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Abstract

1 The problem

Let A be a finite Abelian group of order n. Introduce the notation: h =
⌊
n
2

⌋
and define the family

Fa = {{x1, . . . , xh} : distinct elements of A, x1 + . . . + xh = a}.

What can we say about the sizes of the families Fa? It is obvious that∑
a

|Fa| =
(
n

h

)
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holds, therefore there is an a ∈ A such that

1

n

(
n

h

)
≤ |Fa|. (1)

These families have an interesting property.

Lemma 1.1 If F1, F2 ∈ Fa are distinct members then |F1 ∩ F2| < h − 1
holds.

Proof. Suppose that |F1 ∩ F2| = h− 1 holds for two members. Then

x1 + . . . + xh−1 + xh = a, x1 + . . . + xk−1 + x′h = a

implies xh = x′h, we have the same set. �
All (h−1)-element subsets of members of Fa are distinct. By this property

|Fa|h ≤
(

n

h− 1

)
and

|Fa| ≤
1

h

(
n

h− 1

)
=

2

n

(
n

h

)
(1 + o(1)) (2)

holds for every a ∈ A.
Let M(A) and m(A) denote the size of the largest and smallest class Fa

for a given Abelian group A:

M(A) = max
a∈A
|Fa|, m(A) = min

a∈A
|Fa|.

Moreover, define
M(n) = max

A Abelian group,|A|=n
M(A).

We have
1

n

(
n

h

)
≤M(n) ≤ 2

n

(
n

h

)
(1 + o(1))

by (1) and (2).

Problem 1 Determine

lim sup
M(n)
1
n

(
n
h

) . (3)
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We will give some motivation for this problem from combinatorics/coding
theory in Section 2. If (3) turns out to be more than 1 the result would be
really useful for those applications. Unfortunately, in our example the ratio
of the sizes of any two classes Fa tends to one.

Problem 2 Is

lim
|A|→∞

m(A)

M(A)
= 1 (4)

always true?

The least interesting version of our problem as far as the applications are
concerned is the following one.

Problem 3 How small can m(A) be in asymptotical sense?

2 The motivation

Let c1 and c2 be two 0,1 sequences of length n. Their Hamming distance is
the number of different values in the n positions. A set of 0,1 sequences of
length n is called a code of Hamming distance d if the Hamming distance of
any two sequences (codewords) is at least d. Finally, a code is said to be of
fixed weight h if the number of 1’s in every codeword is exactly h.

An old problem of coding theory is to determine the maximum size of a
code C(n, h, 4) consisting of 0,1 sequences of length n, containing exactly h
1’s where h =

⌊
n
2

⌋
, and having pairwise Hamming distance at least 4.

One can easily see that this problem is equivalent to the determination
of the largest family F consisting of h-element subsets of an n-element set
satisfying the condition |F1 ∩ F2| < h− 1 for every pair of distinct members
of F . Therefore the upper bound (2) holds for this coding problem, too. The
lower bound was given in [2] with the method shown in Section 1, using the
Abelian group Zn. Hence we have

1

n

(
n

h

)
≤ max |C(n, h, 4)| ≤ 2

n

(
n

h

)
(1 + o(1)) .

There is no progress since [2]. The aim of our note is to attract more attention
to the coding problem mentioned above with the algebraic problem suggested.
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If the answer to Problem 1 is more than 1, it would give an improvement
in the lower bound. If however, the answer is 1, no novelty for coding theory
is obtained. Even so, we think it would be an interesting algebraic result.

The limit in Problem 2 has not been determined yet even for Zn. However
the following conjecture is widely believed to be true.

Conjecture 1 (folklore)

lim
n→∞

m(Zn)

M(Zn)
= 1.

For some applications of this coding problem to combinatorics, see [4], [1]
and the survey [3].

3 Another trial

In this section the group A = (Z2)
r is considered. Using the notation of

Section 1, n = 2r. In the case of this group all the sizes |Fa| can be exactly
determined. Let Fa(k) denote the family of k-element subsets {x1, . . . , xk}
of distinct elements of A satisfying

x1 + . . . + xk = a.

The size |Fa(k)| will be denoted by fa(k).

Lemma 3.1 If a 6= 0, b 6= 0 then

fa(k) = fb(k)

holds.

Proof. A can be considered as the additive group of the Galois field
GF(2r). Then a multiplication is defined among the elements of A. The
family F1(k) is defined by

x1 + . . . + xk = 1. (5)

Its multiplication by a non-zero a gives

ax1 + . . . + axk = a.

The mapping from {x1, . . . , xk} to {ax1, . . . , axk} is obviously a bijection
between F1(k) and Fa(k). So fa(k) = f1(k) and the statement is proved. �

4



Lemma 3.2 If k is odd then f1(k) = f0(k).

Proof. Since (5) implies (x1 + 1) + . . . + (xk + 1) = 0, the mapping from
{x1, . . . , xk} to {(x1+1), . . . , (xk+1)} is a bijection between F1(k) and F0(k).
Hence f1(k) = f0(k). �

Therefore the numbers fa(k)(a ∈ A) are all equal when k is odd and

fa(k) =
1

2r

(
2r

k

)
holds in this case. We need, however, the case k = h = 2r−1 where k is even.

Lemma 3.3 If ` ≥ 1 then

f0(2`) =
1

2r

(
2r

2`

)
+ (−1)`

(
1− 1

2r

)(
2r−1

`

)
. (6)

Proof. Choose k − 1 distinct elements x1, . . . , xk−1 ∈ A. We call such a
set good if it can be extended to a member of F0(k) by adding one element.
The equation x1 + . . . + xk = 0 always determines a unique xk. However it
might coincide with one of x1, . . . , xk−1, not defining a member of F0(k). If
xk = xu then x1 + . . . + xu−1 + xu+1 + . . . + xk−1 = 0 gives a member of
F0(k − 2). We see that the set B = {x1, . . . , xk−1} is good iff B does not
contain a member of F0(k − 2).

A member of F0(k − 2) can be extended to a B in 2r − (k − 2) ways,
therefore (2r − k + 2)f0(k − 2) of the (k − 1)-element sets are not good. So(

2r

k − 1

)
− (2r − k + 2)f0(k − 2)

(k− 1)-element sets are good. Since every element of F0(k) can be obtained
from a B in exactly k ways we have the following recursion:

kf0(k) =

(
2r

k − 1

)
− (2r − k + 2)f0(k − 2). (7)

Now the proof can be finished by induction on ` (with fixed r). The statement
of the lemma is true for ` = 1, since f0(2) = 0. For the induction step we
have to check that

1

2`

(
2r

2`− 1

)
− 2r − 2` + 2

2`

[
1

2r

(
2r

2`− 2

)
+ (−1)`−1

(
1− 1

2r

)(
2r−1

`− 1

)]
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is equal to (6). Fortunately the parts containing binomial coefficients of order
2r and 2r−1 respectively are equal separately, making the verification easy.

�
If r > 2 then ` = 2r−2 in Lemma 3.3 gives

|F0| = f0(2
r−1) =

1

2r

(
2r

2r−1

)
+

(
1− 1

2r

)(
2r−1

2r−2

)
.

Using the fact that the sum of the sizes of all classes Fa is∑
a∈(Z2)r

|Fa| =
(

2r

2r−1

)
,

the formula

|Fa| =
1

2r

((
2r

2r−1

)
−
(

2r−1

2r−2

))
can be obtained for a 6= 0.

Summarizing, in this case Fa all have the same size, except for F0 which
is somewhat larger. However, they are asymptotically equally sized.

So in this case we were able to prove that

Theorem 3.4 For the family (Z2)
r Problem 2 has a positive solution.
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