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1 Introduction

Let ξ and η be two, not necessarily independent random variables. The goal
of the present paper is to study the situation when one needs to decide if η
is a (deterministic) function of ξ or not, by using many independent tests.

The probability of the event that ξ = k and η = ` is pk,`, the prob-
ability of ξ being k is pk =

∑
` pk`. Suppose that we have m tests. Let

ξi (ηi) (1 ≤ i ≤ m) be totally independent copies of ξ (η). We will study the
probability Pr(ξ → η,m) of the event that m experiments (mis)indicate that
ξ (deterministically) determines η, that is, there are no i and j (1 ≤ i, j ≤ m)
such that ξi = ξj, ηi 6= ηj.

Of course, if η is really a function of ξ then Pr(ξ → η,m) = 1 for every
m, otherwise it is an decreasing function of m. The most practical case is
when the probabilities pk,` are constant. Then the probability Pr(ξ → η,m)
tends to 0 when m → ∞. One could ask many questions in this case, for
instance to study the rate of convergence as a function of the pk,`’s, but we
will be investigating another case, namely the one when the probabilities are
very small.

In the rest of the paper a series of probability distributions will be consid-
ered, that is pk,`(n), pk(n) where n tends to infinity. The number of possible
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values of ξ and η are finite, but this is also increasing with n. One can easily
see that the smaller probabilities require a larger m to give a counter-example
for the functional connection. Therefore m is also supposed to depend on n.
For the sake of convenience we will not denote this dependence.

Heuristic form of Theorem 1. If the probabilities uniformly decrease
and m is increasing faster than

1√∑
k p

2
k −

∑
k,` p

2
k,`

then a counter-example shows, with large probability, that η is not a function
of ξ. On the other hand, if m is increasing slower than the quantity above
then the probability of a counter-example is nearly 0.

It is more convenient to use a logarithmic form in the precise formulation,
this is why we introduce the following quantity:

H2(ξ → η) = − log2

(∑
k

p2k −
∑
k,`

p2k,`

)
. (1)

Since the probabilities depend on n, the quantity H2(ξ → η) will also do so
(without denoting this dependence).

2 The statement

Let p(ξ, η, I) denote the probability of the event that the pair (ξ1, η1), (ξ2, η2)
gives a counter-example, that is, Pr(ξ1 = ξ2, η1 6= η2).

Similarly p(ξ, η, V ) denotes the probability of the event that the triple
(ξ1, η1), (ξ2, η2), (ξ3, η3) gives two counter-examples in the following way: ξ1 =
ξ2 = ξ3, η1 6= η2 6= η3.

Finally p(ξ, η,N) is the probability of the event that the quadruple
(ξ1, η1), (ξ2, η2), (ξ3, η3), (ξ4, η4) gives three counter-examples forming a path:
ξ1 = ξ2 = ξ3 = ξ4, η1 6= η2 6= η3 6= η4.

Theorem 1 Suppose that

p(ξ, η, V )2

p(ξ, η, I)3
→ 0

2



and
p(ξ, η,N)

p(ξ, η, I)2
→ 0

hold. Then

Pr(ξ → η,m)→


0 if 2 log2m−H2(ξ → η)→ +∞,
e−2

a−1
if 2 log2m−H2(ξ → η)→ a,

1 if 2 log2m−H2(ξ → η)→ −∞.

p(ξ, η, I), p(ξ, η, V ) and p(ξ, η,N) will be expressed by the probabilities
in the next section.

Motivations, consequences, related literature, and analysis of the condi-
tions are postponed to the last section.

3 The proofs

Lemma 1 p(ξ, η, I) =
∑

k p
2
k −

∑
k,` p

2
k,`.

Proof. The left hand side is equal to Pr(ξu = ξv, ηu 6= ηv) by definition,
what is equal to∑

k

∑
6̀=`′

pk,`pk,`′ =
∑
k

∑
`,`′

pk,`pk,`′ −
∑
k

∑
`

p2k,` =

∑
k

(∑
`

pk,`

)2

−
∑
k,`

p2k,` =
∑
k

p2k −
∑
k,`

p2k,`

�
Observe that H2(ξ → η) = − log2 p(ξ, η, I).

Lemma 2
p(ξ, η,V) =

∑
k

p3k − 2
∑
k,`

pkp
2
k,` +

∑
k,`

p3k,`

Proof. Use the simple sieve for the ”space” ξ1 = ξ2 = ξ3.

p(ξ, η,V) = Pr(ξ1 = ξ2 = ξ3, η1 6= η2 6= η3) =

Pr(ξ1 = ξ2 = ξ3)− Pr(ξ1 = ξ2 = ξ3, η1 = η2)− Pr(ξ1 = ξ2 = ξ3, η2 = η3)+
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Pr(ξ1 = ξ2 = ξ3, η1 = η2 = η3) =

Pr(ξ1 = ξ2 = ξ3)− 2 Pr(ξ1 = ξ2 = ξ3, η1 = η2)+

Pr(ξ1 = ξ2 = ξ3, η1 = η2 = η3) =∑
k

p3k − 2
∑
k

Pr(ξ3 = k) Pr(ξ1 = ξ2 = k, η1 = η2) +
∑
k,`

p3k,`

�

Lemma 3

p(ξ, η,N) =
∑
k

p4k − 3
∑
k,`

p2kp
2
k,` + 2

∑
k,`

pkp
3
k,` +

∑
k

(∑
`

p2k,`

)2

−
∑
k,`

p4k,`.

Its proof is analogous to that of Lemma 2. �

Let Ck,` (1 ≤ k, ` ≤ m) be a partition of the set {1, 2, . . . ,m}, where
some classes can be empty. The partition is denoted by C. The vertex set of
the graph G(C) is {1, 2, . . . ,m}, two vertices x and y are joined by an edge
if x ∈ Ck,`, y ∈ Ck,`′ holds for some ` 6= `′. Define Ck = ∪`Ck,`, and let
|Ck| = ck. The subgraph of G(C) induced by Ck is called a component even
in the case when it is an empty graph (that is Ck,` are empty for all ` with
one exception). Suppose that |Ck,1| ≥ |Ck,2| ≥ . . . ≥ |Ck,m|.

A subgraph consisting of vertex-disjoint edges of a graph is a matching in
G. The vertex-disjoint union of a matching and one path consisting of two
edges is called a V-matching. Finally, the vertex-disjoint union of a matching
and one path consisting of three edges is an N-matching.

Lemma 4 Let G(C) be the graph defined above. Then∑
matching of
j edges

(−1)j + 2
∑

V-matching

1 +
∑

N-matching

1 ≥ 0 (2)

where the matchings, V-matchings and N-matchings are subgraphs of G(C).
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Proof. First suppose that ck > 2 holds for at least one k. LetM+ (M−)
denote the family of all matchings of G(C) consisting of even (odd) number of
edges. Furthermore, V and N denote the families of all V-matchings and N-
matchings, respectively. We will give a mapping f fromM− toM+∪V ∪N .

Suppose that M ∈ M− has two edges in one of the components. It is
easy to see that G(C) contains an edge joining endpoints of these edges. Add
this edge to M . The so obtained set f(M) of edges is in N . If M contains
at most one edge in every component and a Ck with ck > 2 contains an edge
e then add another edge to this component, having a common endpoint with
e. The so obtained set f(M) of edges is in V . Finally, suppose that every
component contains at most one edge of M , but the components Ck with
ck > 2 none. Then add an edge of such a Ck with the smallest index. The
so obtained f(M) contains an even number of edges, therefore f(M) ∈M+

holds.
The mapping f is not an injection, but ”almost”. If M ′ ∈ N then the

middle edge of the path is uniquely determined, |f−(M ′)| = 1. On the other
hand, if M ′ ∈ V then M ′ could be obtained in two different ways, therefore
|f−(M ′)| ≤ 2. Finally, if M ′ ∈ M+ then the new edge can be only in the
component having the smallest index k with ck > 2. Then, |f−(M ′)| = 1
holds, again. The mapping f indirectly associates a +1 term with every −1
on the left hand side of (1), since the terms associated with the V-matchings
are doubled. This proves the inequality in this case.

The only remaining case is when ck = 2 (1 ≤ k ≤ r). If |Ck| = |Ck,`|
holds for some ` then this component contains no edge, it plays no role in
(1). Therefore one can suppose that |Ck,1| = |Ck,2| = 1 holds for every k.
Let the number of components with ta least one edge be r. Then G(C) has r
vertex-disjoint edges. It contains neither a V-matching nor an N-matching.
The number of matchings M of j edges in G(C) is

(
r
j

)
therefore the left hand

side of (1) is
r∑
j=0

(
r

j

)
(−1)j

which is 0 if 0 < r and 1 if r = 0. �

Lemma 5 If G(C) has at least one edge then∑
matching of
j edges

(−1)j + 2
∑

V-matching of

(−1) +
∑

N-matching

(−1) ≤ 0 (3)
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where the matchings, V-matchings and N-matchings are subgraphs of G(C).

Proof. The proof is analogous to the previous one. A mapping g can
be defined from M+ to M− ∪ V ∪ N , basically in the same way as in the
previous proof. �

Lemma 6

1 +

bm
2
c∑

j=1

(−1)j

j!

(
m

2

)(
m− 2

2

)
· · ·
(
m− 2j + 2

2

)
2−jH2(ξ→η)−

−
bm−3

2
c∑

j=0

1

j!
3

(
m

3

)(
m− 3

2

)(
m− 5

2

)
· · ·
(
m− 2j − 1

2

)
p(ξ, η,V)2−jH2(ξ→η)−

−
bm−4

2
c∑

j=0

1

j!
12

(
m

4

)(
m− 4

2

)(
m− 6

2

)
· · ·
(
m− 2j − 2

2

)
p(ξ, η,N)2−jH2(ξ→η) ≤

≤ Pr(ξ → η,m) ≤ (4)

≤ 1 +

bm
2
c∑

j=1

(−1)j

j!

(
m

2

)(
m− 2

2

)
· · ·
(
m− 2j + 2

2

)
2−jH2(ξ→η)+

+

bm−3
2
c∑

j=0

1

j!
3

(
m

3

)(
m− 3

2

)(
m− 5

2

)
· · ·
(
m− 2j − 1

2

)
p(ξ, η,V)2−jH2(ξ→η)+

+

bm−4
2
c∑

j=0

1

j!
12

(
m

4

)(
m− 4

2

)(
m− 6

2

)
· · ·
(
m− 2j − 2

2

)
p(ξ, η,N)2−jH2(ξ→η).

Proof. The random pairs (ξi, ηi) (1 ≤ i ≤ m) define a random partition
on the set {1, 2, . . . ,m} in a natural way, by the equality of these pairs:
Ck,` = {i : (ξi, ηi) = (k, `)}. Then Ck = ∪`Ck,` is the kth class in the
partition defined by ξ’s. The event that η seems to be functionally dependent
on ξ, that is, there is no pair (k, `), (k, `′)(` 6= `′) among the m outcomes is
equivalent to the event that G(C) has no edge, that is, Pr(ξ → η,m) equals
Pr(G(C)is an empty graph). In other words,

Pr(ξ → η,m) = Pr(G(C)is an empty graph)+
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∑
C

0 · Pr(the pairs (ξi, ηi) determine the partition C), (5)

where the sum runs over all partitions with a non-empty G(C). The elements
1, 2, . . . ,m are of course numbered, but the classes are not.

The left hand side of (2) is 1 for the C with the empty G(C), otherwise it
is non-negative by Lemma 4. Therefore, replacing the weights of the proba-
bilities by this left hand side, an upper bound is obtained for (5):

∑
C


∑

matching of
j edges

(−1)j + 2
∑

V-matching

1 +
∑

N-matching

1

 ·
Pr(the pairs (ξi, ηi) determine the partition C) (6)

where the matchings, V-matchings and N-matchings are subgraphs of G(C)
for the given C. Break this sum into 3 parts and consider first the part∑
C

∑
matching of
j edges

(−1)j Pr(the pairs (ξi, ηi) determine the partition C) =

∑
matching of
j edges

(−1)j
∑
C

Pr(the pairs (ξi, ηi) determine the partition C). (7)

The last sum is nothing else but the probability of the event that all the
edges in the given matching M are in C, that is,

Pr(∀{u, v} ∈M the relations ξu = ξv, ηu 6= ηvhold).

Because of the independence, this is the jth power of p(ξ, η, I) what is equal
to ∑

k

p2k −
∑
k,`

p2k,` = 2H2(ξ→η) (8)

by Lemma 1 and (1). We obtained∑
matching of
j edges

(−1)j2−jH2(ξ→η) (9)
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for (7).
The number of matchings consisting of j edges is

1

j!

(
m

2

)(
m− 2

2

)
· · ·
(
m− 2j + 2

2

)
.

Using this in (9), a new form of (7) is obtained:

1 +

bm
2
c∑

j=1

(−1)j

j!

(
m

2

)(
m− 2

2

)
· · ·
(
m− 2j + 2

2

)
2−jH2(ξ→η)

and this is the first row of the upper estimate in Lemma 6.
Now consider the second part of (6):∑
C

∑
V-matching

Pr(the pairs (ξi, ηi) determine the partition C) =

∑
V-matching

∑
C

Pr(the pairs (ξi, ηi) determine the partition C). (10)

The last sum is nothing else but the probability of the event that all the
edges in the given V-matching V (containing j + 2 edges) are in C, that is,

Pr(∀{u, v} ∈ V the relations ξu = ξv, ηu 6= ηv hold).

Because of the independence, this is the jth power of (8) (= 2−H2(ξ→η)) times
p(ξ, η, V ) what is given in Lemma 2. The result for (10) is

∑
V-matching of
j + 2 edges

(∑
k

p3k − 2
∑
k,`

pkp
2
k,` +

∑
k,`

p3k,`

)
2−jH2(ξ→η). (11)

Since the number of V-matchings is

bm−3
2
c∑

j=0

1

j!
3

(
m

3

)(
m− 3

2

)(
m− 5

2

)
· · ·
(
m− 2j − 1

2

)
,

(11) leads to a new form of (10), giving the second row of the upper estimate
of Lemma 6.

8



The third row can be obtained in an analogous way, the only difference is
that p(ξ, η,N) should be used rather than p(ξ, η, V ). This finishes the proof
of the upper bound.

The proof of the lower bound is the same, but Lemma 5 should be the
starting point rather than Lemma 4. �

Lemma 7 If
2 log2m−H2(ξ → η)→ a (12)

where a is a constant, independent on n and m→∞ then

1 +

bm
2
c∑

j=1

(−1)j

j!

(
m

2

)(
m− 2

2

)
· · ·
(
m− 2j + 2

2

)
2−jH2(ξ→η) (13)

tends to
e−2

a−1

.

Proof. The inequalities

(m− 2j)2j

2j
≤
(
m

2

)(
m− 2

2

)
· · ·
(
m− 2j + 2

2

)
≤ m2j

2j

lead to the following lower and upper estimates for (13):

−
∑

j=1,3,...,2j≤m

1

j!
· m

2j

2j
2−jH2(ξ→η) + 1 +

∑
j=2,4,...,2j≤m

1

j!
· (m− 2j)2j

2j
2−jH2(ξ→η) =

−
∑

j=1,3,...,2j≤m

1

j!
2j(2 logm−H2(ξ→η)−1) + 1 +

∑
j=2,4,...,2j≤m

1

j!
2j(2 log(m−2j)−H2(ξ→η)−1)

(14)
and

−
∑

j=1,3,...,2j≤m

1

j!
· (m− 2j)2j

2j
2−jH2(ξ→η)+1+

∑
j=2,4,...,2j≤m

1

j!
· (m)2j

2j
2−jH2(ξ→η) =

−
∑

j=1,3,...,2j≤m

1

j!
2j(2 log(m−2j)−H2(ξ→η)−1) + 1 +

∑
j=2,4,...,2j≤m

1

j!
2j(2 logm−H2(ξ→η)−1)

(15)
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Compare the members with logm and log(m− 2j), respectively:

2j(2 logm−H2(ξ→η)−1) − 2j(2 log(m−2j)−H2(ξ→η)−1) = (16)

2j(2 logm−H2(ξ→η)−1)
(
1− 22j(log(m−2j)−logm)

)
=

2j(2 logm−H2(ξ→η)−1)

(
1−

(
m− 2j

m

)2j
)

=

2j(2 logm−H2(ξ→η)−1)

(
1−

(
1− 2j

m

)2j
)
.

Since 2j ≤ m, the last factor can be upperbounded using the Bernoulli
inequality:

1−
(

1− 2j

m

)2j

≤ 2j
2j

m
=

4j2

m
.

Hence

2j(2 logm−H2(ξ→η)−1)4j
2

m
(17)

is an upper bound for (16).
Consider the total change in (14) if the terms with log(m−2j) are replaced

by terms with logm and use (17).

∑
j=2,4,...,2j≤m

1

j!
2j(2 logm−H2(ξ→η)−1) −

∑
j=2,4,...,2j≤m

1

j!
2j(2 log(m−2j)−H2(ξ→η)−1) ≤

∑
j=2,4,...,2j≤m

1

j!
2j(2 logm−H2(ξ→η)−1)4j

2

m
. (18)

We need to show that this tends to 0 with n. Since 2 logm−H2(ξ → η)−1
tends to a− 1, there is a threshold n1 such that 2 logm−H2(ξ → η)− 1 ≤
a when n > n1. Each term in (18) tends to 0, therefore the sum of the
terms until j ≤ n1 will do so. In the terms with j > n1 the expression
2 logm − H2(ξ → η) − 1 can be replaced by a without decreasing them.
1
m

4j2

j!
2ja is obtained as an upper bound for the jth term. Extend the sum

with the odd terms and the large terms the following upper bound is obtained:

4

m

∞∑
j=0

j2

j!
2ja =

4

m

(
22(a+1)e2

a

+ 2a+1e2
a)
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which obviously tends to 0 with n → ∞. This shows that log(m − 2j) can
be replaced by logm in (14) without changing its limit for n → ∞. Then
(14) becomes

e−2
2 logm−H2(ξ→η)−1

which tends to e−2
a−1

. Therefore the lim inf of (13) is at least this much.
Starting from (15), the same steps prove that that the lim sup of (13) cannot
be more. This is really its limit. �

Lemma 8 Suppose that m→∞, (12) and

p(ξ, η, V )2

p(ξ, η, I)3
→ 0 (19)

hold. Then

bm−3
2
c∑

j=0

1

j!
3

(
m

3

)(
m− 3

2

)(
m− 5

2

)
· · ·
(
m− 2j − 1

2

)
p(ξ, η,V)2−jH2(ξ→η) → 0.

Proof. It will be similar to that of Lemma 7. Start with the upper
estimate (

m− 3

2

)(
m− 5

2

)
· · ·
(
m− 2j − 1

2

)
≤ m2j

2j
.

This leads to the following upper estimate for the investigated quantity:

3

(
m

3

)
p(ξ, η,V)

∞∑
j=0

m2j

2jj!
2−jH2(ξ→η) =

3

(
m

3

)
p(ξ, η,V)

∞∑
j=0

1

j!
2j(2 logm−H2(ξ→η)−1) =

3

(
m

3

)
p(ξ, η,V)e2

2 logm−H2(ξ→η)−1

.

Here the last factor tends to e2
a−1

by (12), therefore we only have to show
that

3

(
m

3

)
p(ξ, η,V)→ 0. (20)
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(12) implies

m2

(∑
k

p2k −
∑
k,`

p2k,`

)
→ 2a

and

m3

(∑
k

p2k −
∑
k,`

p2k,`

) 3
2

→ 2
3a
2 .

This convergence and the square root of (19) prove (20). �

Lemma 9 Suppose that m→∞, (12) and

p(ξ, η,N)

p(ξ, η, I)2
→ 0 (21)

hold. Then

bm−4
2
c∑

j=0

1

j!
12

(
m

4

)(
m− 4

2

)(
m− 6

2

)
· · ·
(
m− 2j − 2

2

)
p(ξ, η,N)2−jH2(ξ→η) → 0.

Proof. It is analogous to the previous one. �
Now the statement of the theorem is an easy consequence of Lemmas 6-9.

�

4 Previous work, remarks, future work

Related earlier work. The problem in question was studied in the papers
of Selivanov [8] and Mihailov and Selivanov [3]. They have proved limit
theorems on the convergence of the quantity studied here to the Poisson and
normal distributions, respectively.

Our motivation: database theory. Our primary motivation was
database theory. A very simple model of a database is an m × n matrix,
where the columns are representing the types of data (called attributes), say
last name, first name, etc. while the data of one individual are in one row.
A fundamental concept in the theory is the functional dependency. Let A
be a set of columns, b one column. We say that b functionally depends on A
if the individuals having the same data in the columns belonging to A have
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the same data in b. Shortly, the data in A uniquely determine the data in b.
More precisely, the matrix has no two rows having the same entries in the
columns in A and different in b. In notation A → b. In most of the older
works it is supposed that there is a ”logical connection” among the data, so
the functional dependencies are a priori given. Here we adopt the view that
only those functional dependencies A→ b exist which are determined by the
given matrix.

Suppose that some probabilistic connections are a priori given among the
data, that is a joint distribution

Pr(ζ1 = u1, ζ2 = u2, . . . , ζn = un)

is given among the n data in one row. (We might know or we might not
know this distribution.) The choice of the rows is totally independent. Let
ζA be the random vector with the components ζi for all i ∈ A. Of course, the
distribution of a row determines the joint distribution of the pair ζA, ζb. For
fixed n,A and b we could speak about the probability Pr(ζA → ζb,m) of the
event that the m actual rows indicate that A → b. This situation leads to
the problem only mentioned in the Introduction, but not considered in the
present paper.

Now we describe our real motivating problem. Suppose that n is large,
the m (it is a function of n) rows of the matrix are chosen following the given
joint distribution. What are the sizes of A satisfying A→ b for some b, that
is, what are the typical sizes of the functional dependencies appearing in the
matrix. It is intuitively clear that for small (say of fixed size) A this cannot
happen (unless the distribution gives a functional dependency). The sizes of
the A’s showing A→ b must increase by n. Then ζA as a vector of growing
size has an increasing number of possible values, and their probabilities are
typically decreasing. This is how we arrived to the model of the paper when
the probabilities of ξ are decreasing with n. We will show in a forthcoming
paper how to use the results of the present paper for the determination of
the typical sizes of A’s in a functional dependency A→ b in a large database.

The special case when the ζi’s are independent was considered in [2]. The
method of the present paper is a generalization of that paper. Similar (but
not identical) results using different methods can be found in [1]. Papers [6]
and [7] contain somewhat related results on random databases.

On the conditions of the main theorem. The two conditions ((19)
and (21)) are chosen by a very simple reason: the proof works under them.
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When are they satisfied? It is easy to see that if the probabilities ”uniformly”
tend to 0, ξ and η are ”nearly independent” that is there are constants
c, d, C,D such that

C

n
< pk <

D

n
,

c

n2
< pk,` <

d

n2

hold then (19) and (21) are satisfied. On the other hand, if one pk does
not tend to 0 then the conditions are not satisfied. More work is needed
to find necessary and sufficient conditions for the probability distributions
under which these conditions are true. We do not even know whether the
two conditions are independent or not. Does (19) imply (21)?

Our function H2(ξ → η), special cases. It is slightly related to the
Rényi entropy of order 2 (see [4] and [5] ):

H2(ξ) = − log2

∑
k

p2k.

However our formula (1) is far from being a ”conditional entropy” derived
from the Rényi entropy.

If η is a function of ξ then there is a unique ` for which pk,` is non-zero, that
is, pk,` − pk. Hence p(ξ, η, I) =

∑
k p

2
k −

∑
k,` p

2
k,` = 0 and H2(ξ → η) = ∞.

The trivial statement Pr(ξ → η,m) = 1 in this case really follows from
Theorem 1.

Suppose now that ξ and η are independent. Define q` =
∑

k pk,`. Also
suppose that η is not ”nearly one-valued” that is there is no ` for which q` is
near to 1 for infinitely many n. More precisely we suppose that there is an ε
such that 1− ε >

∑
` q

2
` for large n’s. Then∑
k,`

p2k,` =
∑
k,`

p2kq
2
` =

∑
k

p2k
∑
`

q2`

therefore

p(ξ, η, I) =
∑
k

p2k −
∑
k,`

p2k,` =
∑
k

p2k

(
1−

∑
`

q2`

)

and

H2(ξ → η) = − log2

(∑
k

p2k

)
− log2

(
1−

∑
`

q2`

)

14



hold. The second term on the right hand side is upperbounded by log2 ε,
while the first term tends to infinity by (19). HenceH2(ξ → η) asymptotically
depends only on ξ. By Theorem 1, the same is implied for Pr(ξ → η,m) as
it is expected in this case.
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