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Alfréd Rényi Institute of Mathematics,

Hungarian Academy of Sciences
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Abstract

A set system is called t-intersecting if every two members meet each
other in at least t elements. Katona determined the minimum ratio of
the shadow and the size of such families and showed that the Erdős–
Ko–Rado theorem immediately follows from this result. The aim of
this note is to reproduce the proof to obtain a slight improvement
in the Kneser graph. We also give a brief overview of corresponding
results.

1 Introduction

Throughout the paper we will investigate subsets of an n-element underlying
set [n] = {1, 2, . . . , n}.

([n]
k

)
will denote the collection of all k-element subsets

of [n]. A family F is said to be k-uniform if F ⊆
([n]
k

)
.

F ⊆
([n]
k

)
is called intersecting if it does not contain disjoint sets. In

general, F is t-intersecting if |F1 ∩ F2| ≥ t for all F1, F2 ∈ F .
The Kneser graph, Kn(n, k), is the graph whose vertices are the k-

element subsets of [n], i.e. V (Kn(n, k)) =
([n]
k

)
and two vertices are con-

nected iff the two corresponding sets are disjoint. A coclique in a graph
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is a set of vertices, such that no two vertices in the set are adjacent. An
intersecting family is a coclique in the corresponding Kneser graph. The
maximum size of a coclique in a graph G is denoted by α(G).

The following theorem is one of the famous results in extremal combina-
torics:

Theorem 1. (Erdős, Ko, Rado [3]) If k ≤ n/2, then

α(Kn(n, k)) =

(
n− 1

k − 1

)
.

Obviously, the family consisting of the k-subsets that contain 1 has size(
n−1
k−1

)
, so only the ≤ part is interesting.

Let F ⊆
(
X
k

)
be a family of k-element sets; for l ≤ k, the l-shadow of

F is defined as ∆lF =
{
G : |G| = l, ∃F ∈ F such that G ⊂ F

}
. It is clear

that F =
([2k−t]

k

)
is t-intersecting and ∆lF =

([2k−t]
l

)
. The next theorem

shows that this is the extremal case in some sense.

Theorem 2. (Katona [5]) Assume that F is a k-uniform, t-intersecting
family. Then for l ≥ k − t,

|∆lF|
|F|

≥
(
2k−t
l

)(
2k−t
k

) .
2 A generalization of the EKR theorem

In this section we deduce a slight generalization of the EKR theorem from
Theorem 2.

For a set A ⊆ V (Kn(n, k)), the neighborhood of A is denoted by N(A).
Similarly, for a given k-uniform family F , let us introduce the notation
N (F) =

{
H ∈

([n]
k

)
: ∃F ∈ F such that H ∩ F = ∅

}
as the “neighborhood”

of F .

Theorem 3. If k ≤ n/2 and C is a coclique in the Kneser graph, Kn(n, k),
then

|C|
|C|+ |N(C)|

≤ k

n
.

Since C is a coclique, C and N(C) are disjoint, so |C| + |N(C)| ≤
|V (Kn(n, k))| =

(
n
k

)
and the EKR theorem follows.
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Proof. To apply Theorem 2, let F be the intersecting k-uniform family that
corresponds to C. Let Fc be the family of complements, i.e. Fc = {[n] \F :

F ∈ F} ⊆
( [n]
n−k

)
. For each pair F1, F2 ∈ F , we have |F1 ∪F2| ≤ 2k− 1, thus

Fc is t-intersecting for t = n− 2k + 1. By Theorem 2,

|∆kFc|
|Fc|

≥
(2(n−k)−(n−2k+1)

k

)(2(n−k)−(n−2k+1)
n−k

) =
n− k
k

.

|Fc| = |F| and ∆kFc ⊆ N (F), because for every H ∈ ∆kFc, H ⊆ [n] \ F
for some F ∈ F and H ∩ F = ∅. Thus,

|N(C)|
|C|

=
|N (F)|
|F|

≥ n− k
k

and we are done.

3 Similar results

Let A ⊆ V (Kn(n, k)). For another slight generalization, we denote by
I(A) the family of isolated points in A, that is, I(A) = {a ∈ A : (a, b) /∈
E(Kn(n, k)) for all b ∈ A}. In his paper, Borg [1] extended Daykin’s proof
[2] of the EKR theorem to obtain the following improvement:

Theorem 4. (Borg) If A ⊆ V (Kn(n, k)) and k ≤ n/2, then

|I(A)|+ k

n
|A \ I(A)| ≤

(
n− 1

k − 1

)
.

It is easy to see that Theorems 3 and 4 are equivalent:
First, letA be an arbitrary subgraph of Kn(n, k). C := I(A) is a coclique,

so by Theorem 3,
|I(A)|

|I(A)|+ |N(I(A))|
≤ k

n
.

By definition, I(A), A \ I(A) and N(I(A)) are disjoint, hence

|I(A)|+ |A \ I(A)|+ |N(I(A))| ≤
(
n

k

)
.

These two inequalities now imply Theorem 4.
On the other hand, if C is a coclique, let A := V (Kn(n, k)) \N(C). By

definition, C and N(C) are disjoint, and C ⊆ I(A). Thus, by Theorem 4,

|C|+ k

n
|V (Kn(n, k)) \N(C) \ C| ≤

(
n− 1

k − 1

)
,
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and Theorem 3 follows.
Remember that though the two theorems are equivalent, their proofs are

quite different: while Theorem 3 is proved as a consequence of the theorem
on shadows of intersecting families, Borg uses the Kruskal–Katona theorem
[6, 7] to verify Theorem 4.

Remark 1. In [1], Borg also showed that Theorem 4 (and so Theorem 3)

yields Hilton’s theorem [4] for cross-intersecting sub-families of
([n]
k

)
.

Recently, J. Wang and H. Zhang [8, 9] investigated similar problems in
general circumstances. A graph G = (V,E) is called vertex-transitive if its
automorphism group, Aut(G), acts transitively on V , i.e. for every u, v ∈ V
there exists a γ ∈ Aut(G) such that γ(u) = v.

The following theorem is the analogue of Theorem 3 for arbitrary vertex-
transitive graph.

Theorem 5. (Zhang) Let G = (V,E) be a vertex-transitive simple graph.
If C ⊆ V is a coclique, then

|C|
|C|+ |N(C)|

≤ α(G)

|V |
.

Note that the EKR theorem and Theorem 5 together imply Theorem 3.
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