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1 Introduction

The elements of {0, 1, . . . , q − 1}n are called q-ary codewords of length n
over a q-element alphabet. A code is a set of codewords. The Hamming-
distance d(c1, c2) of two codewords c1 and c2 is the number of positions where
they differ. A code C is called equidistant with distance d if the Hamming-
distance of any two codewords is exactly d. Another, shorter name is: q-ary
equidistant d-code.

The binary case (q = 2) was studied in [6], [10], [8], [9], [7] and [13].
q-ary equidistant codes and their relationships to resolvable balanced in-

complete block designs were considered in [11] and [12]. Paper [1] found the
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ternary (q = 3) equidistant codes for small values of n(≤ 10) . The same was
done for q = 4, 5, 6 in [2] and [3] [5].

[4] gives many interesting constructions and (among others) determines
the largest size |C| of a q-ary equidistant code C of length n with distance 3
for all n and q. In the present paper we list all q-ary equidistant codes with
distance 3.

The code consisting of a subset of codewords of an equidistant code is
also an equidistant code. This is why it is sufficient to consider the maxi-
mal equidistant codes, that is, equidistant d-codes which cannot be enlarged
by adding more codewords. The family of all maximal equidistant codes of
length n over a q-element alphabet with distance d is denoted by E(n, q, d). If
the code consists of M codewords, we will say that it is an (n,M, d)q equidis-
tant code. The goal of the present paper is to determine all the elements of
E(n, q, 3).

Fix a permutation of the set {0, 1, . . . , q − 1} and change the elements
in the ith position of every codeword in a code. This operation does not
change the Hamming-distance between the codewords, therefore it brings an
equidistant code into an equidistant code. Fix one codeword in an equidistant
code and make its first position 0 by the above operation. Repeat it with
the second position, third position, and so on. Since the operations are
performed independently in the distinct positions, the resulting equidistant
code will have only 0s in each position of the fixed codeword. Therefore we
may suppose that an equidistant code contains the codeword consisting of n
0s. The set of these maximal equidistant codes is denoted by E0(n, q, d). We
will actually determine this family, the other maximal equidistant codes can
be obtained by independently permuting the values in every position.

Notice that the application of the same permutation of the positions in
all codewords does not change pairwise Hamming-distances, therefore an
equidistant code becomes an equidistant code. Finally, adding new posi-
tions having the same value i in every codeword results in an equidistant
code. On the other hand if there are positions which have the same value
in every codeword, the deletion of these positions also leads to an equidis-
tant code. The codes obtainable from each other by these operations will be
called equivalent. We will determine only one element in each such class of
E0(n, q, d).

Let C = (c0, c1, . . . , cM−1) ∈ E0(n, q, d) be an equidistant code where c0 is
the zero sequence. Since d(c0, ci) = d holds for all other codewords ci(0 < i),
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consequently the number of non-zero coordinates in ci(0 < i) is exactly d.
Let c = (a1, a2, . . . , an) be a codeword with d non-zero coordinates. Suppose
that ai1 , ai2 , . . . , aid are non-zero, (i1, i2, . . . id are distinct) but the other as
are 0. Associate the d-element set F (c) with this codeword. It will be called
the support of c. Observe, that F(ci) = F(cj) might happen for 0 < i < j.

F(C) = {F (c1), F (c2), . . . , F (cm)}

is a family of d-element sets, where m ≤ M − 1. The family F(C) is called
the support family of the code C.

Let [n] = {1, 2, . . . , n}, and let
(
[n]
d

)
denote the family of all d-element

subsets of [n]. Then F(C) ⊂
(
[n]
d

)
holds. We say that a family F is `-

intersecting if F,G ∈ F implies |F ∩ G| ≥ `. It is easy to see that if C ∈
E0(n, q, d) holds then F(C) is dd

2
e-intersecting. Observe, that F(C1) = F(C2)

might happen for distinct codes C1, C2.
The main idea of our approach is to study first the dd

2
e -intersecting

families and to try to choose the appropriate coordinate-values to the non-
zero positions after that.

2 d = 3

Proposition 2.1 The maximal 2-intersecting families in
(
[n]
3

)
are

{{1, 2, i}(2 < i ≤ n)}, (2.1)(
[4]

3

)
(2.2)

and the families obtained by permuting the set [n].

Proof. Suppose that F is a trivial 2-intersecting family, that is, every
member F ∈ F contains (e.g.) 1 and 2. Since it is maximal it must contain
all sets in (2.1).

Otherwise, there are no two elements which are contained in all the mem-
bers of F . Suppose that there is one such element, say 1. Deleting this ele-
ment from all members of F a 1-intersecting family F ′ ⊂

(
[n−1]

2

)
is obtained

and there is no element which is contained in all of them. Let one member
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be e.g. {2, 3}. Other members must intersect {2, 3}, but not all of them in
the same element. One member F ′1 contains 2, another one, F ′2 contains 3.
However they must have a common element, say 4. Then {2, 4}, {3, 4} ∈ F ′.
There is no other 2-element set meeting all of {2, 3}, {2, 4}, {3, 4}. We have
F = {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, what is a subfamily of (2.2).

Finally, suppose that there is no element contained in all members of
F . Let two members be e.g. F1 = {1, 2, 3}, F2 = {1, 2, 4}. Since a further
member intersects them in 2 elements, it cannot avoid both 1 and 2. However
there is an F3 avoiding 2, by the assumption of the case. Then 1 ∈ F3 and by
the 2-intersecting property we have F3 = {1, 3, 4}. Similarly, the set avoiding
1 must have the form F4 = {2, 3, 4}. There is no more sets intersecting all of
F1, F2, F3, F4 in 2 elements. This family is maximal and equal to (2.2). 2

Now we are trying “to write in values into the sets ∈ F”. Let C ∈
E0(n, q, 3) be an equidistant code and F(C) the associated family. If F ∈ F
then let n(F ) denote the number of codewords c ∈ C such that F (c) =
F . The reduced version of the codeword c = (0, . . . , ai1 , 0, . . . , 0, ai2 , 0, . . . ,
0, ai3 , . . . , 0) is (ai1 , ai2 , ai3). Let s(F ) denote the set of reduced codewords
such that F (c) = F . It is obvious that s(F ) consists of n(F ) sequences of
length 3. Since the distances between any two codewords are 3, two elements
of s(F ) must have Hamming distance 3, that is, no coordinates can be equal.
Suppose now that F1, F2 ∈ F are distinct members. Then |F1 ∩ F2| = 2 and
the reduced versions of the codewords c1, c2 satisfying F (c1) = F1, F (c2) = F2

are equal in one of the positions in F1 ∩ F2 and different in the other one.

Lemma 2.2 Let C ∈ E0(n, q, 3). If F1 and F2 are two distinct members of
F(C) then n(F1), n(F2) ≤ 2 holds.

Proof. Suppose, in the contrary, that n(F1) ≥ 3 and F (c1) = F (c2) =
F (c3) = F1. The reduced versions of c1, c2 and c3, (a11a12, a13), (a21, a22, a23),
(a31, a32, a33), have 3 distinct values in every position, that is, ai1, ai2, ai3 are
three distinct values (i = 1, 2, 3). Let F (c) = F2. Suppose that F1∩F2 is e.g.
the first and second positions of the supports of both c1 and c. The reduced
version of c, (a1, a2, a3) has to be equal to the reduced versions of c1, c2 and
c3 in one of the positions in F1 ∩ F2. But a1 can be equal to only one of ai1,
say a11. Similarly, a2 is equal to, say a22 (the equality a2 = a12 is forbidden!).
Then a1 6= a31, a2 6= a32, implying that the Hamming distance of c1 and c is
4, a contradiction. 2
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Corollary 2.3 If |F(C)| > 1 then n(F ) ≤ 2 holds for every F ∈ F .

2

Theorem 2.4 Every member of E0(n, q, 3) is equivalent to one of the follow-
ing three codes:

(0, 0, 0, 0, . . . , 0)

(1, 1, 1, 0, . . . , 0)

(2, 2, 2, 0, . . . , 0)

...

(q − 1, q − 1, q − 1, 0, . . . , 0), (2.3)

(0, 0, 0, 0, . . . , 0)

(1, 1, 1, 0, . . . , 0)

(1, 2, 0, 1, . . . , 0)

(1, 3, 0, 0, 1 . . . , 0)

...

(1, q − 1, 0, 0, . . . , 1), (2.4)

(0, 0, 0, 0, 0, . . . , 0)

(1, 1, 1, 0, 0, . . . , 0)

(2, 2, 2, 0, 0, . . . , 0)

(1, 2, 0, 1, 0, . . . , 0)

(2, 1, 0, 2, 0, . . . , 0)

(1, 0, 2, 2, 0, . . . , 0)

(2, 0, 1, 1, 0, . . . , 0)

(0, 1, 2, 1, 0, . . . , 0)

(0, 2, 1, 2, 0, . . . , 0). (2.5)
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Proof. If |F(C)| = 1, that is, F = {F} then n(F ) ≤ q. The reduced
codewords can be chosen to be (i, i, i) for every 1 ≤ i < q and we have
obtained one element of E0(n, q, 3), namely (2.3).

In the rest of the proof we can suppose that |F(C)| > 1 holds and then
Corollary 2.3 implies n(F ) ≤ 2 for every F ∈ F . Let F be first a subfamily
of (2.1). Two subcases will be distinguished: 1.1. n(F ) = 1 holds for every
F ∈ F , 1.2. n(F ) = 2 holds for one of F ∈ F .

Case 1.1 It can be supposed that F (c) = [3] ∈ F holds for one of the
codewords and that its reduced version is (1, 1, 1) The other supports all
contain [2]. If c1 ∈ C is another codeword, its reduced version must contain
a 1 and a value different from 1, say 2, in the first two positions. Suppose,
that the reduced version has the form (1, 2, i). Since this third position is
in only one reduced version, it can be chosen to be 1. The reduced version
is (1, 2, 1). If c2 ∈ C is a third codeword, its reduced version has to contain
such values in the first two positions which have a Hamming-distance 1 from
both (1, 1) and (1, 2). If the reduced version of c2 contains a value different
from 1 in the first position, then it has to have a value equal to both 1 and 2
in the second position. This is impossible, therefore it must have a 1 in the
first position, and a new value, say 3 in the second. The reduced version is
(1, 3, 1). Continuing in this way, (2.4) will be achieved.

Case 1.2. Suppose that n([3]) = 2. The reduced versions of the two
codewords are (1, 1, 1) and (2, 2, 2). If the code contains one more codeword,
say c, one can suppose that its support F (c) satisfies F (c) ∩ [3] = {1, 2},
for instance F (c) = {1, 2, 4}. The reduced version must have a 1 and a 2
in the first two positions. Let it be (1, 2, 1). Let, F be another member
of (2.1), say {1, 2, 5}. It is easy to see that codeword c′ can be found with
F (c′) = F satisfying the conditions. That is no more members of (2.1)
can be supports of codewords. The code what we have at the moment is
equivalent to a subset of (2.5). Of course we can add the codeword (2, 1, 0, 2)
to the previous 3 codewords preserving the property, but this extension is
still equivalent to a subset of (2.5).

Finally suppose that the support family of the code is (2.2).

Case 2. In this case n(F ) ≤ 2 holds for every F ∈
(
[4]
3

)
. Construction

(2.5) shows that one can choose two codewords for each such support in such
a way that they (completed with the 0 codeword) form an equidistant code.
Therefore this is largest possible element of E0(n, q, 3) in this case. We only
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have to show that (a) this construction is unique up to equivalence, (b) there
are no ”dead-ends”, that is smaller maximal equidistant codes with supports
from the family

(
[4]
3

)
. Observe that if only one or two members of

(
[4]
3

)
are

really supports then these cases were covered by our previous cases, therefore
one can suppose that the number of supports is 3 or 4. If it is 3, we will
suppose that they are {1, 2, 3}, {1, 2, 4}, {1, 3, 4}.

Case 2.1. Suppose that n(F ) = 2 holds for one of the sets, say, for F = [3].
Let the reduced versions of the two codewords with this support be (1, 1, 1)
and (2, 2, 2). The values of the codeword with support {1, 2, 4} must be 1
and 2 in some order in the first two positions, choose them in this order. The
value in the 4th position can be chosen 1. Therefore the reduced codeword
is (1, 2, 1). A reduced codeword associated with the support {1, 3, 4} must
also have one 1 and one 2 in the first and third positions. If it is 1 in the
first position, it must be 2 in the 4th position. The reduced codeword is
(1, 2, 2) otherwise (2, 1, 1). In both cases the code is a subset of (2.5). If
{2, 3, 4} is also a support, the possible reduced codewords are (1, 2, 1) or
(2, 1, 2), still in agreement with (2.5). If any of the support are used twice,
the other codeword is uniquely determined. (Unless we have only 1’s in the
4th position, then any value different from 1 is good, but we can choose 2.)

Case 2.2. n(F ) = 1 hold for 3 or 4 members of
(
[4]
3

)
. Starting with

(1, 1, 1) for the support {1, 2, 3} and choosing the codeword following the
rule with the smallest possible positive value we obtain a subset of the code
(2.5), again. 2
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