A problem for Abelian groups

Gyula O.H. Katona*
Rényi Institute
Budapest, Hungary
ohkatona@renyi.hu
Leonid Makar-Limanov ${ }^{\dagger}$
Dept. Math., Wayne State University
Detroit, MI 48202, USA
lml@math.wayne.edu

AMS subject index: 20K01, 94B99, 05D05 Keywords: Abelian group, constant weight codes, families of subsets

1 The problem

Let A be a finite Abelian group of order n. Introduce the notation: $h=\left\lfloor\frac{n}{2}\right\rfloor$ and define the family

$$
\mathcal{F}_{a}=\left\{\left\{x_{1}, \ldots, x_{h}\right\}: \text { distinct elements of } A, x_{1}+\ldots+x_{h}=a\right\} .
$$

What can we say about the sizes of the families \mathcal{F}_{a} ? It is obvious that

$$
\sum_{a}\left|\mathcal{F}_{a}\right|=\binom{n}{h}
$$

[^0]holds, therefore there is an $a \in A$ such that
\[

$$
\begin{equation*}
\frac{1}{n}\binom{n}{h} \leq\left|\mathcal{F}_{a}\right| . \tag{1}
\end{equation*}
$$

\]

These families have an interesting property.
Lemma 1.1 If $F_{1}, F_{2} \in \mathcal{F}_{a}$ are distinct members then $\left|F_{1} \cap F_{2}\right|<h-1$ holds.

Proof. Suppose that $\left|F_{1} \cap F_{2}\right|=h-1$ holds for two members. Then

$$
x_{1}+\ldots+x_{h-1}+x_{h}=a, \quad x_{1}+\ldots+x_{k-1}+x_{h}^{\prime}=a
$$

implies $x_{h}=x_{h}^{\prime}$, we have the same set.
All ($h-1$)-element subsets of members of \mathcal{F}_{a} are distinct. By this property

$$
\left|\mathcal{F}_{a}\right| h \leq\binom{ n}{h-1}
$$

and

$$
\begin{equation*}
\left|\mathcal{F}_{a}\right| \leq \frac{1}{h}\binom{n}{h-1}=\frac{2}{n}\binom{n}{h}(1+o(1)) \tag{2}
\end{equation*}
$$

holds for every $a \in A$.
Let $M(A)$ and $m(A)$ denote the size of the largest and smallest class \mathcal{F}_{a} for a given Abelian group A :

$$
M(A)=\max _{a \in A}\left|\mathcal{F}_{a}\right|, \quad m(A)=\min _{a \in A}\left|\mathcal{F}_{a}\right| .
$$

Moreover, define

$$
M(n)=\max _{A \text { Abelian group },|A|=n} M(A) .
$$

We have

$$
\frac{1}{n}\binom{n}{h} \leq M(n) \leq \frac{2}{n}\binom{n}{h}(1+o(1))
$$

by (1) and (2).
Problem 1 Determine

$$
\begin{equation*}
\lim \sup \frac{M(n)}{\frac{1}{n}\binom{n}{h}} . \tag{3}
\end{equation*}
$$

We will give some motivation for this problem from combinatorics/coding theory in Section 2. If (3) turns out to be more than 1 the result would be really useful for those applications. Unfortunately, in our example the ratio of the sizes of any two classes \mathcal{F}_{a} tends to one.

Problem 2 Is

$$
\begin{equation*}
\lim _{|A| \rightarrow \infty} \frac{m(A)}{M(A)}=1 \tag{4}
\end{equation*}
$$

always true?
The least interesting version of our problem as far as the applications are concerned is the following one.

Problem 3 How small can $m(A)$ be in asymptotical sense?

2 The motivation

Let c_{1} and c_{2} be two 0,1 sequences of length n. Their Hamming distance is the number of different values in the n positions. A set of 0,1 sequences of length n is called a code of Hamming distance d if the Hamming distance of any two sequences (codewords) is at least d. Finally, a code is said to be of fixed weight h if the number of 1's in every codeword is exactly h.

An old problem of coding theory is to determine the maximum size of a code $C(n, h, 4)$ consisting of 0,1 sequences of length n, containing exactly h 1 's where $h=\left\lfloor\frac{n}{2}\right\rfloor$, and having pairwise Hamming distance at least 4.

One can easily see that this problem is equivalent to the determination of the largest family \mathcal{F} consisting of h-element subsets of an n-element set satisfying the condition $\left|F_{1} \cap F_{2}\right|<h-1$ for every pair of distinct members of \mathcal{F}. Therefore the upper bound (2) holds for this coding problem, too. The lower bound was given in [2] with the method shown in Section 1, using the Abelian group \mathbb{Z}_{n}. Hence we have

$$
\frac{1}{n}\binom{n}{h} \leq \max |C(n, h, 4)| \leq \frac{2}{n}\binom{n}{h}(1+o(1))
$$

There is no progress since [2]. The aim of our note is to attract more attention to the coding problem mentioned above with the algebraic problem suggested.

If the answer to Problem 1 is more than 1 , it would give an improvement in the lower bound. If however, the answer is 1 , no novelty for coding theory is obtained. Even so, we think it would be an interesting algebraic result.

The limit in Problem 2 has not been determined yet even for \mathbb{Z}_{n}. However the following conjecture is widely believed to be true.

Conjecture 1 (folklore)

$$
\lim _{n \rightarrow \infty} \frac{m\left(\mathbb{Z}_{n}\right)}{M\left(\mathbb{Z}_{n}\right)}=1
$$

For some applications of this coding problem to combinatorics, see [4], [1] and the survey [3].

3 Another trial

In this section the group $A=\left(\mathbb{Z}_{2}\right)^{r}$ is considered. Using the notation of Section $1, n=2^{r}$. In the case of this group all the sizes $\left|\mathcal{F}_{a}\right|$ can be exactly determined. Let $\mathcal{F}_{a}(k)$ denote the family of k-element subsets $\left\{x_{1}, \ldots, x_{k}\right\}$ of distinct elements of A satisfying

$$
x_{1}+\ldots+x_{k}=a
$$

The size $\left|\mathcal{F}_{a}(k)\right|$ will be denoted by $f_{a}(k)$.
Lemma 3.1 If $a \neq 0, b \neq 0$ then

$$
f_{a}(k)=f_{b}(k)
$$

holds.
Proof. A can be considered as the additive group of the Galois field $\mathrm{GF}\left(2^{r}\right)$. Then a multiplication is defined among the elements of A. The family $\mathcal{F}_{1}(k)$ is defined by

$$
\begin{equation*}
x_{1}+\ldots+x_{k}=1 . \tag{5}
\end{equation*}
$$

Its multiplication by a non-zero a gives

$$
a x_{1}+\ldots+a x_{k}=a .
$$

The mapping from $\left\{x_{1}, \ldots, x_{k}\right\}$ to $\left\{a x_{1}, \ldots, a x_{k}\right\}$ is obviously a bijection between $\mathcal{F}_{1}(k)$ and $\mathcal{F}_{a}(k)$. So $f_{a}(k)=f_{1}(k)$ and the statement is proved.

Lemma 3.2 If k is odd then $f_{1}(k)=f_{0}(k)$.
Proof. Since (5) implies $\left(x_{1}+1\right)+\ldots+\left(x_{k}+1\right)=0$, the mapping from $\left\{x_{1}, \ldots, x_{k}\right\}$ to $\left\{\left(x_{1}+1\right), \ldots,\left(x_{k}+1\right)\right\}$ is a bijection between $\mathcal{F}_{1}(k)$ and $\mathcal{F}_{0}(k)$. Hence $f_{1}(k)=f_{0}(k)$.

Therefore the numbers $f_{a}(k)(a \in A)$ are all equal when k is odd and

$$
f_{a}(k)=\frac{1}{2^{r}}\binom{2^{r}}{k}
$$

holds in this case. We need, however, the case $k=h=2^{r-1}$ where k is even.
Lemma 3.3 If $\ell \geq 1$ then

$$
\begin{equation*}
f_{0}(2 \ell)=\frac{1}{2^{r}}\binom{2^{r}}{2 \ell}+(-1)^{\ell}\left(1-\frac{1}{2^{r}}\right)\binom{2^{r-1}}{\ell} . \tag{6}
\end{equation*}
$$

Proof. Choose $k-1$ distinct elements $x_{1}, \ldots, x_{k-1} \in A$. We call such a set good if it can be extended to a member of $\mathcal{F}_{0}(k)$ by adding one element. The equation $x_{1}+\ldots+x_{k}=0$ always determines a unique x_{k}. However it might coincide with one of x_{1}, \ldots, x_{k-1}, not defining a member of $\mathcal{F}_{0}(k)$. If $x_{k}=x_{u}$ then $x_{1}+\ldots+x_{u-1}+x_{u+1}+\ldots+x_{k-1}=0$ gives a member of $\mathcal{F}_{0}(k-2)$. We see that the set $B=\left\{x_{1}, \ldots, x_{k-1}\right\}$ is good iff B does not contain a member of $\mathcal{F}_{0}(k-2)$.

A member of $\mathcal{F}_{0}(k-2)$ can be extended to a B in $2^{r}-(k-2)$ ways, therefore $\left(2^{r}-k+2\right) f_{0}(k-2)$ of the $(k-1)$-element sets are not good. So

$$
\binom{2^{r}}{k-1}-\left(2^{r}-k+2\right) f_{0}(k-2)
$$

$(k-1)$-element sets are good. Since every element of $\mathcal{F}_{0}(k)$ can be obtained from a B in exactly k ways we have the following recursion:

$$
\begin{equation*}
k f_{0}(k)=\binom{2^{r}}{k-1}-\left(2^{r}-k+2\right) f_{0}(k-2) . \tag{7}
\end{equation*}
$$

Now the proof can be finished by induction on ℓ (with fixed r). The statement of the lemma is true for $\ell=1$, since $f_{0}(2)=0$. For the induction step we have to check that

$$
\frac{1}{2 \ell}\binom{2^{r}}{2 \ell-1}-\frac{2^{r}-2 \ell+2}{2 \ell}\left[\frac{1}{2^{r}}\binom{2^{r}}{2 \ell-2}+(-1)^{\ell-1}\left(1-\frac{1}{2^{r}}\right)\binom{2^{r-1}}{\ell-1}\right]
$$

is equal to (6). Fortunately the parts containing binomial coefficients of order 2^{r} and 2^{r-1} respectively are equal separately, making the verification easy.

If $r>2$ then $\ell=2^{r-2}$ in Lemma 3.3 gives

$$
\left|\mathcal{F}_{0}\right|=f_{0}\left(2^{r-1}\right)=\frac{1}{2^{r}}\binom{2^{r}}{2^{r-1}}+\left(1-\frac{1}{2^{r}}\right)\binom{2^{r-1}}{2^{r-2}} .
$$

Using the fact that the sum of the sizes of all classes \mathcal{F}_{a} is

$$
\sum_{a \in\left(\mathbb{Z}_{2}\right)^{r}}\left|\mathcal{F}_{a}\right|=\binom{2^{r}}{2^{r-1}},
$$

the formula

$$
\left|\mathcal{F}_{a}\right|=\frac{1}{2^{r}}\left(\binom{2^{r}}{2^{r-1}}-\binom{2^{r-1}}{2^{r-2}}\right)
$$

can be obtained for $a \neq 0$.
Summarizing, in this case \mathcal{F}_{a} all have the same size, except for \mathcal{F}_{0} which is somewhat larger. However, they are asymptotically equally sized.

So in this case we were able to prove that
Theorem 3.4 For the family $\left(\mathbb{Z}_{2}\right)^{r}$ Problem 2 has a positive solution.

References

[1] Annalisa De Bonis and Gyula O.H. Katona, Largest family without an r-fork, Order 24(2007) 331-336.
[2] R.L. Graham and H.J.A. Sloane, Lower bounds for constant weight codes. IEEE IT 26(1980) 37-43.
[3] Gyula O.H. Katona, Forbidden intersection patterns in the families of subsets (introducing a method), in Horisons of Combinatorics, eds. Ervin Győri, Gyula O.H. Katona, László Lovász, (Bolyai Society Mathematical Studies, 17, Bolyai János Mathematical Society and SpringerVerlag, 2008) pp. 119-140.
[4] G.O.H. Katona and T.G. Tarján, Extremal problems with excluded subgraphs in the n-cube, in Graph Theory, Lagów, 1981, eds. M. Borowiecki, J.W. Kennedy, M.M. Sysło (Lecture Notes in Math. vol. 1018, SpringerVerlag, 1983) pp. 84-93.

[^0]: *The work of the first author was supported by the Hungarian National Foundation for Scientific Research, grant number NK062321.
 ${ }^{\dagger}$ The work of the second author was supported by an NSA grant and by grant FAPESP, processo 06/59114-1.

