+1. If β < (q + 1)α − 1, then n + q + 1 − y ≤ (q + 1)α + q((q + 1)α − 2) + r + q < (q + 1)α+1.

Since n+ q + 1− y ≥ n, therefore 1 + L(x+ 1) = dlogq+1 n+ q + 1− ye = dlogq+1 ne.
Since n ≤ (q + 1)`, we have x < `. Suppose T be tree with n leaves and the first query A1 =

(A1
0, A

1
1, . . . , A

1
q) such that |A1

i | = x+1 for i = 0, 1, . . . , y−1 and |A1
i | = x for i = y, . . . , q. It is clear that

T is an `-admissible tree. By (3), we have L≤`(n) ≤ 1+max{L≤`(|A1
i |)|i = 0, 1, . . . , q} = 1+L≤`(x+1) =

1 + L(x+ 1) = dlogq+1 n+ q + 1− ye = dlogq+1 ne = L(n). By (2), we have L≤`(n) = L(n). tu
Since we need no queries to determine the unknown element for n = 1, without lose generality, we let

H≤`(0) = H≤`(1) = H(0) = H(1) = 0, then we have the following useful results.

Lemma 4. Given integers n > 1, q > 0 and ` > 0, let n = (q+ 1)α +βq+ γ where 0 ≤ β < (q+ 1)α and
0 ≤ γ < q, we have (1) H(n) = nα+ d(qβ+γ)(q+ 1)/qe = nα+ (q+ 1)β+γ+µ(γ); (2) H≤`(n) ≥ H(n);

Proof. (1) The case is a classical Huffman problem and we call a tree T with n leaves that satisfies

H(T ) = H(n) a Huffman tree. The detailed proof of (1) can be seen in [1, 6] etc.

(2) Suppose T ∗ is an optimal `-admissible average-case tree with n leaves, by the definition of H(n), we

have H≤`(n) = H≤`(T
∗) = H(T ∗) ≥ H(n). tu

In fact, by Lemma 2, for for n ≥ 2, H(n) has an alternative form as follows. Let n = (q+ 1)α+βq+γ

where 0 ≤ β < (q + 1)α and 0 < γ ≤ q, then H(n) = nα+ d(qβ + γ)(q + 1)/qe = nα+ (q + 1)β + γ + 1.

Lemma 5. Given integers n > 0, q ≥ 1 and d ≥ 0, let n = (q + 1)α + βq + γ where 0 ≤ β < (q + 1)α

and 0 ≤ γ < q, we have

(i)

H(n+ 1)−H(n) =

{
blogq+1 nc+ 1, if γ 6= 0,

blogq+1 nc+ 2, if γ = 0.
(1)

(ii)
d(blogq+1 nc+ 1) ≤ H(n+ d)−H(n) ≤ d(blogq+1 (n+ d)c+ 2). (2)

.

(iii)
H(n+ q)−H(n) ≤ qdlogq+1(n+ q)e+ 1. (3)

(iv)
H(n)−H(n− i) = idlogq+1 ne, for γ = 0, 0 ≤ i < q and i ≤ n. (4)

(v)

H(n)−H(m) ≤ (n−m)dlogq+1 ne+ bn−m
q
c, for γ = 0 and m ≤ n. (5)

(vi)
H≤`(n)−H≤`(n− 1) ≥ dlogq+1 ne. (6)

Proof. By Lemma 2, we know α = blogq+1 (n)c.
(i) Case 1: q = 1. Now γ is an integer satisfying 0 ≤ γ < 1, i.e., γ = 0.

Subcase 1. For β < 2α− 1, we have n+ 1 = 2α +β+ 1 and β+ 1 ≤ 2α− 1. By Lemma 4 (1), we have

H(n+ 1) = (n+ 1)α+ (β + 1)2, H(n) = nα+ β2 and H(n+ 1)−H(n) = α+ 2 = blogq+1 nc+ 2.
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Subcase 2. For β = 2α − 1, we have n = 2α + 2α − 1 and n+ 1 = (2)α+1. By Lemma 4 (1), we have

H(n+ 1) = (n+ 1)(α+ 1), H(n) = nα+ 2α − 1 and H(n+ 1)−H(n) = α+ 2 = blogq+1 nc+ 2.

Case 2. q ≥ 2.

Subcase 1: For γ = 0, we have n + 1 = (q + 1)α + βq + 1 and 0 ≤ β < (q + 1)α, 1 ≤ q − 1. By

Lemma 4 (1), we have H(n + 1) = (n + 1)α + β(q + 1) + 2 and H(n) = nα + β(q + 1). Therefore

H(n+ 1)−H(n) = α+ 2 = blogq+1 nc+ 2.

Subcase 2: For 0 < j < q − 1, we have n + 1 = (q + 1)α + βq + γ + 1 and 0 ≤ β < (q + 1)α, γ + 1.

By Lemma 4 (1), we have H(n + 1) = (n + 1)α + β(q + 1) + γ + 2 and H(n) = nα + β(q + 1) + γ + 1.

Therefore H(n+ 1)−H(n) = α+ 1 = blogq+1 nc+ 1.

Subcase 3: For j = q − 1, We have n + 1 = (q + 1)α + (β + 1)q and 0 ≤ β + 1 ≤ (q + 1)α.

When 0 ≤ β + 1 ≤ (q + 1)α − 1, by Lemma 4 (1), we have H(n + 1) = (n + 1)α + (β + 1)(q + 1),

H(n) = nα + β(q + 1) + q and H(n + 1) −H(n) = α + 1 = blogq+1 nc + 1. When β + 1 = (q + 1)α, we

have n+ 1 = (q+ 1)α+1 and H(n+ 1) = (n+ 1)(α+ 1), H(n) = nα+ ((q+ 1)α− 1)(q+ 1) + q. Therefore

H(n+ 1)−H(n) = α+ 1 = blogq+1 nc+ 1. Summarizing, (1) holds.

(ii) Case 1. For d = 0, it is trivial that (2) holds.

Case 2. For d > 0, by (1), we have H(n+i)−H(n+i−1) ≥ blogq+1(n+i−1)c+1 ≥ blogq+1 nc+1 and

H(n+ i)−H(n+ i−1) ≤ blogq+1(n+ i−1)c+2 ≤ blogq+1(n+d)c+2 for i ≥ 1. Since H(n+d)−H(n) =∑d
i=1[H(n+ i)−H(n+ i− 1)], we obtain that (2) holds.

(iii) Case 1. β < (q+1)α−1. We have n+q = (q+1)α+(β+1)q+γ and (β+1) ≤ (q+1)α−1. By Lemma

2 and Lemma 4 (1), we have dlogq+1(n+ q)e = α + 1, H(n+ q) = (n+ q)α + (β + 1)(q + 1) + γ + µ(γ)

and H(n) = nα+β(q+ 1) + γ+µ(γ). Therefore H(n+ q)−H(n) = q(α+ 1) + 1 = qdlogq+1 (n+ q)e+ 1.

Case 2. β = (q+ 1)α − 1. We have n+ q = (q+ 1)α + (β + 1)q+ γ = (q+ 1)α+1 + γ. When γ = 0, by

Lemma 2 and Lemma 4 (1), we have dlogq+1(n+q)e = α+1, H(n+q) = (n+q)(α+1), H(n) = nα+β(q+1)

and H(n + q) −H(n) = q(α + 1) + 1 = qdlogq+1 (n+ q)e + 1. When γ > 0, by Lemma 2 and Lemma 4

(1), we have dlogq+1(n+ q)e = α+ 2, H(n+ q) = (n+ q)(α+ 1) + γ + µ(γ), H(n) = nα+ β(q + 1) and

H(n+ q)−H(n) = q(α+ 1) + γ + 1 ≤ q(α+ 1) + q + 1 = q(α+ 2) + 1 = qdlogq+1 (n+ q)e+ 1.

As a result, (3) holds.

(iv) Case 1: i = 0. It is trivial that (4) holds.

Case 2. 0 < i < q.

Subcase 1. For β = 0, we have n = (q+1)α, n−i = (q+1)α−1+((q+1)α−1−1)q+q−i. By Lemma 2 and

Lemma 4 (1), we have H(n) = nα and H(n−i) = (n−i)(α−1)+((q+1)α−1−1)(q+1)+(q+1)−i = nα−iα.

Therefore, H(n)−H(n− i) = iα = idlogq+1 ne.
Subcase 2. For β ≥ 1, we have n = (q+ 1)α+βq, n− i = (q+ 1)α+ (β−1)q+ q− i. By Lemma 2 and

Lemma 4 (1), we have H(n) = nα+β(q+ 1) and H(n− i) = (n− i)(α−1) + (β−1)(q+ 1) + (q+ 1)− i =

nα+ β(q + 1)− iα. Therefore, H(n)−H(n− i) = iα = idlogq+1 ne.
As a result, (4) holds.

(v) Let x = bn−mq c, there exists an integer y such that n−m = xq+y, where 0 ≤ y < q. By (iii) and (iv),

we have H(n) −H(n − y) = ydlogq+1 ne and H(n − y) −H(m) = H(m + xq) −H(m) =
∑x
k=1(H(m +

kq)−H(m+ (k−1)q)) ≤
∑x
k=1(qdlogq+1(m+kq)e+ 1) ≤ x(qdlogq+1(m+xq)e+ 1) ≤ x(qdlogq+1 ne+ 1).

Therefore H(n)−H(m) = H(n)−H(n− y) +H(n− y)−H(m) ≤ (n−m)dlogq+1(n)e+ bn−mq c.
(vi) Suppose T ∗ is an optimal `-admissible average-case tree with m leaves, by Lemma 3, there exists a

leaf i such that H≤`(T
∗, i) = L≤`(T

∗) ≥ L(n) = dlogq+1 ne. Let T̂ ∗ = T ∗/{i} be an `-admissible average-
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case tree with n−1 leaves, therefore H≤`(n−1) ≤ H≤`(T̂ ∗) = H≤`(n)−L≤`(T ∗) ≤ H≤`(n)−dlogq+1 ne.
Thus H≤`(n)−H≤`(n− 1) ≥ dlogq+1 ne. tu

Corollary 6. Given integers n1, n2 with α1 = blogq+1 n1c and α2 = blogq+1 n2c respectively. If α1 ≥
α2 + 2, then H(n1) +H(n2) ≥ H(n1 − 1) +H(n2 + 1).

Proof. Using the Lemma 5 (ii) we have H(n1)−H(n1− 1) ≥ α1 + 1 ≥ α2 + 3 and H(n2 + 1)−H(n2) ≤
blogq+1 n2 + 1c+ 2 ≤ blogq+1 n2c+ 3 = α2 + 3. Therefore H(n1) +H(n2) ≥ H(n1 − 1) +H(n2 + 1). tu

Lemma 7. Given integers ` > 1 and ai ≥ 0 for i = 0, 1, . . . , q, let ` = (q + 1)η + θq + τ where
0 ≤ θ < (q + 1)η and 0 < τ ≤ q. If ai ≤ ` for i = 1, . . . , q, and

∑q
i=0 ai ≥ (q + 1)η+1 + q`, then∑q

i=0H≤`(ai) ≥ H≤`(n− q`) + qH(`).

Proof. The result is obtained by using the following property recursively. For K + 1 > (q + 1)η+1 and

M + 1 ≤ `, we obtain that

H≤`(K + 1) +H≤`(M) ≥ H≤`(K) +H≤`(M + 1). (7)

In fact, for K+1 > (q+1)η+1, by (6), we have H≤`(K+1)−H≤`(K) ≥ dlogK+1
q+1 e ≥ η+2. For M+1 ≤ `,

by Lemma 4 and (2), we have H≤`(M + 1) −H≤`(M) = H(M + 1) −H(M) ≤ blogM+1
q+1 c + 2 ≤ η + 2.

Therefore we obtain the above result.

Since
∑q
i=0 ai > (q + 1)η+1 + q`, then n − q` + 1 > (q + 1)η+1. Recursively applying (7), we have∑q

i=0H≤`(ai) ≥ H≤`(n− q`) + qH(`). tu

Lemma 8. Given integers q > 0, ` > 1, s > 0 and ai > 0 for i = 1, 2, . . . , s, let ` = (q + 1)η + θq + τ
such that 0 ≤ θ < (q + 1)η and 0 < τ ≤ q. If `− τ < ai ≤ ` for i = 1, · · · , s, then

s∑
i=1

H(ai) ≥ (s− x− 1)H(`− τ) +H(`− τ + y) + xH(`)

where
∑s
i=1(ai − `+ τ) = xτ + y and 0 ≤ y < τ .

Proof. Since `− τ < ai ≤ `, we denote ai = (q + 1)η + θq + γi with q ≥ τ ≥ γi > 0 for i = 1, · · · , s and∑s
i=1(ai − ` + τ) =

∑s
i=1 γi = xτ + y with 0 < y ≤ τ . Therefore (s − x)τ =

∑s
i=1(` − ai) + y > 0, i.e.,

s ≥ x+ 1. Thus we obtain

s∑
i=1

H(ai) =

s∑
i=1

(aiblogq+1 aic+ θ(q + 1) + γi + 1)

= η

s∑
i=1

((q + 1)η + θq + γi) + sθ(q + 1) + (xτ + y) + s

= η(s(q + 1)L + sθq + xτ + y) + sθ(q + 1) + (xτ + y) + s

= xH(`) +H(`− τ + y) + (s− x− 1)H(`− τ) + s− x− 1

≥ xH(`) +H(`− τ + y) + (s− x− 1)H(`− τ)

The following equalities are used to obtain the fourth equality of the ones above.

H(`) = η((q + 1)η + θq + τ) + θ(q + 1) + τ + 1, (8)
6



H(`− τ + y) = η((q + 1)η + θq + y) + θ(q + 1) + y + 1, (9)

H(`− τ) = η((q + 1)η + θq) + θ(q + 1). (10)

tu

Lemma 9. Given integers q > 0, ` > 1 and ai > 0 for i = 0, 1, . . . , q, let ` = (q + 1)η + θq + τ such that
0 ≤ θ < (q + 1)η and 0 < τ ≤ q. If (q + 1)η+1 + q(`− τ) <

∑q
i=0 ai ≤ (q + 1)η+1 + q` and 0 < ai ≤ ` for

i = 1, 2, . . . , q, then

q∑
i=0

H(ai) ≥ H((q + 1)η+1) + xH(`) +H(`− τ + y) + (q − x− 1)H(`− τ)

where
∑q
i=0 ai − (q + 1)η+1 − q(`− τ) = xτ + y such that integers x ≥ 0 and 0 < y ≤ τ .

Proof. Since
∑q
i=0 ai < (q + 1)η+1 + q`, we know a0 − (q + 1)η+1 < q` −

∑q
i=1 ai =

∑q
i=1(` − ai) and

that there exist integers bi such that a0 − (q + 1)η+1 =
∑q
i=1 bi and 0 ≤ bi ≤ `− ai for i = 1, . . . , q. Let

āi = ai + bi, then blogq+1 āic ≤ blogq+1 `c ≤ η. By Lemma 5 (ii), we have

H(a0) ≥ H((q + 1)η+1) + (a0 − (q + 1)η+1)(η + 2), (11)

H(ai) ≥ H(ai + bi)− bi(blogq+1(ai + bi)c+ 2) ≥ H(ai + bi)− bi(η + 2). (12)

Thus
∑q
i=0H(ai) ≥ H((q + 1)η+1) +

∑q
i=1H(āi) and

∑q
i=1 āi =

∑q
i=0 ai − (q + 1)η+1. Therefore

q(`− τ) <
∑q
i=1 āi ≤ q`.

Without loss generality, we assume ā1 ≥ ā2 ≥ . . . ≥ āq. Since q(` − τ) <
∑q
i=1 āi, we know there

exists an integer k such that āi > ` − τ for 1 ≤ i ≤ k and āi ≤ ` − τ for k < i ≤ q. By Lemma

8, we have that there exist integers m ≥ 0, 0 < m′ ≤ τ and
∑k
i=1(āi − ` + τ) = mτ + m′ such that∑q

i=1H(āi) ≥
∑q
i=1H(a′i), where a′i = ` for 1 ≤ i ≤ m, a′m+1 = `−τ+m′ and a′i = `−τ for m+2 ≤ i ≤ k.

Let a′0 = (q+1)η+1 and a′i = āi for k ≤ i ≤ q, we have
∑q
i=0 a

′
i =

∑q
i=0 ai. Let

∑q
i=0 a

′
i− (q+1)η+1−

q(` − τ) = xτ + y such that x ≥ 0 and 0 ≤ y < τ . Therefore (m − x)τ = (q + 1)η+1 + y − a′0 − a′m+1 +

(`− τ) +
∑q
i=m+2(`− τ − ai) ≥ (`− τ)− a′m+1 ≥ −τ , i.e., x ≤ m+ 1.

Case 1. For x = m + 1, we have a′m+1 = ` and a′i = ` − τ for i ≥ m + 2. Therefore
∑q
i=0H(ai) =

H((q + 1)η+1) + xH(`) +H(`− τ + y) + (q − x− 1)H(`− τ).

Case 2. For x ≥ m, since dlogq+1(` − τ)e ≤ dlogq+1 `e = η + 1, by Lemma 5 (iv), we obtain, for

m+ 2 ≤ i ≤ q,

H(a′i) ≥ H(`− τ)− (`− τ − a′i)(η + 1)− b`− τ − a
′
i

q
c

≥ H(`− τ)− (`− τ − a′i)(η + 1)− `− τ − a′i
q

.

Since a′m+1 = `− τ +m′ and m′ > 0, we have

H(a′m+1) ≥ H(`− τ) + (a′m+1 − `+ τ)(η + 1) + 1.

Since
∑q
i=0 a

′
i − (q + 1)η+1 − q(`− τ) = xτ + y holds with x ≥ 0 and 0 ≤ y < τ , and a′0 = (q + 1)η+1

and a′i = ` for 1 ≤ i ≤ m, we have ∆ ≡
∑q
i=m+2(`−τ−a′i) = sτ+am+1−`+τ−xτ−y ≤ sτ+τ−xτ−y.
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Therefore

q(s+ 1)−∆

q
≥ q(s+ 1)− (sτ + τ − xτ − y)

q
≥ (q − τ)(s+ 1) + xτ + y

q

≥ q(x+ 1)− τ + y

q
≥ x+ 1− τ − y

q

≥ x+ 1− q − 1

q
.

Since
∑q
i=0H(a′i) is an integer, we have

q∑
i=0

H(a′i) = H((q + 1)η+1) +

q∑
i=m+2

H(a′i) +mH(`) +H(a′m+1)

≥ H((q + 1)η+1) + qH(`− τ) + (xτ + y)(η + 1) + x+ 1

= H((q + 1)η+1) + (q − x− 1)H(`− τ) + xH(`) +H(`− τ + y).

tu

Corollary 10. Given integers q > 0, ` > 1 and ai > 0 for i = 0, 1, . . . , q, let ` = (q + 1)η + θq + τ such
that 0 ≤ θ < (q + 1)η and 0 < τ ≤ q. If (q + 1)η+1 + q(`− τ) <

∑q
i=0 ai ≤ (q + 1)η+1 + q`, then

H≤`(

q∑
i=0

ai) ≥ H((q + 1)η+1) + xH(`) +H(`− τ + y) + (q − x− 1)H(`− τ) +

q∑
i=0

ai

where
∑q
i=0 ai − (q + 1)η+1 − q(`− τ) = xτ + y with some integers satisfying x ≥ 0 and 0 < y ≤ τ .

Proof. Suppose T ∗ be a optimal `-admissible sequential tree with
∑q
i=0 ai leaves, and the first query

be (A0, A1, . . . , Aq) with |Ai| = ai and 0 < ai ≤ `. Then H≤`(
∑q
i=0 ai) =

∑q
i=0 ai +

∑q
i=0H≤`(ai) ≥∑q

i=0 ai+
∑q
i=0H(ai). By Lemma 9, and the condition (q+1)η+1 +q(`−τ) <

∑q
i=0 ai ≤ (q+1)η+1 +q`,

we can obtain the result directly. tu

Theorem 11. Given integers n > 0, ` = 1, we have H≤1(n) ≥ H(n) if n ≤ q + 1, and H≤1(n) ≥
n+H≤1(n− q) if n > q + 1.

Proof. By Lemma 4 (2), we know H≤`(n) ≥ H(n) if n ≤ q + 1.

For n > q + 1, we have n − q > 1 and dlogq+1 n − qe ≥ 1. Suppose T ∗ is an average-case optimal

algorithm and the first query is (A0, A1, . . . , Aq) with |Ai| = ai for i = 0, 1, . . . , q. Therefore 0 < ai ≤ 1

for 1 ≤ i ≤ q and H≤`(n) = n +
∑q
i=0H≤`(ai) = n + H≤`(a0) +

∑q
i=1H≤`(ai). By Lemma 5 (vi) and

H≤`(0) = H≤`(1) = 0, we have H≤`(n) ≥ n+H≤`(n− q). tu

Theorem 12. Given integers n > 0, ` > 1, let ` = (q + 1)η + θq + τ such that 0 ≤ θ < (q + 1)η and
0 < τ ≤ q, we have

(1) For 0 < n ≤ (q + 1)η+1 + q(`− τ), H≤`(n) ≥ H(n);

(2) For (q + 1)η+1 + q(`− τ) < n ≤ (q + 1)η+1 + q`,

H≤`(n) ≥ H((q + 1)η+1) + xH(`) +H(`− τ + y) + (q − x− 1)H(`− τ) + n,

where n− (q + 1)η+1 − q(`− τ) = xτ + y with some integers satisfying x ≥ 0 and 0 < y ≤ τ .
8
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Figure 2: An `-admissible sequential algorithm for 1 ≤ |A| ≤ q + 1

(3) For (q + 1)η+1 + q` < n, H≤`(n) ≥ n+ qH(`) +H≤`(n− q`).

Proof. (1) is trivial.

(2) Suppose T ∗ is an average-case optimal `-admissible sequential tree with n leaves, and the first query

is (A0, A1, . . . , Aq) with |Ai| = ai for i = 0, 1, . . . , q. Therefore 0 < ai ≤ ` for 1 ≤ i ≤ q and H≤`(n) =

n +
∑q
i=0H≤`(ai) ≥

∑q
i=0 ai +

∑q
i=0H(ai). By Lemma 9 and the condition (q + 1)η+1 + q(` − τ) <∑q

i=0 ai ≤ (q + 1)η+1 + q`, we obtain the result directly.

(3) Suppose T ∗ is an average-case optimal `-admissible sequential tree with n leaves, and the first query

be (A0, A1, . . . , Aq) with |Ai| = ai for i = 0, 1, . . . , q. Therefore 0 < ai ≤ ` for 1 ≤ i ≤ q and H≤`(n) =

n+
∑q
i=0H≤`(ai). By Lemma 7 and the condition (q+ 1)η+1 + q` < n, we obtain the result directly. tu

4. An average-case optimal q + 1-ary `-admissible sequential algorithm

Recall the notations related to the q+1-ary `-admissible search process given in Section 2. A q+1-ary

sequential algorithm is represented by a tree A. In Figure 1 only the root and its children are shown. At

the jth child the subtree A1j is attached for 0 ≤ j ≤ q. If A is a tree or subtree, |A| denotes the number

of leaves, that is the number of elements of the set (subset) where the algorithm determined by the tree

(subtree) finds the unknown element. Let Huff(B) denote a Huffman tree such that the leaf set is the

search candidate set B. Obviously, a Huffman tree Huff(B) is an `-admissible if |B| ≤ `.
We construct a q + 1-ary `-admissible tree according to the value of `, and consider two cases ` > 1

and ` = 1 respectively.

For n = 1, since the only element is the unknown one, the `-admissible tree is a single node and

H≤`(1) = 0.

For ` > 1 and n > 1, let ` = (q + 1)η + θq + τ such that 0 ≤ β < (q + 1)α and 0 < γ ≤ q;

n = (q+ 1)α + βq+ γ such that 0 ≤ β < (q+ 1)α and 0 < γ ≤ q. Then we obtain an `-admissible tree as

follows in Cases 1-5.

Case 1. For 1 < n ≤ (q + 1), we choose the admissible tree as in Fig. 2, i.e., a Huff(S).

Case 2. For (q + 1) < n ≤ (q + 1)η+1, we have 1 ≤ α ≤ η. Let β = m(q + 1)α−1 + t where

0 ≤ t < (q + 1)α−1. Then (q + 1)α−1 + tq + γ ≤ (q + 1)η−1 + ((q + 1)η−1 − 1)q + q = (q + 1)η ≤ ` and

m(q + 1)α + (q −m)(q + 1)α−1 + (q + 1)α−1 + tq + γ = n hold.
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We choose the admissible tree as in Fig. 1 in the following way. If m = 0, let A10 be a Huffman tree

with |A10| = (q + 1)α−1 + tq + γ, and let A1i be Huffman trees with |A1i| = (q + 1)α−1 respectively for

1 ≤ i ≤ q.
If m ≥ 1, let A1i be Huffman trees with |A1i| = (q + 1)α respectively for 0 ≤ i ≤ m− 1, let A1m be a

Huffman tree with |A1m| = (q + 1)α−1 + tq + γ, finally let A1i be Huffman trees with |A1i| = (q + 1)α−1

respectively for m+ 1 ≤ i ≤ q.
Case 3. Suppose (q+ 1)η+1 < n ≤ (q+ 1)η+1 + q(`− τ). Since (q+ 1)η+1 + q(`− τ) < (q+ 1)η+1 + q(q+

1)η+1 = (q+1)η+2, we have η+1 ≤ α < η+2, i.e., α = η+1 and n = (q+1)η+1+βq+γ. For (q+1)η ≤ β ≤
`−τ , let β−(q+1)η = bθ+c where 0 ≤ c < θ, then (q+1)η+1+(q+1)η+cq+b(`−τ)+γ+(q−1)(q+1)η = n.

The inequality (q + 1)η + βq + γ ≤ (q + 1)η + ((q + 1)η − 1)q + q = (q + 1)η+1 holds if β < (q + 1)η

and (q + 1)η + kq + γ ≤ ` holds if k < θ.

Therefore we choose the admissible tree as in Fig. 1 in the following way. If β < (q + 1)η, then let

A10 be an admissible tree given in Cases 1 and 2 with |A10| = (q + 1)η + βq + γ. Moreover let A1i be

admissible trees with |A1i| = (q + 1)η respectively for 1 ≤ i ≤ q.
If (q + 1)η ≤ β ≤ ` − τ and b = 0, let A10 be an admissible tree given in Cases 1 and 2 with

|A10| = (q + 1)η+1, A11 be an admissible tree with |A11| = (q + 1)η + cq + γ, and finally letA1i be

admissible trees with |A1i| = (q + 1)η respectively for 2 ≤ i ≤ q.
If (q + 1)η ≤ β ≤ ` − τ and b ≥ 1, let A10 be an admissible tree given in Cases 1 and 2 with

|A10| = (q + 1)η+1, let A1i be admissible trees with |A1i| = ` − τ respectively for 1 ≤ i ≤ b, let A1(b+1)

be an admissible tree with |A1(b+1)| = (q + 1)η + cq + γ, and let finally A1i be admissible trees with

|A1i| = (q + 1)η respectively for b+ 2 ≤ i ≤ q.
Case 4. Suppose (q+1)η+1+q(`−τ) < n ≤ (q+1)η+1+q`. We have η+1 ≤ α. By n ≤ (q+1)η+1+q` ≤
(q+ 1)η+1 + q(q+ 1)η+1 = (q+ 1)η+2, we have α ≤ η+ 1. Thus α = η+ 1. Let βq− q(`− τ) + γ = xτ + y

where 0 ≤ y < τ . Since (q + 1)η+1 + x` + ` − τ + y + (q − x − 1)(` − τ) = n, we choose the admissible

tree as in Fig. 1 in the following way.

If x = 0, let A10 be an admissible tree given in Cases 1 and 2 with |A10| = (q + 1)η+1, let A11 be

an admissible tree with |A1(x+1)| = ` − τ + y, and let finally A1i be admissible trees with |A1i| = ` − τ
respectively for 2 ≤ i ≤ q.

If x ≥ 1, let A10 be an admissible tree given in Cases 1 and 2 with |A10| = (q + 1)η+1, let A1i

be admissible trees with |A1i| = ` respectively for 1 ≤ i ≤ x, let A1(x+1) be an admissible tree with

|A1(x+1)| = `−τ+y, and let finally A1i be admissible trees with |A1i| = `−τ respectively for x+2 ≤ i ≤ q.
Case 5. Suppose n ≥ (q + 1)η+1 + q`. We choose the admissible tree as in Fig. 3 such that Ai0 is an

admissible tree with |Ai0| = n−iq` for 1 ≤ i ≤ t−2, Aij is an admissible tree with |Aij | = ` for 1 ≤ i ≤ t−1

and 1 ≤ j ≤ q, and A(t−1)0 is an admissible tree given in Cases 1-4 with |A(t−1)0| = n− (t− 1)q`, where

(t− 1)q`+ Λ = n− (q + 1)η+1 and 0 < Λ ≤ `q.
Case 6. For ` = 1 and 1 < n ≤ q + 1, we choose the admissible tree as in Fig. 2.

For ` = 1 and n > q + 1, we choose the admissible tree as in Fig. 3 such that Ai0 is an admissible

tree with |Ai0| = n− iq for 1 ≤ i ≤ t− 2, Aij is a leaf for 1 ≤ i ≤ t− 1 and 1 ≤ j ≤ q, and A(t−1)0 is an

admissible tree given in Case 1 with |A(t−1)0| = n− (t− 1)q, where (t− 1)q + Λ = n and 0 < Λ ≤ q.
By computing the external length of the admissible tree A, we obtain an upper bound on H≤`(n).

Theorem 13. (1) Given an integer ` = 1, the external length of the proposed `-admissible tree H≤1(A) =
H(n) if n ≤ q + 1, and H≤1(A) = n+H≤`(n− q) if n > q + 1;
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Figure 3: An `-admissible sequential algorithm

(2) Given an integer ` > 1, the external length of the proposed `-admissible tree H≤`(A) is the lower
bound given in Theorem 12.

Proof. For n = 1, the `-admissible tree is a single node and H≤`(1) = 0, the results hold. Next we prove

the result of the case n > 1.

Suppose n > 1. (1) By the definition of H≤`(A) and the tree given in Case 6., we obtain H≤`(A) =

n+H≤`(n− q).
(2) For Case 1, H≤`(A) = n = H(n).

Consider now Case 2. If m = 0, then H≤`(A) = n + H((q + 1)α−1 + tq + γ) + qH((q + 1)α−1) =

nα+ t(q + 1) + γ = nα+ β(q + 1) + γ = H(n).

If m ≥ 1, then H≤`(A) = n + mH((q + 1)α) + H((q + 1)α−1 + tq + γ) + (q − m)H((q + 1)α−1) =

nα+ (m(q + 1)α−1 + t)(q + 1) + γ = nα+ β(q + 1) + γ = H(n).

Consider now Case 3. If β < (q+ 1)η, then H≤`(A) = n+H≤`((q+ 1)η + βq+ γ) + qH≤`((q+ 1)η) =

n+H((q + 1)η + βq + γ) + qH((q + 1)η) = ((q + 1)η+1 + βq + γ)(α+ 1) + β(q + 1) + γ = H(n).

The equation β− (q+1)η = bθ+c implies (q+1)η+1 +(q+1)η+cq+b(`−τ)+γ+(q−1)(q+1)η = n.

If (q + 1)η ≤ β ≤ ` − τ and b = 0, then H≤`(A) = n + H≤`((q + 1)η+1) + H≤`((q + 1)η + cq + γ) +

(q − 1)H≤`((q + 1)η) = n+H((q + 1)η+1) +H((q + 1)η + cq + γ) + (q − 1)H((q + 1)η) = ((q + 1)η+1 +

βq + γ)(α+ 1) + β(q + 1) + γ = H(n).

If (q+1)η ≤ β ≤ `−τ and b ≥ 1, then H≤`(A) = n+H≤`((q+1)η+1)+bH≤`(`−τ)+H≤`((q+1)η+cq+

γ)+(q−b−1)H≤`((q+1)η) = n+H((q+1)η+1)+bH(`−τ)+H((q+1)η+cq+γ)+(q−b−1)H((q+1)η) =

((q + 1)η+1 + βq + γ)(α+ 1) + β(q + 1) + γ = H(n).

Consider now Case 4. If x = 0, then H≤`(A) = n+H≤`((q+1)η+1)+H≤`(`−τ+y)+(q−1)H≤`(`−τ) =

n+H((q + 1)η+1) + xH(`) +H(`− τ + y) + (q − x− 1)H(`− τ).

If x ≥ 1, then H≤`(A) = n+H≤`((q + 1)η+1) + xH≤`(`) +H≤`(`− τ + y) + (q − x− 1)H≤`(`− τ) =

n+H((q + 1)η+1) + xH(`) +H(`− τ + y) + (q − x− 1)H(`− τ).

Finally, in Case 5 it is obvious that H≤`(A) = n+H≤`(n− q`) + qH≤`(`) = n+H(n− q`) + qH(`).

tu
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5. Proof of the main result

Proof of Theorem 1

Let n = (q+ 1)α+βq+γ such that 0 ≤ β < (q+ 1)α and 0 < γ ≤ q if n > 1, and ` = (q+ 1)η + θq+ τ

such that 0 ≤ θ < (q + 1)α and 0 < τ ≤ q if ` > 1.

Using Theorems 11, 12 and 13, we obtain the followings.

In the case ` = 1, we have H≤1(n) = H(n) if n ≤ q + 1, and H≤1(n) = n+H(n− q) if n > q + 1.

Suppose now ` > 1. (1) If 0 < n ≤ (q + 1)η+1 + q(` − τ), then H≤`(n) = H(n) holds. (2) If

(q + 1)η+1 + q(`− τ) < n ≤ (q + 1)η+1 + q`, then we have H≤`(n) = H((q + 1)η+1) + xH(`) +H(`− τ +

y) + (q − x− 1)H(`− τ) + n, where n− (q + 1)η+1 − q(`− τ) = xτ + y are integers satisfying x ≥ 0 and

0 ≤ y < τ . (3) Finally, if (q + 1)η+1 + q` < n, then H≤`(n) = n+ qH(`) +H≤`(n− q`).
We use the following statements to complete the proof of Theorem 1.

For ` = 1 and n > q+ 1, the conditions (t−1)q+ Λ = n, 0 < Λ ≤ q imply t = dnq e. Therefore we have

H≤1(n) = n+H≤1(n− q) = [(n− q) +H≤1(n− q)] + q

= [2(n− 2q) +H≤1(n− 2q)] + 2q + q

= · · ·

= [(t− 1)(n− (t− 1)q) +H≤1(n− (t− 1)q)] +

t−1∑
k=1

kq

= (t− 1)n− (t− 1)(t− 2)

2
q +H≤1(n− (t− 1)q)

= (t− 1)n− (t− 1)(t− 2)

2
q +H(n− (t− 1)q)

Suppose ` > 1 and (q + 1)η+1 + q(` − τ) < n ≤ (q + 1)η+1 + q`. Since ` = (q + 1)η + θq + τ where

0 ≤ θ < (q + 1)η and 0 < τ ≤ q, we have β = η + 1. Let n− (q + 1)η+1 − q(`− τ) = βq + γ − q(`− τ) =

(β − (q + 1)η − θq)q + γ = xτ + y, where 0 < y ≤ τ . We have x + 1 = dn−(q+1)η+1−q(`−τ)
τ e and

β − (q + 1)η − θq + 1 = dn−(q+1)η+1−q(`−τ)
q e. Therefore

H≤`(n) = n+H((q + 1)η+1) + xH(`) +H(`− τ + y) + (q − x− 1)H(`− τ)

= n+ (q + 1)η+1(η + 1) + x(`η + θ(q + 1) + τ + 1) + (`− τ + y)η + θ(q + 1) + y + 1

+(q − 1− x)[(`− τ)η + θ(q + 1)]

= n+ [n− xτ − y − q(`− τ)](q + 1)η+1(η + 1) + x(`η + θ(q + 1) + τ + 1)

+(`− τ + y)η + θ(q + 1) + y + 1 + (q − 1− x)[(`− τ)η + θ(q + 1)]

= n+ n(η + 1)− q(`− η) + qθ(q + 1) + x+ 1

= n(η + 1) + n− q(q + 1)η + qθ + x+ 1

= n(η + 1) + βq + γ + (q + 1)η + qθ + x+ 1

= n(η + 1) + β(q + 1) + γ + 1− [β + 1− (q + 1)η − qθ] + (x+ 1)

= H(n) + dn− (q + 1)η+1 − q(`− τ)

τ
e − dn− (q + 1)η+1 − q(`− τ)

q
e.

Finally, suppose ` > 1 and n ≥ (q + 1)η+1 + q`. Let (t− 1)q`+ Λ = n− (q + 1)η+1 with 0 < Λ ≤ `q,
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then we have t = dn−(q+1)η+1

q e. Therefore

H≤`(n) = n+H≤`(n− q`) + qH(`) = [(n− q`) +H≤`(n− q`)] + q(`+H(`))

= [2(n− 2q`) +H≤`(n− 2q`)] + q(2`+H(`)) + q(`+H(`))

= [(t− 1)(n− (t− 1)q`) +H≤`(n− (t− 1)q`)] +

t−1∑
k=1

q(k`+H(`))

= (t− 1)n− (t− 1)(t− 2)

2
q`+ (t− 1)qH(`) +H≤`(n− (t− 1)q`).

tu
Example: (S, 2, A≤`). In [1] (Section 1.9, exercise 1.6), Aigner established an average-case optimal

algorithm for (S, 2, A≤`) and obtained the exact value of H≤`(n) as follows. H≤`(n) = H(n) if n ≤ 2`,

and H≤`(n) = nt− t(t−1)
2 + tH(`) +H(n− t`)H(n) if n > 2`, where t = dn` e − 2.

On the other hand, our Theorem 1 gives the following result for q = 1. H≤`(n) = H(n) for n ≤ 2`,

and H≤`(n) = n(t′−1)− (t′−1)(t′−2)
2 + (t′−1)H(`) +H(n− (t′−1)`)H(n) if n > 2`, where t′ = dn−2

η+1

` e
and ` = 2η + θ + τ such that 0 ≤ θ < 2η and 0 < τ ≤ 1.

In fact, since θ+ 1 ≤ 2η − 1 + 1 = 2η < `, we have t′ = dn−2
η+1

` e = dn−`−(2
η−θ−1)
` e = dn` e− 1. Which

implies that the two results are identical in this special case.

6. Conclusion and future reading

For any parameters n ≥ 1, q ≥ 1 and ` ≥ 1, we study general q + 1-ary search problem with small

sets and obtain an average-case optimal sequential algorithm and the minimum number of average-case

sequential queries when the uniform distribution is assumed. In fact, the algorithm proposed in this

paper is also worst-case optimal and the minimum number of worst-case sequential queries is implied in

the main results.

It would be interesting to extend our results to other problems as follows: Search for more than one

element [12, 14, 15, 9] etc., Counterfeit coin weighting with multi-arms balance [5, 4, 10] etc., and Search

with lies [2, 8, 13] etc.
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