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Abstract

Let F be a family of an n-element set. It is called intersecting if
every pair of its members have a non-disjoint intersection. It is well-
known that an intersecting family satisfies the inequality |F| ≤ 2n−1.
Suppose that |F| = 2n−1+i. Choose the members of F independently
with probability p (delete them with probability 1−p). The new fam-
ily is intersecting with a certain probability. We try to maximize this
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probability by choosing F appropriately. The exact maximum is de-
termined in this paper for some small i’s. The analogous problem is
considered for families consisting of k-element subsets, but the exact
solution is obtained only when the size of the family exceeds the maxi-
mum size of the intersecting family only by one. A family is said to be
inclusion-free if no member is a proper subset of another one. It is well
known that the largest inclusion-free family is the one consisting of all
bn2 c-element subsets. We determine the most probably inclusion-free
family too, when the number of members is

(
n
bn
2
c
)

+ 1.

Key Words: families of subsets, intersecting family, Sperner, ran-
dom family

1 Introduction

Let [n] = {1, 2, . . . n} be an n-element set and F ⊂ 2[n] a family of its subset.
We say that F is intersecting if F1 ∩ F2 6= ∅ holds for any two members
F1, F2 ∈ F . This condition implies that at most one of the sets F and
[n]−F can be a member of F . Hence |F| ≤ 2n−1 follows. On the other hand
the family of all subsets containing 1 is obviously intersecting. We obtained
that the largest intersecting family on n elements has exactly 2n−1 members
as was noticed in [?].

Therefore, if |F| = 2n−1+i where 0 < i then F is not intersecting. Choose
the members of F independently with probability p(0 < p < 1) and delete
them with probability 1− p. Let Fp♧ denote the so obtained random family.
We want to maximize the probability of the event that Fp♧ is intersecting,
for families of given size. Define

I(i) = max
|F|=2n−1+i

Pr(Fp♧ is intersecting). (1)

The families attaining this maximum can be called the most probably inter-
secting families. The value of (1) for some small values of i is determined in
Section 2.

We can consider the same problem for uniform families when all the
members of F have a given size. Let 1 ≤ k ≤ n be a fixed integer and
suppose F ⊂

(
[n]
k

)
. The celebrated theorem of Erdős, Ko and Rado states

the following.

Theorem 1.1 ( [?]) If 1 ≤ k ≤ n
2

and F ⊂
(
[n]
k

)
is an intersecting family
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then

|F| ≤
(
n− 1

k − 1

)
and this bound is sharp.

The sharpness of the theorem can be easily shown by taking all k-element
subsets containing the element 1.

The same question can be asked here too: what are the most probably
intersecting families of k-element subsets with a given size

(
n−1
k−1

)
+i where 0 <

i. Unfortunately we were able to determine the most probably intersecting
family of k-element subsets only for the case i = 1.

Another fundamental concept in the theory of extremal families is the
following one. A family F is called inclusion-free or an antichain if F1 ⊂ F2

holds for no two distinct members of F . The first results on this subject,
Sperner’s theorem has determined the largest inclusion-free families.

Theorem 1.2 ( [?]) If F ⊂ 2[n] is inclusion-free then

|F| ≤
(
n

bn
2
c

)

with equality only for the families

(
[n]

bn
2
c

)
and

(
[n]

dn
2
e

)
.

Here, again, one can try to determine the most probably inclusion-free families

among the families of size

(
n

bn
2
c

)
+ i. Again, we were able to find the most

probably inclusion-free family only for i = 1.
Of course there is a natural common generalization behind all these prob-

lems. Let G = (V,E) be a simple graph. We say that the set A ⊂ V is
independent if G has no edge between two elements of A. The maximum
size of an independent set is denoted by α(G) and called the independence
number of the graph. Of course, if |A| > α(G) then A is not independent in
G. Choosing (independently) the elements of A with probability and deleting
them with probability 1− p a new random set Ap♧ is obtained. We can try
to choose an A of a prescribed size to maximize the probability of the event
that Ap♧ is independent.

Let the vertices of the graph be subsets of [n] and two vertices be adjacent
if the corresponding subsets are disjoint. Then our graph problem “deter-
mining the most probably independent vertex set of given size” becomes
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the first problem mentioned above. On the other hand, if the adjacency of
two vertices is defined by the inclusion of the corresponding subsets, then
the problem becomes the “determination of the most probably inclusion-free
family of given size”.

Section 2 contains the definitions and the results while Section 3 gives
the proofs.

2 Definitions and statements

Before formulating our theorem on the most probably intersecting families
we have to make some comments on the largest intersecting families. We saw
that one of these families is {F ⊂ [n] : 1 ∈ F}. However there are many. It
was proved in [?] that any intersecting family can be extended by adding new
members to make it of size 2n−1, preserving the intersecting property. Yet,
there is another important family, namely the one consisting of the “large”
subsets. It can be easily described when n is odd. Take all the sets of size
at least n+1

2
. It is easy to see that that every pair of such subsets has a

non-empty intersection and the number of such sets is exactly 2n−1. If n is
even, the construction is somewhat more complex. Take all the sets of size
at least n

2
+ 1 and the sets of size n

2
containing the element 1. It is easy to

see, again, that this family is intersecting. Its size is also 2n−1.
The most probably intersecting families are extensions of this construc-

tion, at least for small i.

Theorem 2.1 Suppose

i ≤
(
n− 1

dn−3
2
e

)
=

{
1
2

(
n
n
2

)
if n is even(

n−1
n−3
2

)
if n is odd.

Then I(i) = (1− p2)i and the following families give equality.
n is even. Take all the sets of size at least n

2
+ 1, all the sets of size equal

to n
2

and containing the element 1, and i other sets of size n
2
.

n is odd. Take all the sets of size at least n+1
2

and i sets of size equal to
n−1
2

containing the element 1.

We stated, a couple of years ago (conference on Random Structures and Al-
gorithms, Poznań, 2005), the conjecture that the “continuation” of this con-
struction always give the best value for I(i). A series of families F1,F2, . . . ,Fu . . .
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is called nested if Fu ⊂ Fu+1 and Fu+1 − Fu has one member for every
1 ≤ u. In other words, a nested family can be defined by a sequence
F1, F2, . . . , Fu, . . . of subsets and Fu = {F1, F2, . . . , Fu}. The main point of
our conjecture was that the most probably intersecting families are nested.

Conjecture 1 There is a sequence of subsets of [n] such that |F1| ≥ |F2| ≥
. . . ≥ |Fu| ≥ . . . ≥ |F2n| where {F1, F2, . . . , Fu} is one of the most probably
intersecting families of size u.

Paul Russell [?] informed us that he nearly proved the conjecture above.
More precisely he proved that if |F| = 2n−1 + i =

(
n
n

)
+
(

n
n−1

)
+ . . . +

(
n
r

)
for some integer r then the best construction is

(
[n]
n

)
+
(

[n]
n−1

)
+ . . . +

(
[n]
r

)
.

Moreover, if(
n

n

)
+

(
n

n− 1

)
+ . . .+

(
n

r

)
< |F| <

(
n

n

)
+

(
n

n− 1

)
+ . . .+

(
n

r

)
+

(
n

r + 1

)
then the best construction consists of(

[n]

n

)
+

(
[n]

n− 1

)
+ . . .+

(
[n]

r

)
and some members of

(
[n]
r+1

)
which are “left shifted”.

Let us turn now to the uniform case. Analogously to (1) we can define

Ik(i) = max
F ⊂

(
[n]
k

)
|F| =

(
n−1
k−1

)
+ i

Pr(F♧ is intersecting). (2)

Theorem 2.2
Ik(1) = 1− p+ p(1− p)(

n−1−k
k−1 )

with equality for the family consisting of all k-element sets containing the
element 1, and one additional k-element set, say {2, 3, . . . , k + 1}.

The definition, analogous to (1) for the case of the most probably inclusion-
free family is

A(i) = max
|F|=( n

bn2 c
)+i

Pr(F♧ is inclusion-free). (3)

The corresponding result is the following.
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Theorem 2.3
A(1) = 1− p+ p(1− p)b

n
2
c+1

with equality for the family consisting of all bn
2
c-element sets and one addi-

tional bn
2
c+ 1-element set.

Finally we give the general definition of the most probably independent
vertex set of given size in the graph G = (V,E).

mpi(G, p,m) = max
A ⊂ V
|A| = m

Pr(A♧ is independent). (4)

As we mentioned in the introduction, (1), (2) and (3) are special cases of
(4) for appropriately chosen graphs.

The vertex set A induces a subgraph of G, let us denote it by GA =
(A,EA) where EA contains the edges of G joining two vertices both belonging
to A. If m = |V | in (4) then there is no choice, mpri(G, p, |V |) = pri(G, p) =
Pr(V ♧ is independent). Formula (4) can be written in the following slightly
different form:

mpri(G, p,m) = max
A ⊂ V
|A| = m

pri(GA, p). (5)

We will prove simple results on pri(G, p) for some small graphs.

3 Proofs

Proof of Theorem 2.1. The family given at the end of the theorem contains
exactly i pairs of disjoint sets: F1 ∩Fi+1 = ∅, F2 ∩Fi+2 = ∅, . . . , Fi ∩F2i = ∅
and no other pairs are disjoint. Fp♧ is intersecting iff it does not contain
both Fj and Fj+i (1 ≤ j ≤ i). The probability of this event, using the
independence, is really (1− p2)i. Hence we have I(i) ≥ (1− p2)i.

The following trivial lemmas are needed to the proof of the upper bound.

Lemma 3.1 If G′ is a subgraph of G then

pri(G′, p) ≥ pri(G, p).
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L

Let iK2 denote the set of i pairwise vertex-disjoint edges.

Lemma 3.2 If Gi = (V, iK2) then pri(Gi, p) = (1− p2)i.

L

Suppose |F| = 2n−1 + i and consider the pairs (F, [n] − F ). Both must
be in F for at least i such pairs. Let G(F) denote the graph with vertex
set V = 2[n] where two vertices are adjacent if the corresponding sets are
disjoint. Then G(F) contains at least i vertex-disjoint edges. By Lemmas
3.1 and 3.2 we have

pri(G(F), p) ≤ pri(Gi, p) = (1− p2)i.

The left hand side is obviously equal to Pr(Fp♧ is intersecting). We found
by (1) that I(i) ≤ (1− p2)i.

Note that the example given in the theorem shows equality.

T

Proof of Theorem 2.2. In the construction given at the end of the the-
orem the only member of the family which can be disjoint to other members
of the family F is {2, 3, . . . , k + 1}. It is disjoint to

(
n−1−k
k−1

)
other members.

Consequently G(F) = S(n−1−k
k−1 ) where Sr is the r-star, a graph with r edges,

all containing one fixed vertex, the center.

Lemma 3.3 pri(Sr, p) = 1− p+ p(1− p)r.

Proof. All subsets A of vertices not containing the center of the star are
independent. The probability of the event that the center is deleted is 1− p.
On the other hand, if the center is in an independent A, it cannot contain
any other element. The probability of this event is p(1− p)r. L

We have proved Ik(1) ≥ 1− p+ p(1− p)(
n−1−k
k−1 ).

Now suppose that F is an arbitrary family satisfying F ⊂
(
[n]
k

)
, |F| =(

n−1
k−1

)
+ 1 and prove Pr(Fp♧ is intersecting) ≤ 1− p + p(1− p)(

n−1−k
k−1 ). This

will prove Ik(1) ≤ 1− p+ p(1− p)(
n−1−k
k−1 ).

Lemma 3.4 If G = (V,E) where |E| = r then pri(G, p) ≤ 1− p+ p(1− p)r.
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Proof. We use induction on r. If r = 0 then the statement is trivially
true with equality. Let now G have r + 1 edges and choose a vertex a of
degree d(a) ≥ 1. Start with the equation

Pr(V p♧ is independent) = (6)

Pr(V p♧ is independent, a ∈ V p♧) + Pr(V p♧ is independent, a 6∈ V p♧).

In the first case when a ∈ V p♧ and V p♧ is independent then the neighbors
of a are not in V p♧. Let N(a) denote the set of neighbors of a and take
W = V − N(a) − {a}. Define the reduced graph G1 = (W,E1) where E1 is
the set of edges in E joining vertices in W . The event “a ∈ V p♧ and V p♧ is
independent” can be equivalently given in the form “a ∈ V p♧, N(a)∩V p♧ = ∅
and W p♧ is independent (in G1)”. Hence

Pr(V p♧ is independent , a ∈ V p♧) = p(1− p)d(a) Pr(W p♧ is independent) ≤

p(1− p)d(a) (7)

In the other case “a 6∈ V p♧ and V p♧ is independent” let G0 = (V −
{a}, E0) be the graph deleting a and the edges adjacent to it in G. Then
“a 6∈ V p♧ and V p♧ is independent” is equivalent to “a 6∈ V p♧ and (V −{a})p♧
is independent”. The inductional hypothesis can be used for G0 which has
exactly r + 1− d(a) edges.

Pr(V p♧ is independent, a 6∈ V p♧) = (1−p) Pr((V −{a})p♧ is independent) ≤

(1− p)(1− p+ p(1− p)r+1−d(a)) (8)

By (6), (7) and (8) we have

Pr(V p♧ is independent) ≤ p(1− p)d(a) + (1− p)(1− p+ p(1− p)r+1−d(a)).

We need to prove

p(1− p)d(a) + (1− p)(1− p+ p(1− p)r+1−d(a)) ≤ 1− p+ p(1− p)r+1. (9)

After some elementary steps (divide by 1 − p, subtract 1, divide by p) the
equivalent, trivial inequality

0 ≤ (1− (1− p)d(a)−1)(1− (1− p)r−d(a)+1)

is obtained, proving (9) and the lemma. L

We will need the following old theorem to complete the proof. A family F
is called trivially intersecting if the intersection of all members is non-empty.
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Theorem 3.5 (Hilton-Milner, [?]) If 1 ≤ k ≤ n
2

and F ⊂
(
[n]
k

)
is a non-

trivially intersecting family then

|F| ≤
(
n− 1

k − 1

)
−
(
n− 1− k
k − 1

)
+ 1

and this bound is sharp.

Lemma 3.6 If F ⊂
(
[n]
k

)
, |F| =

(
n−1
k−1

)
+ 1 then there are at least

(
n−1−k
k−1

)
disjoint pairs in F , that is, G(F) has at least

(
n−1−k
k−1

)
edges.

Proof. Let F∗ ⊂ F be the largest intersecting subfamily of F . Two
cases will be distinguished.

Case 1.

|F∗| >
(
n− 1

k − 1

)
−
(
n− 1− k
k − 1

)
+ 1.

By Theorem 3.5 F∗ is a trivially intersecting family, by symmetry it can be
supposed that every member contains the element 1. Let |F| − |F∗| = i
where

1 ≤ i <

(
n− 1− k
k − 1

)
. (10)

Choose a member F of F − F∗. Of course, 1 6∈ F . There are exactly(
n−1−k
k−1

)
sets of size k containing 1 and disjoint to F . Since |F∗| = |F| − i =(

n−1
k−1

)
+ 1− i, the number of sets containing 1, but not in F∗ is at most i− 1.

Therefore there are at least
(
n−1−k
k−1

)
− (i − 1) sets G ∈ F∗ containing 1 and

disjoint to F . Our conclusion is that there are at least

i

((
n− 1− k
k − 1

)
− (i− 1)

)
(11)

disjoint pairs of members of F . It is easy to see that i(a − i + 1) ≥ a when
1 ≤ i ≤ a. This implies that (11) is at least

(
n−1−k
k−1

)
, by (10), as desired.

Case 2.

|F∗| ≤
(
n− 1

k − 1

)
−
(
n− 1− k
k − 1

)
+ 1.

Then |F − F∗| ≥
(
n−1−k
k−1

)
. Choose an F ∈ F − F∗. Here F cannot be

added to F∗ because of its maximality, therefore there is a G ∈ F∗ such that
F ∩G = ∅. The number of disjoint pairs is at least

(
n−1−k
k−1

)
. L
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Now it is easy to prove the second part of Theorem 2.2. We have to
give a sharp upper bound on Pr(F♧ is intersecting) under the conditions
F ⊂

(
[n]
k

)
, |F| =

(
n−1
k−1

)
+ 1. By Lemma 3.6 G(F) has at least

(
n−1−k
k−1

)
edges,

then Lemma 3.4 implies Pr(F♧ is intersecting) = pri(G(F), p) ≤ 1 − p +

p(1− p)(
n−1−k
k−1 ). Hence Ik(1) ≤ 1− p+ p(1− p)(

n−1−k
k−1 ) follows. T

Proof of Theorem 2.3. The following statement will be used that is a
special case of a more general theorem.

Theorem 3.7 (Kleitman [?]) If F ⊂ 2[n], |F| =
(

n
bn
2
c

)
+ 1 then there are at

least bn
2
c+ 1 pairs F,G ∈ F such that F ⊂ G,F 6= G.

The graph G(F) formed from the family F given in the theorem is a star with
exactly bn

2
c+ 1 edges. Lemma 3.3 gives pri(G(F), p) = 1− p+ p(1− p)bn2 c+1

proving A(1) ≥ 1− p+ p(1− p)bn2 c+1.
The proof of the upper bound follows the logic of the proof of the previous

theorem. Kleitman’s theorem ensures the existence of at least bn
2
c+ 1 edges

in G(F). Then Lemmas 3.1 and 3.4 prove pri(G, p) ≤ 1− p+ p(1− p)bn2 c+1.
Hence A(1) ≤ 1− p+ p(1− p)bn2 c+1 follows. T

4 Remarks

Problem 2 Determine Ik(i) when i > 1.

The following series of families forms a good candidate for a nested opti-
mal solution. Take all k-element sets containing the element 1 in any order,
then take all k-element sets containing 2 but not containing 1 in any order,
then take all k-element sets containing 3 but disjoint to {1, 2}, and so on ...

Problem 3 Determine A(i) when i > 1.

The following series of families forms a good candidate for a nested opti-
mal solution. Take all sets of size bn

2
c in any order, then take all sets of size

bn
2
c+ 1 in any order, then take all sets of size bn

2
c − 1, and so on ...

We can see that the order of the values pri(G, p) for graphs G plays an
important role in Section 3. Of course it is easier to study these inequalities
for p = 1

2
, so let us start with that. Let Pk denote the path with k vertices.

Proposition 4.1 If G is different from the graphs P2, P3, P4, 2K2, Sr(3 ≤ r)
and K3 then pri(G, 1

2
) < 1

2
.
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Their order is

pri
(
P2,

1
2

)
> pri

(
P3,

1
2

)
> pri

(
2K2,

1
2

)
= pri

(
S3,

1
2

)
> pri

(
S4,

1
2

)
> . . . >

pri
(
Sr,

1
2

)
> . . . > pri

(
K3,

1
2

)
= pri

(
P4,

1
2

)
= 1

2
.

Some of these inequalities remain true for general p, some of them do change.
For instance if p >

√
5−1
2

then

pri (P2, p) > pri (P3, p) > pri (S3, p) > pri (S4, p) > . . . > pri (Sr, p) > . . .

> 1− p > pri (2K2, p) > pri (K3, p) = pri (P4, p) .

Compare 2K2 and S3 with different p’s. It is easy to check that pri (2K2, p) >
pri (S3, p) holds if p < 1

2
while pri (2K2, p) < pri (S3, p) when p > 1

2
. Consider

the graph G having the edges {1, 2}, {1, 3}, {1, 4}, {4, 5}. Then α(G) = 3 and
both 2K2 and S3 can be the most probably independent vertex set in G for
m = 4, depending on the value of p.

Remark added on October 20, 2011. Paul Russell informed us that
he and Mark Walters disproved our Conjecture 1.
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