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1 Introduction

Let [n] = {1, 2, . . . , n} be a finite set, F ⊂ 2[n] a family of its subsets. In the present
paper max |F| will be investigated under certain conditions on the family F . The
well-known Sperner theorem ([10]) was the first such result.

Theorem 1.1. If F is a family of subsets of [n] without inclusion (F,G ∈ F implies
F �⊂ G) then

|F| ≤
(
n

�n
2 �

)

holds, and this estimate is sharp as the family of all �n
2 �-element subsets shows.

There is a very large number of generalizations and analogues of this theorem.
Here we will consider only results when the condition on F excludes certain configu-
rations what can be expressed by inclusion, only. That is, no intersections, unions,
etc. are involved. The first such generalization was obtained by Erdős [4]. The
family of k distinct sets with mutual inclusions, F1 ⊂ F2 ⊂ . . . Fk is called a chain
of lenght k. It will be simply denoted by Pk. Let La(n, Pk) denote the largest family
F without a chain of lenght k.

Theorem 1.2 ([4]). La(n, Pk+1) is equal to the sum of the k largest bimomial
coefficients of order n.

Let Vr denote the r-fork, that is the following family of distinct sets: F ⊂ G1,
F ⊂ G2, . . . F ⊂ Gr. The quantity La(n, Vr), that is, the largest family on n
elements containing no Vr was first (asymptotically) determined for r = 2.

Theorem 1.3 ([7]).
(
n

�n
2 �

)(
1 +

1
n

+O

(
1
n2

))
≤ La(n, V2) ≤

(
n

�n
2 �

)(
1 +

2
n

)
.

The first result for general r is contained in the following theorem.

Theorem 1.4 ([11]).
(
n

�n
2 �

)(
1 +

r

n
+O

(
1
n2

))
≤ La(Vr+1) ≤

(
n

�n
2 �

)(
1 + 2

r2

n
+ o

(
1
n

))
.
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The constant in the second term in the upper estimate was recently improved.

Theorem 1.5 ([1]).
(
n

�n
2 �

)(
1 +

r

n
+O

(
1
n2

))
≤ La(Vr+1) ≤

(
n

�n
2 �

)(
1 + 2

r

n
+ o

(
1
n

))
.

See some remarks in Section 5 explaining why this second term is difficult to
improve any more.

The aim of the present paper is to introduce some recent results and show a
method, proving good upper estimates, developed recently.

2 Notations, Definitions

A partially ordered set, shortly poset P is a pair P = (X,≤) where X is a (in our
case always finite) set and ≤ is a relation on X which is reflexive (x ≤ x holds for
every x ∈ X), antisymmetric (if both x ≤ y and x ≥ y hold for x, y ∈ X then
x = y) and transitive (x ≤ y and y ≤ z always implies x ≤ z). It is easy to see
that if X = 2[n] and the ≤ is defined as ⊆, then these conditions are satisfied, that
is the familiy of all subsets of an n-element set ordered by inclusion form a poset.
We will call this poset the Boolean lattice and denote it by Bn.

The definition of a subposet is obvious: R = (Y,≤2) is a subposet of P = (X,≤1)
iff there is an injection α of Y into X is such a way that y1, y2 ∈ Y, y1 ≤2 y2
implies α(y1) ≤1 α(y2). On the other hand R is an induced subposet of P when
α(y1) ≤1 α(y2) holds iff when y1 ≤2 y2. If P = (X,≤) is a poset and Y ⊂ X then
the poset spanned by Y in P is defined as (Y,≤∗) where ≤∗ is the same as ≤, for all
the pairs taken from Y . Given a “small” poset R, La(n,R) denotes the maximum
number of elements of Y ⊂ 2[n] (that is, the maximum number of subsets of [n])
such that R is not a subposet of the poset spanned by Y in Bn.

Redefine our “small” configurations in terms of posets. The chain Pk contains k
elements: a1, . . . , ak where a1 < . . . < ak. The r-fork contains r + 1 elements:
a, b1, . . . , br where a < b1, . . . a < br. It is easy to see that the definitions of
La(n, Pk), La(n, Vr), in Sections 1 and 2 agree. In the rest of the paper we will
use the two different terminology alternately. In the definition of La(n,R) we mean
non-induced subposets, that is, if R = V2 then P3 is also excluded as a subposet.

A poset is connected if for any pair (z0, zk) of its elements there is a sequence
z1, . . . , zk−1 such that either zi < zi+1 or zi > zi+1 holds for 0 ≤ i < k. If the poset is
not connected, maximal connected subposets are called its connected components.
Given a family F of subsets of [n], it spans a poset in Bn. We will consider its
connected components in two different ways. First as posets themself, secondly
as they are represented in Bn. In the latter case the sizes of in the sets are also
indicated. A full chain in Bn is a family of sets A0 ⊂ A1 ⊂ . . . ⊂ An where |Ai| = i.
We say that a (full) chain goes through a family (subposet) P if their intersection
is non-empty, that is if it “goes through” at least one member of the family.

3 Lubell’s Proof of the Sperner Theorem

The number of full chains in [n] is n! since the choice of a full chain is equivalent to
the choice of a permutation of the elements of [n]. On the other hand, the number
of full chains going through a given set F of f elements is f !(n− f)! since the chain
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“must grow” within F until it “hits” F and outside after that. Suppose that the
family F of subsets of [n] is without inclusion (F,G ∈ F implies F �⊂ G). Then
a full chain cannot go through two members of F . Therefore the set of full chains
going through distinct members of F must be disjoint. Hence we have

∑

F∈F
|F |!(n− |F |)! ≤ n!.

Dividing the inequality by n!
∑

F∈F

1
(

n
|F |

) ≤ 1 (3.1)

is obtained. As
(

n
|F |

)
≤

(
n

n
2 �
)
, then

|F|
(

n
n

2 �
) =

∑

F∈F

1
(

n
n

2 �
) ≤ 1

follows, the theorem is proved.
Let us remark that inequality (3.1) is important on its own right and is called

the YBLM-inequality (earlier LYM, see [3, 8, 9, 12]).

4 The Method, Illustrated with an Old Result

Lubell’s proof easily applies for Theorem 1.2, however, surprisingly it was not
exploited for proving theorems of the present type. The reason might be that
not the “excluded” configurations should be considered when using the idea, but
the “allowed induced posets”. (See later.)

Following the definition of the r-fork, let us define the r-brush (in a poset) which
contains r + 1 elements: a, b1, . . . , br where a > b1, . . . a > br and is the “comple-
ment” of the r-fork. Theorem 1.3 gives the best expected asymptotic upper bound
up to the second term for V2 in the Boolean lattice. It is easy to see that it implies
the same solution for Λ2. However the result is very different when both of them
are excluded. Our notation La(n,R) is extended in an obvious way for the case
when two subposets R1 and R2 are excluded: La(n,R1, R2).

Theorem 4.1 ([7]).

La(n, V2,Λ2) = 2
(
n− 1
�n−1

2 �

)
.

Proof. The construction giving the equality is the following:
{
F ⊂ [n] : 1 �∈ F, |F | =

⌊
n− 1

2

⌋}
∪
{
F ⊂ [n] : 1 ∈ F, |F | =

⌊
n+ 1

2

⌋}
.

The non-trivial part of the proof is the verification of the upper bound.
Let F be a family of subsets of [n] which contains neither a V2 nor a Λ2 as sub-

poset. Therefore it cannot contain a P3 either. Consider the connected components
of the poset spanned by F . It is obvious that a connected component can be either
a one element poset P1 or a P2. Let α1 and α2 be their respective numbers. Then

|F| = α1 + 2α2. (4.1)
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We will now determine the minimum number of full chains going through a one
or two-element component. Let P (1; a) be a one-element component which is an
a-element set. The number c(P (1; a)) of full chains going through P (1; a) is
a!(n− a)!. Therefore

c(P (1; a))
n!

=
1
(
n
a

) .

It takes on its minimum at the value a = �n
2 �. Hence we obtained

⌊n
2

⌋
!
⌈n

2

⌉
! ≤ c(P (1; a)). (4.2)

The two-element component consisting of an a-elementA and a b-elementB (A ⊂
B) (a < b) subset is denoted by P (2; a, b). The number c(P (2; a, b)) of full chains
going through (at least one element of) P (2; a, b) is

c(P (2; a, b)) = a!(n− a)! + b!(n− b)! − a!(b− a)!(n− b)!. (4.3)

Divide it by n!.

c(P (2; a, b))
n!

=
1
(
n
a

) +
1
(
n
b

) − 1
(
n
b

)(
b
a

) =
1
(
n
a

) +
1
(
n
b

)

(

1 − 1
(
n
a

)

)

. (4.4)

Suppose first that a is fixed and is ≤ �n−1
2 �. Then (4.4) takes on its minimum for

b = �n+1
2 �. Fix b here and consider the following variant of (4.4):

c(P (2; a, b))
n!

=
1
(
n
a

) +
1
(

n
b

) − 1
(
n
a

)(
n−a
n−b

) =
1
(
n
b

) +
1
(
n
a

)

(

1 − 1
(
n−a
n−b

)

)

. (4.5)

This is a monotone decreasing function of a in the interval 0 ≤ a ≤ �n
2 �. Therefore

the pair giving the minimum in this case is a = �n−1
2 �, b = �n+1

2 �.
Suppose now that a ≥ �n

2 �. Then b can be chosen to be a+1 by (4.4), and (4.3)
becomes na!(n− a− 1)! It achieves its minimum at a = �n−1

2 �, again. We obtained

n

⌊
n− 1

2

⌋
!
⌈
n− 1

2

⌉
! ≤ c(P (2; a, b)). (4.6)

Observe that a full chain cannot go through two distinct components, therefore
∑

P1is a component
c(P1) +

∑

P2is a component
c(P2) ≤ n!

holds. The left hand side can be lowerestimated by (4.2) and (4.6):

α1

⌊n
2

⌋
!
⌈n

2

⌉
! + α2n

⌊
n− 1

2

⌋
!
⌈
n− 1

2

⌉
! ≤ n!. (4.7)

(4.1) has to be maximized with respect to (4.7). Rewrite (4.7) a little bit:

α1

⌊n
2

⌋
!
⌈n

2

⌉
! + 2α2

n

2

⌊
n− 1

2

⌋
!
⌈
n− 1

2

⌉
! ≤ n!. (4.8)

Compare the coefficients of α1 and 2α2 in (4.8).
⌊n

2

⌋
!
⌈n

2

⌉
! ≥ n

2

⌊
n− 1

2

⌋
!
⌈
n− 1

2

⌉
! (4.9)
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holds (with equality for even n). Replacing the coefficient of α1 in (4.8) using (4.9),
the inequality

(α1 + 2α2)
n

2

⌊
n− 1

2

⌋
!
⌈
n− 1

2

⌉
! ≤ n!

is obtained, what results in

|F| = α1 + 2α2 ≤ n!
n
2

⌊
n−1

2

⌋
!
⌈

n−1
2

⌉
!

= 2
(
n− 1
�n−1

2 �

)
.

5 A Construction === a Lower Estimate

Although we concentrate in this paper on the upper estimates, it seems to be
important to show the construction serving as a lower estimate in Theorem 1.3

The consctruction for a family avoiding a V2 is the following. Take all the sets
of size �n

2 � and a family A1, . . . Am of �n
2 � + 1-element sets satisfying the condition

|Ai ∩ Aj | < �n
2 � for every pair i < j. It is easy to see that this family contains no

V2. We only have to maximize m. Since the �n
2 �-element subsets of the Ais are all

distinct, we have

m
(⌊n

2

⌋
+ 1

)
≤

(
n

�n
2 �

)
.

This gives the upper estimate

m ≤
(
n

�n
2 �

)
2
n
. (5.1)

There is a very nice construction (see [5]) of such sets Ai with

m =
(

n

�n
2 � + 1

)
1
n

=
(
n

�n
2 �

)(
1
n

+O(
1
n2

)
)
.

It is a longstanding conjecture of coding theory what the right constant is here, 1
or 2. Or if the limit exists at all?

This is why there is a disturbing factor 2 between the second terms of the lower
and upper estimates in Theorem 1.3. This gap cannot be bridged without solving
the problem in coding theory mentioned above.

6 The Upper Estimate in Theorem 1.3

This theorem already has two different proofs in [7] and [2], however each of these
proofs needed an ad hoc idea. Our new method also works here. It needs some
tedious calculations, but the principal idea is as easy as in the previous case.

Suppose that F contains no V2 as a subposet. Then it cannot contain a P3

either. It is easy to deduce that the components of the poset spanned by F are all
of type Λr where 0 ≤ r. This is a new phenomenon! The sizes of the components
are unbounded. Yet, the method works.

Let γ(r) (0 ≤ r) denote the number of components of form Λr. Then

|F| =
∞∑

r=0

(r + 1)γ(r). (6.1)
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is obvious. This has to be maximized under a linear condition obtained from the
fact that the chains going through distinct components must be distinct.

Let Λ(r;u, u1, . . . , ur) (u > u1, . . . , ur) denote the component Λr represented by
sets of sizes u, u1, . . . , ur, respectively. c(Λ(r;u, u1, . . . , ur)) denotes the number of
full chains going through this component. The following lemma gives a good lower
estimate on this number. For the proof see [6].

Lemma 6.1. Suppose 6 ≤ n, 1 ≤ r. Then

u∗!(n− u∗)! + ru∗!u∗(n− u∗ − 1)! ≤ c(Λ(r;u, u1, . . . ,ur))
(u > u1, . . . ,ur)

holds where u∗ = u∗(n) = n
2 − 1 if n is even, u∗ = n−1

2 if n is odd and r − 1 ≤ n,
while u∗ = n−3

2 if n is odd and n < r − 1.
In the case r = 0 the inequality �n

2 �!�n
2 �! ≤ Λ(0;u) holds.

We will actually need a lower estimate on the number of full chains going through
the component, divided by the number of elements of this component.

u∗!u∗(n− u∗ − 1)! ≤ u∗!(n− u∗)! + ru∗!u∗(n− u∗ − 1)!
r + 1

(0 ≤ r) (6.2)

is a consequence of the lemma and the remark on the case r = 0.
Let Ci (i ≤ K =

∑∞
r=0 γ(r)) be the components spanned by F . Each Ci

is equal to a Λ(r;u, u1, . . . , ur) for some parameters. c(Ci) denotes the number
of chains going through the component Ci. The full chains
going through distinct components are distinct. This implies

n! ≥
K∑

i=1

c(Ci). (6.3)

Hence by Lemma 6.1 we obtain

n! ≥
K∑

r=1

(u∗!(n− u∗)! + ru∗!u∗(n− u∗ − 1)!)γ(r). (6.4)

(6.1) has to be maximized with respect to (6.4). Slightly modify the right hand side
and use (6.2):

K∑

r=1

u∗!(n− u∗)! + ru∗!u∗(n− u∗ − 1)!
r + 1

(r + 1)γ(r)

≥
K∑

r=1

u∗!u∗(n− u∗ − 1)!(r + 1)γ(r). (6.5)

From (6.4), (6.5) and (6.1) we obtain

n! ≥ u∗!u∗(n− u∗ − 1)!
K∑

r=1

(r + 1)γ(r) = u∗!u∗(n− u∗ − 1)!|F|,

that is,

|F| ≤ n!
u∗!u∗(n− u∗ − 1)!

.
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This is equal to
(
n⌊
n
2

⌋
) n

2
n
2 − 1

,

(
n⌊
n
2

⌋
) n+1

2
n−1

2

,

(
n⌊
n
2

⌋
) n−1

2
n−3

2

in the cases u∗ = n
2 − 1, n−1

2 and n−3
2 , respectively. These are all equal to

=
(
n⌊
n
2

⌋
)(

1 +
2
n

+O
( 1
n2

))
.

7 Excluding the NNN

The poset N contains 4 distinct elements a, b, c, d satisfying a < c, b < c, b < d.
In the Boolean lattice a subposet N consists of four disticts subsets satisfying
A ⊂ C,B ⊂ C,B ⊂ D. It is somewhat surprising that excluding N the result
is basically the same as in the case of V2. The goal of the present section is to
sketch the proof of the following theorem.

Theorem 7.1 ([6]).
(
n

�n
2 �

)(
1 +

1
n

+O

(
1
n2

))
≤ La(n,N) ≤

(
n

�n
2 �

)(
1 +

2
n

+O

(
1
n2

))

holds.

The lower estimate is obtained from Theorem 1.3, since La(n, V2) ≤ La(n,N).
Let F be a family of subsets of [n] contaning no four distinct members forming

an N . Consider the poset P (F) spanned by F in Bn. Its connected components are
denoted by C1, . . . , CK . and c(Ci) denotes the number of full chains going through
Ci. Since a full chain cannot go through two distinct components. the following
inequality holds.

K∑

i=1

c(Ci) ≤ n!. (7.1)

What can these components be? A component might be a P3, but no component
can contain a P3 as a proper subposet, since adding one more element to P3 an
N is created no matter which element of P3 is in relation with the new element.
Furthermore, if a < b are two elements of a component then a and b cannot be both
comparable in the component with some other distinct elements c, d, only in the
way c < a < b < b what is a P3. But one of them can be comparable with many
others. Therefore the following ones are the only possible components:

a < b < c, (7.2)

a < bi(1 ≤ i ≤ r) where 0 ≤ r, (7.3)

a > bi(1 ≤ i ≤ r) where 0 ≤ r. (7.4)

These are denoted by P (3), V (r),Λ(r) in this order. However the numbers of full
chains going through these posets depend on the sizes of the elements of the poset,
that is the sizes of the members of the family Ci. This is why we introduce the
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notation P (3;u, v, w) for the posets of type P (3) where |a| = u < |b| = v <
|c| = w. The analogous notations are V (r;u, u1, . . . , ur) (u < u1, . . . , ur) and
Λ(r; v, v1, . . . , vr) (v < v1, . . . , vr). All the components Ci in (7.1) are of this form.

An upper bound is sought for

|F| =
K∑

i=1

|Ci| (7.5)

where |P (3)| = 3, |V (r)| = |Λ(r)| = r + 1 are obvious. This upper bound will
be determined entirely on the basis of (7.1). Denote the numbers of Cis of type
L(3), V (r),Λ(r) by α, β(r), γ(r) respectively. Then (7.5) can be written in the form

|F| = 3α+
∞∑

r=0

(r + 1)β(r) +
∞∑

r=0

(r + 1)γ(r). (7.6)

If the minima (or good lower bounds)

min
u,v,w

c(P (3;u, v, w)), min
u,u1,...,ur

c(V (r;u, u1, . . . , ur)), min
v,v1,...,vr

c(Λ(r; v, v1, . . . , vr))

(7.7)
are determined then (7.1) leads to a linear combination of α, β(r), and γ(r). That
is, one linear combination, namely (7.5) has to be maximized under the condition
that another combination is bounded from above. Therefore our main problem is
now to determine the minima in (7.7). The first one is solved in the following lemma
(for the proof see [6]).

Lemma 7.2. c(P (3;u, v, w)) (u < v < w) takes its minimum for the values
u = �n

2 � − 1, v = �n
2 �, w = �n

2 � + 1, that is,

(⌊n
2

⌋
− 1

)
!
(⌈n

2

⌉
− 1

)
!
(⌊n

2

⌋2

− n
⌊n

2

⌋
+ n2 − 1

)
≤ c(L(3;u, v, w)).

We already have a good lower estimate for the last minimum in (7.7): Lemma 6.1.
Moreover, the middle minimum in (7.7) is the same, since the excluded poset is the
complement of the previous one. We obtain the following inequality from (7.1) and
the lower estimates.

n! ≥
(⌊n

2

⌋
− 1

)
!
(⌈n

2

⌉
− 1

)
!
(⌊n

2

⌋2

− n
⌊n

2

⌋
+ n2 − 1

)
α

+
K∑

r=1

(u∗!(n− u∗)! + ru∗!u∗(n− u∗ − 1)!)β(r)

+
K∑

r=1

(u∗!(n− u∗)! + ru∗!u∗(n− u∗ − 1)!)γ(r). (7.8)

(7.6) will be maximized with respect to (7.8). For this aim, let us modify (7.8):

n! ≥

(⌊
n
2

⌋
− 1

)
!
(⌈

n
2

⌉
− 1

)
!
(⌊

n
2

⌋2 − n
⌊

n
2

⌋
+ n2 − 1

)

3
3α

+
K∑

r=1

u∗!(n− u∗)! + ru∗!u∗(n− u∗ − 1)!
r + 1

(r + 1)β(r)
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+
K∑

r=1

u∗!(n− u∗)! + ru∗!u∗(n− u∗ − 1)!
r + 1

(r + 1)γ(r). (7.9)

(6.2) gives a good lower estimate on the ratios in all terms, except the first one.
Surprisingly, the same estimate is valid for the first term:

u∗!u∗(n− u∗ − 1)! ≤
1
3

(⌊n
2

⌋
− 1

)
!
(⌈n

2

⌉
− 1

)
!
(⌊n

2

⌋2

− n
⌊n

2

⌋
+ n2 − 1

)

as it can be easily checked for each u∗. All ratios can be replaced by u∗!u∗(n−u∗−1)!
in (7.9):

n! ≥ u∗!u∗(n−u∗−1)!(3α+
∞∑

r=0

(r+1)β(r)+
∞∑

r=0

(r+1)γ(r)) = |F|u∗!u∗(n−u∗−1)!.

The proof can be finished like in the previous section.

8 Concluding Remarks

1. Lemma 7.2 is much easier than Lemma 6.1. That is, we obtained Theorem 7.1
almost free after having the proof Theorem 1.3 with our method. This probably
will happen often. The solution for a given excluded configuration can be obtained
by putting together estimates for “allowed” posets, which have been already solved
for other excluded patterns.

2. We see that the method can be applied for many other problems, on the
other hand it does not seem to be sufficient for all excluded posets. Our research
was not extensive enough to see the limits: what kind of problems can be solved,
what cannot be solved using this idea.

For instance Theorem 1.5 has a quite easy proof in [1], on the other hand we
do not see its proof with the present method. The family of “allowed” components
seems to be too rich to handle.

3. Let us mention one more recent result. Four disticts subsets satisfying
A ⊂ C,A ⊂ D,B ⊂ C,B ⊂ D are called a butterfly and are denoted by B.

Theorem 8.1 ([2]). Let n ≥ 3. Then La(n,B) =
(

n
n/2�

)
+

(
n

n/2�+1

)
.

When V2 was excluded, the largest family consisted of the largest level, plus a
1
n part of the next level. Excluding somewhat less, the N , the result is the same.
However excluding B there is a considerable jump: the largest family consists of the
two largest levels. We do not see the reasons. When and why does a jump occur?
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[4] P. Erdős, On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc., 51
(1945), pp. 898–902.

[5] R.L. Graham and H.J.A. Sloane, Lower bounds for constant weight codes,
IEEE IT , 26 pp. 37–43.

[6] Jerrold R. Griggs and Gyula O.H. Katona, No four sets forming an N ,
submitted.

[7] G.O.H. Katona and T.G. Tarján, Extremal problems with excluded subgraphs
in the n-cube, Lecture Notes in Math., 1018 pp. 84–93.

[8] D. Lubell, A short proof of Sperner’s lemma, J. Combin. Theory, 1 (1966),
pp. 299.

[9] L.D. Meshalkin, A generalization of Sperner’s theorem on the number of
subsets of a finite set, Teor. Verojatnost. i Primen., 8 (1963), pp. 219–220. (in
Russian with German summary).

[10] E. Sperner, Ein Satz über Untermegen einer endlichen Menge, Math. Z., 27
(1928), pp. 544–548.

[11] Hai Tran Thanh, An extremal problem with excluded subposets in the Boolean
lattice, Order , 15 (1998), pp. 51–57.

[12] K. Yamamoto, Logarithmic order of free distributive lattices, J. Math. Soc.
Japan, 6 (1954), pp. 347–357.

174




