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1. Introduction

Let [n] = {1, 2, . . . , n} be a finite set, F ⊂ 2[n] a family of its subsets. In the
present paper max |F| will be investigated under certain conditions on the
family F . The well-known Sperner theorem ([14]) was the first such result.

Theorem 1.1. If F is a family of subsets of [n] without inclusion (F, G ∈ F
implies F 6⊂ G) then

|F| ≤

(

n

bn
2c

)

holds, and this estimate is sharp as the family of all bn
2c-element subsets

shows.

There is a very large number of generalizations and analogues of this
theorem. (See e.g. [7]). Here we will consider only results when the condition
on F excludes certain configurations what can be expressed by inclusion,
only. That is, no intersections, unions, etc. are involved. The first such
generalization was obtained by Erdős [8]. The family of k distinct sets with
mutual inclusions, F1 ⊂ F2 ⊂ . . . Fk is called a chain of length k. It will be
simply denoted by Pk. Let La(n, Pk) denote the largest family F without a
chain of length k.
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COMBSTRU–HPRN-CT-2002-000278, FIST–MTKD-CT-2004-003006.
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Theorem 1.2 [8]. La(n, Pk+1) is equal to the sum of the k largest binomial
coefficients of order n.

Let Vr denote the r-fork, that is the following family of distinct sets:
F ⊂ G1, F ⊂ G2, . . . F ⊂ Gr. The quantity La(n, Vr), that is, the largest
family on n elements containing no Vr was first (asymptotically) determined
for r = 2. We use the well-known notation Ω(n) where f(n) = Ω(n) means
that there is a constant c such that cn ≤ f(n) holds for all n.

Theorem 1.3 [11].

(

n
⌊

n
2

⌋

)(

1 +
1

n
+ Ω

(

1

n2

))

≤ La(n, V2) ≤

(

n
⌊

n
2

⌋

)(

1 +
2

n

)

.

The first result for general r is contained in the following theorem.

Theorem 1.4 [15].

(

n
⌊

n
2

⌋

)(

1 +
r

n
+ Ω

(

1

n2

))

≤ La(n, Vr+1) ≤

(

n
⌊

n
2

⌋

)(

1 + 2
r2

n
+ o

(

1

n

))

.

The constant in the second term in the upper estimate was recently
improved.

Theorem 1.5 [3].

(

n
⌊

n
2

⌋

)(

1 +
r

n
+ Ω

(

1

n2

))

≤ La(n, Vr+1)

≤

(

n
⌊

n
2

⌋

)(

1 + 2
r

n
+ O

(

1

n2

))

.

See some remarks in Section 7 explaining why this second term is difficult
to improve any more.

The aim of the present paper is to introduce some recent results and
show a method, proving good upper estimates, developed recently.



Forbidden Intersection Patterns in the Families of Subsets 3

2. Notations, Definitions

A partially ordered set, shortly poset P is a pair P = (X,≤) where X is a
(in our case always finite) set and ≤ is a relation on X which is reflexive

(x ≤ x holds for every x ∈ X), antisymmetric (if both x ≤ y and x ≥ y
hold for x, y ∈ X then x = y) and transitive (x ≤ y and y ≤ z always
implies x ≤ z). We say that y covers x if x < y and there is no z ∈ X
such that x < z < y holds. It is easy to see that if X = 2[n] and the ≤
is defined as ⊆, then these conditions are satisfied, that is the family of all
subsets of an n-element set ordered by inclusion form a poset. We will call
this poset the Boolean lattice and denote it by Bn. Covering in this poset
means “inclusion with difference 1”.

The definition of a subposet is obvious: R = (Y,≤2) is a subposet of
P = (X,≤1) iff there is an injection α of Y into X is such a way that
y1, y2 ∈ Y, y1 ≤2 y2 implies α(y1) ≤1 α(y2). On the other hand R is an
induced subposet of P when α(y1) ≤1 α(y2) holds iff when y1 ≤2 y2. If
P = (X,≤) is a poset and Y ⊂ X then the poset spanned by Y in P
is defined as (Y,≤∗) where ≤∗ is the same as ≤, for all the pairs taken
from Y . Given a “small” poset R, La(n, R) denotes the maximum number
of elements of Y ⊂ 2[n] (that is, the maximum number of subsets of [n])
such that R is not a subposet of the poset spanned by Y in Bn.

Redefine our “small” configurations in terms of posets. The chain Pk

contains k elements: a1, . . . , ak where a1 < . . . < ak. The r-fork contains
r + 1 elements: a, b1, . . . , br where a < b1, . . . a < br. It is easy to see that
the definitions of La(n, Pk), La(n, Vr), in Sections 1 and 2 agree. In the rest
of the paper we will use the two different terminology alternately. In the
definition of La(n, R) we mean non-induced subposets, that is, if R = V2

then P3 is also excluded as a subposet.

A poset is connected if for any pair (z0, zk) of its elements there is a
sequence z1, . . . , zk−1 such that either zi < zi+1 or zi > zi+1 holds for
0 ≤ i < k. If the poset is not connected, maximal connected subposets are
called its connected components. Given a family F of subsets of [n], it spans
a poset in Bn. We will consider its connected components Q in two different
ways. First as posets themself, secondly as they are represented in Bn. In
the latter case the sizes of in the sets are also indicated. This is called a
realization of Q. A full chain in Bn is a family of sets A0 ⊂ A1 ⊂ . . . ⊂ An

where |Ai| = i. We say that a (full) chain goes through a family (subposet)
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F if their intersection is non-empty, that is if it “goes through” at least one
member of the family.

3. Lubell’s Proof of the Sperner Theorem

The number of full chains in [n] is n! since the choice of a full chain is
equivalent to the choice of a permutation of the elements of [n]. On the
other hand, the number of full chains going through a given set F of f
elements is f !(n − f)! since the chain “must grow” within F until it “hits”
F and outside after that. Suppose that the family F of subsets of [n] is
without inclusion (F, G ∈ F implies F 6⊂ G). Then a full chain cannot go
through two members of F . Therefore the set of full chains going through
distinct members of F must be disjoint. Hence we have

∑

F∈F

|F |!
(

n − |F |
)

! ≤ n! .

Dividing the inequality by n!

(3.1)
∑

F∈F

1
(

n
|F |

) ≤ 1

is obtained. Replace
(

n
|F |

)

by
( n
bn

2
c
)

. Then

|F|
( n
bn

2
c
) =

∑

F∈F

1
( n
bn

2
c
) ≤ 1

follows, the theorem is proved.

Let us remark that inequality (3.1) is important on its own right and is
called the YBLM-inequality (earlier LYM, see [17], [2], [12], [13]).

4. The Method, Illustrated with an Old Result

Lubell’s proof easily applies for Theorem 1.2, however, surprisingly it was
not exploited for proving theorems of the present type. The reason might
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be that not the “excluded” configurations should be considered when using
the idea, but the “allowed induced posets”. (See later.)

Following the definition of the r-fork, let us define the r-brush (in a
poset) which contains r + 1 elements: a, b1, . . . , br where a > b1, . . . , a > br

and is the “dual” of the r-fork. (Here and in what follows we use the ex-
pression “dual” when the complements of the sets involved are considered.)
Theorem 1.3 gives the best expected asymptotic upper bound up to the
second term for V2 in the Boolean lattice. It is easy to see that it implies
the same solution for Λ2. However the result is very different when both of
them are excluded. Our notation La(n, R) is extended in an obvious way
for the case when two subposets R1 and R2 are excluded: La(n, R1, R2).

Theorem 4.1 [11].

La(n, V2, Λ2) = 2

(

n − 1
⌊

n−1
2

⌋

)

.

Proof. The construction giving the equality is the following:
{

F ⊂ [n] : 1 /∈ F, |F | =

⌊

n − 1

2

⌋}

∪

{

F ⊂ [n] : 1 ∈ F, |F | =

⌊

n + 1

2

⌋}

.

The non-trivial part of the proof is the verification of the upper bound.

Let F be a family of subsets of [n] which contains neither a V2 nor a Λ2 as
subposet. Therefore it cannot contain a P3 either. Consider the connected
components of the poset spanned by F . It is obvious that a connected
component can be either a one element poset P1 or a P2. Let α1 and α2 be
their respective numbers. Then

(4.1) |F| = α1 + 2α2.

We will now determine the minimum number of full chains going through
a one or two-element component. Let P (1; a) be a one-element component
which is an a-element set. The number c

(

P (1; a)
)

of full chains going
through P (1; a) is a!(n − a)! . Therefore

c
(

P (1; a)
)

n!
=

1
(

n
a

) .

It takes on its minimum at the value a = bn
2c. Hence we obtained

(4.2)
⌊n

2

⌋

!
⌈n

2

⌉

! ≤ c
(

P (1; a)
)

.



6 G.O.H. Katona

The two-element component consisting of an a-element subset A and a
b-element subset B (A ⊂ B) (a < b) is denoted by P (2; a, b). The number
c
(

P (2; a, b)
)

of full chains going through (at least one element of) P (2; a, b)
is

(4.3) c
(

P (2; a, b)
)

= a!(n − a)! + b!(n − b)! − a!(b − a)!(n − b)! .

Divide it by n! .

(4.4)
c
(

P (2; a, b)
)

n!
=

1
(

n
a

) +
1
(

n
b

) −
1

(

n
b

)(

b
a

) =
1
(

n
a

) +
1
(

n
b

)

(

1 −
1
(

b
a

)

)

.

Suppose first that a is fixed and is ≤ bn−1
2 c. Then (4.4) takes on its

minimum for b = Bbn+1
2 c. Fix b here and consider the following variant of

(4.4):

(4.5)
c
(

P (2; a, b)
)

n!
=

1
(

n
a

) +
1
(

n
b

) −
1

(

n
a

)(

n−a
n−b

) =
1
(

n
b

) +
1
(

n
a

)

(

1 −
1

(

n−a
n−b

)

)

.

This is a monotone decreasing function of a in the interval 0 ≤ a ≤ dn
2e.

Therefore the pair giving the minimum in this case is a = bn−1
2 c, b = bn+1

2 c.

Suppose now that a ≥ bn
2c. Then b can be chosen to be a + 1 by (4.4),

and (4.3) becomes na!(n − a − 1)! It achieves its minimum at a = bn−1
2 c,

again. We obtained

(4.6) n

⌊

n − 1

2

⌋

!

⌈

n − 1

2

⌉

! ≤ c
(

P (2; a, b)
)

.

Observe that a full chain cannot go through two distinct components,
therefore

∑

P1 is a component

c(P1) +
∑

P2 is a component

c(P2) ≤ n!

holds. The left hand side can be lower estimated by (4.2) and (4.6):

(4.7) α1

⌊n

2

⌋

!
⌈n

2

⌉

! + α2n

⌊

n − 1

2

⌋

!

⌈

n − 1

2

⌉

! ≤ n! .

(4.1) has to be maximized with respect to (4.7). Rewrite (4.7) a little
bit:

(4.8) α1

⌊n

2

⌋

!
⌈n

2

⌉

! + 2α2
n

2

⌊

n − 1

2

⌋

!

⌈

n − 1

2

⌉

! ≤ n! .
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Compare the coefficients of α1 and 2α2 in (4.8).

(4.9)
⌊n

2

⌋

!
⌈n

2

⌉

! ≥
n

2

⌊

n − 1

2

⌋

!

⌈

n − 1

2

⌉

!

holds (with equality for even n). Replacing the coefficient of α1 in (4.8)
using (4.9), the inequality

(α1 + 2α2)
n

2

⌊

n − 1

2

⌋

!

⌈

n − 1

2

⌉

! ≤ n!

is obtained, what results in

|F| = α1 + 2α2 ≤
n!

n
2

⌊

n−1
2

⌋

!
⌈

n−1
2

⌉

!
= 2

(

n − 1
⌊

n−1
2

⌋

)

.

5. The Method, in General

Let P be the set of forbidden subposets. Let F be a family of subsets of
[n] such that the poset induced by F in Bn contains no member of P as a
subposet. La(n,P) denotes the largest size of such a family. Consider the
connected components of the poset induced by F . The family of all possible
components is denoted by Q = Q(P).

In our Section 4 we had P = {V2, Λ2}. Then Q
(

{V2, Λ2}
)

= {P1, P2}.

If Q ∈ Q let Q∗
n be a realization of Q in the Boolean lattice Bn, that

is, Q is embedded into Bn and a size (of a subsets) is associated with each
element q ∈ Q∗

n. Here Q → Q∗
n denotes that Q∗

n is a realization of Q. In
Section 4, for instance, P2 is a path containing two elements, while P2 is a
labelled path, labelled with two integers a and b.

Furthermore c(Q∗
n) denotes the number of chains going through Q∗

n. In
our example these numbers are a!(n−a)! and a!(b−a)!(n−b)!, respectively.

Let minQ→Q∗

n
c(Q∗

n) = c∗n(Q) be the smallest number of chains re-
spect to the realizations. In the example: c∗n(P1) = bn

2c!dn
2e!, c∗n(P2) =

nbn−1
2 c!dn−1

2 e! .

Theorem 5.1.

La(n,P) ≤
n!

infQ∈Q(P)
c∗n(Q)
|Q|

.
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Proof. Let F be a family without a copy of any of the posets in P. The
connected components of the poset induced by F all belong to Q(P). Since
no chain can go through two distinct components, the sum of the numbers
of chains cannot exceed the total number of chains.

(5.1)
∑

Q∈Q(P)

∑

Q∗

n : Q→Q∗

n

c(Q∗
n) ≤ n! .

Since
Q → Q∗

n implies c∗n(Q) ≤ c(Q∗
n)

(5.1) can be replaced by

(5.2)
∑

Q∈Q(P)

∣

∣{Q∗
n : Q → Q∗

n}
∣

∣c∗n(Q) ≤ n! .

Easy manipulations on the left hand side give

∑

Q∈Q(P)

∣

∣{Q∗
n : Q → Q∗

n}
∣

∣ |Q|
c∗n(Q)

|Q|

≥
∑

Q∈Q(P)

∣

∣{Q∗
n : Q → Q∗

n}
∣

∣ |Q| inf
Q∈Q(P)

c∗n(Q)

|Q|

and a new form of (5.2):

(5.3) inf
Q∈Q(P)

c∗n(Q)

|Q|

∑

Q∈Q(P)

∣

∣{Q∗
n : Q → Q∗

n}
∣

∣ |Q| ≤ n! .

Here
∑

Q∈Q(P)

∣

∣{Q∗
n : Q → Q∗

n}
∣

∣ |Q| = F ,

and (5.3) gives

|F| inf
Q∈Q(P)

c∗n(Q)

|Q|
≤ n!

what proves the theorem.



Forbidden Intersection Patterns in the Families of Subsets 9

6. The Upper Estimate in Theorem 1.3

This theorem already has two different proofs in [11] and [4], however each
of these proofs needed an ad hoc idea, our new method also works here.
It needs some tedious calculations, but the principal idea is as easy as in
Section 4. Especially if the concise form, Theorem 5.1 is used.

Suppose that F contains no V2 as a subposet. Then it cannot contain
a P3 either. It is easy to deduce that the components of the poset spanned
by F are all of type Λr where 0 ≤ r. This is a new phenomenon! The sizes
of the components are unbounded. Yet, the method works. This is why we
had to write “inf” in Theorem 5.1.

In terms of Section 5: P = {V2} and Q(P) = {Λ0, Λ1, Λ2, . . . , Λr . . .}.
The following lemma gives a good lower estimate on c∗n(Λr). For the sake
of completeness the proof from [10] is repeated.

Lemma 6.1. Suppose 6 ≤ n, 1 ≤ r. Then

u∗!(n − u∗)! + ru∗!u∗(n − u∗ − 1)! ≤ c∗n(Λr)

holds where u∗ = u∗(n) = n
2 − 1 if n is even, u∗ = n−1

2 if n is odd and
r − 1 ≤ n, while u∗ = n−3

2 if n is odd and n < r − 1.

In the case r = 0 the inequality bn
2c!dn

2e! ≤ c∗n(Λ0) holds.

Proof. By symmetry we can consider Vr instead of Λr. Since it was done
in this form in [10] it is more convenient to use this form for the proof.
Let V (r; u, u1, . . . , ur) (u < u1, . . . , ur) be a realization of Λr (in notation
Vr → V (r; u, u1, . . . , ur)) where the subset of u elements is included in all
other ones of sizes u1, . . . , ur, respectively.

1. One can easily show by using the sieve that

c
(

V (r; u, u1, . . . , ur)
)

= u!(n − u)! +
r
∑

i=1

ui!(n − ui)! −
r
∑

i=1

u!(ui − u)!(n − ui)! .

This will actually be used in the form

(6.1) c
(

V (r; u, u1, . . . , ur)
)

=
r
∑

i=1

(

1

r
u!(n − u)! + ui!(n − ui)! − u!(ui − u)!(n − ui)!

)

.
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Dividing one term by n! two useful forms are obtained for the summand
in (6.1):

(6.2)
1

r
(

n
u

) +
1
(

n
ui

) −
1

(

n
ui

)(

ui

u

) =
1

r
(

n
u

) +
1
(

n
ui

)

(

1 −
1
(

ui

u

)

)

and

(6.3)
1

r
(

n
u

) +
1
(

n
ui

) −
1

(

n
u

)(

n−u
n−ui

) =
1
(

n
ui

) +
1
(

n
u

)

(

1

r
−

1
(

n−u
n−ui

)

)

.

2. First we will show that (6.2)–(6.3) attains its minimum under the
condition u < ui for some pair u, ui = u + 1.

If n
2 − 1 ≤ u, fix u and consider changing ui in (6.2). Here,

(

n
ui

)

is a

decreasing fuction of ui in the interval [bn
2c, n], while

(

ui

u

)

is increasing.
Therefore, one can suppose that ui = u + 1, and we are done.

Else, n
2 − 1 > u and the method in (6.2) above leads to ui ≤ bn

2c. Fix
this value and increase u using (6.3). It will not increase by moving u to
u = bn

2c− 1.

Hence, we obtained the lower estimate

min
u

(

1

r
u!(n − u)! + (u + 1)!(n − u − 1)! − u!1!(n − u − 1)!

)

= min
u

(

1

r
u!(n − u)! + u!u(n − u − 1)!

)

for (6.2)–(6.3) and therefore we have

(6.4) min
u

(

u!(n − u)! + ru!u(n − u − 1)!
)

≤ c
(

V (r; u, u1, . . . , ur)
)

This minimum will be determined in the rest of the proof.

3. Suppose now that 2 ≤ r. Take the “derivative” of fr(u) = u!(n−u)!+
ru!u(n − u − 1)!, that is, compare two consecutive places of fr(u). When
does the inequality

fr(u − 1) = (u − 1)!(n − u + 1)! + r(u − 1)!(u − 1)(n − u)!(6.5)

< fr(u) = u!(n − u)! + ru!u(n − u − 1)! .
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hold? It is equivalent to

0 < 2(r − 1)u2 −
(

n(r − 3) + r − 1
)

u − n2 + (r − 1)n.

The discriminant of the corresponding quadratic equation in u is

(

n(r − 3) + r − 1
)2

+ 8(r − 1)
(

n2 − (r − 1)n
)

= (r + 1)2n2 − 2(r − 1)(3r − 1)n + (r − 1)2.

The latter expression can be strictly upper estimated by
(

(r + 1)n − (r − 1)
)2

,

if r + 1 < 3r − 1 holds, that is, if r > 1. Hence, the larger root α2 of the
quadratic equation is less than

n(r − 3) + r − 1 + (r + 1)n − (r − 1)

4(r − 1)
=

n

2
.

On the other hand, as it is easy to see,
(

n(r + 1) − 3(r − 1)
)2

is a
lower bound for the discriminant if r − 1 ≤ n holds. Using this estimate we
obtain that n−1

2 ≤ α2 in this case. Substituting this lower estimate into the
formula for the smaller root α1 we obtain α1 ≤ 0 when n ≥ r − 1. Since
(6.5) holds exactly below α1 and above α2, we can state that fr(u) attains
its minimum at u = bα2c. By the inequalities above we can conclude that

this is at n
2 −1 if n is even and n−1

2 if n is odd. The statement of the lemma
is proved in the case of n ≥ r − 1.

Else suppose n < r − 1. The inequality α2 < n−1
2 can be proved in the

same way as in the previous case. On the other hand, 6 ≤ n implies that
(

n(r + 1) − 5(r − 1)
)2

is a lower estimate on the discriminant, hence we
have n

2 − 1 < α2. This gives that α1 < 3
2 . The if n is even, bα2c is again

n
2 − 1, while bα2c = n−3

2 when n is odd. Although fr(0) < fr(1) is allowed
by this estimate, it is easy to check that fr(0) > fr(1) holds in reality. By
(6.4) the proof is finished for r ≥ 2.

The case r = 1 is much easier. The comparison (6.5) leads to a linear
inequality which is an equality for u = n

2 . The formula f1(u) also has its
minimum at bn−1

2 c. (But it has the same value at n
2 − 1 and n

2 .) L

The inequality

(6.6) u∗!u∗(n − u∗ − 1)! ≤
u∗!(n − u∗)! + ru∗!u∗(n − u∗ − 1)!

r + 1
(0 ≤ r)
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is a consequence of the lemma and the remark on the case r = 0.

Lemma 6.1 and (6.6) gives

(6.7) u∗!u∗(n − u∗ − 1)! ≤
c∗n(Λr)

|Λr|
.

Substituting this into Theorem 5.1 we obtain

|F| ≤
n!

u∗!u∗(n − u∗ − 1)!
.

This right hand side is equal to

(

n
⌊

n
2

⌋

) n
2

n
2 − 1

,

(

n
⌊

n
2

⌋

) n+1
2

n−1
2

,

(

n
⌊

n
2

⌋

) n−1
2

n−3
2

in the cases u∗ = n
2 − 1, n−1

2 and n−3
2 , respectively. These are all equal to

=

(

n
⌊

n
2

⌋

)(

1 +
2

n
+ O

(

1

n2

))

.

7. A Construction = A Lower Estimate

Although we concentrate in this paper on the upper estimates, it seems
to be important to show the construction serving as a lower estimate in
Theorem 1.3

The construction for a family avoiding a V2 is the following. Take all the
sets of size bn

2c and a family A1, . . . Am of bn
2c+ 1-element sets satisfying

the condition |Ai∩Aj | < bn
2c for every pair i < j. It is easy to see that this

family contains no V2. We only have to maximize m. Since the bn
2c-element

subsets of the Ais are all distinct, we have

m
(⌊n

2

⌋

+ 1
)

≤

(

n
⌊

n
2

⌋

)

.

This gives the upper estimate

(7.1) m ≤

(

n
⌊

n
2

⌋

)

2

n
.
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There is a very nice construction of such sets Ai with

(7.2) m =

(

n
⌊

n
2

⌋

+ 1

)

1

n
=

(

n
⌊

n
2

⌋

)(

1

n
+ Ω

(

1

n2

))

.

Let bn
2c + 1 be denoted by k in this proof for saving space. Consider the

sets {x1, x2, . . . , xk} where these xs are distinct integers in the interval [n]
satisfying

(7.3) x1 + x2 + . . . + xk ≡ a (mod n)

for some fixed a ∈ [n]. It is easy to see that the intersection of two such sets
is < k, as we needed. The total number of k-element sets is

(

n
k

)

, therefore
there is an a for which the number of sets satisfying (7.3) is at least 1

k

(

n
k

)

.
We found the necessary number of “good” sets.

This construction can be found in this form in [9] (the paper contains a
much more general form), but the basic idea have appeared in [5] and [16],
too.

It is a longstanding conjecture of coding theory what the right constant
is here, 1 or 2. Or if the limit exists at all? This is why there is a disturbing
factor 2 between the second terms of the lower and upper estimates in
Theorem 1.3. This gap cannot be bridged without making progress in the
problem in coding theory mentioned above.

8. Excluding the N

The poset N contains 4 distinct elements a, b, c, d satisfying a < c, b < c,
b < d. In the Boolean lattice a subposet N consists of four distincts subsets
satisfying A ⊂ C, B ⊂ C, B ⊂ D. It is somewhat surprising that excluding
N the result is basically the same as in the case of V2. The goal of the
present section is to prove the following theorem.

Theorem 8.1 [10].

(

n
⌊

n
2

⌋

)(

1 +
1

n
+ Ω

(

1

n2

))

≤ La(n, N) ≤

(

n
⌊

n
2

⌋

)(

1 +
2

n
+ O

(

1

n2

))

holds.
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The lower estimate is obtained from Theorem 1.3, since La(n, V2) ≤
La(n, N).

The upper estimate will be proved by Theorem 5.1, again. Here
P = {N}.

Let F be a family of subsets of [n] containing no four distinct members
forming an N . Consider the poset P (F) spanned by F in Bn. What can
its components be? A component might be a P3, but no component can
contain a P3 as a proper subposet, since adding one more element to P3

an N is created no matter which element of P3 is in relation with the new
element. Let a < b be two elements of a component. We claim that a and b
cannot be both comparable within the component with some other distinct
elements c, d (say, in this order), unless they are a part of a P3. Indeed,
the choices c < a and b < d lead to a P3, therefore the only possibility is
a < c, d < b. This is an N , contradicting the assumption. But one of them
can be comparable with many others in the same direction. Therefore the
following ones are the only possible components:

Q(P) = {P3, Λ0, Λ1, Λ2, . . . , Λr, . . . , V1, V2, . . . , Vr, . . .}.

In order to use Theorem 5.1 we have to give a good lower bound on the
ratios

(8.1)
c∗n(P3)

3
,

c∗n(Λr)

r + 1
,

c∗n(Vr)

r + 1
.

(6.7) is a good lower estimate on the middle one. By symmetry, the same
applies for the last one. The only unknown one is the first ratio. Its exact
value is determined in [10] (Lemma 3.1). We do not repeat the proof, since
both the statement and the proof are obvious.

Let P (3; u, v, w) (u < v < w) be a realization of P3 by sets of sizes
u < v < w.

Lemma 8.2. c
(

P (3; u, v, w)
)

(u < v < w) takes its minimum for the values

u = bn
2c− 1, v = bn

2c, w = bn
2c+ 1, that is,

(⌊n

2

⌋

− 1
)

!
(⌈n

2

⌉

− 1
)

!

(

⌊n

2

⌋2
− n

⌊n

2

⌋

+ n2 − 1

)

≤ c
(

P (3; u, v, w)
)

.

Hence we have

(8.2)
1

3

(⌊n

2

⌋

− 1
)

!
(⌈n

2

⌉

− 1
)

!

(

⌊n

2

⌋2
− n

⌊n

2

⌋

+ n2 − 1

)

≤
c∗n(P3)

3
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If we are lucky, the left hand side of (8.2) is not smaller than the left
hand side of (6.7). Indeed, the inequality

u∗!u∗(n − u∗ − 1)! ≤
1

3

(⌊n

2

⌋

− 1
)

!
(⌈n

2

⌉

− 1
)

!

(

⌊n

2

⌋2
− n

⌊n

2

⌋

+ n2 − 1

)

can be easily checked (for 2 ≤ n) by distinguishing the three cases of u∗.

Since u∗!u∗(n − u∗ − 1)! is a lower estimate for all ratios in (8.1) the
proof of Theorem 7.1 can be finished as in the case of Theorem 1.3.

Remarks. Knowing the estimate of Lemma 6.1 we obtained the proof of
Theorem 7.1 almost free, we only had to show that P3 does not decrease
the infimum in the denominator of Theorem 5.1. Of course we cannot state
that La(n, V2) = La(n, N), they are equal only asymptotically.

It is interesting to mention that the “La” function will jump if the
excluded poset contains one more relation. The butterfly on contains 4
elements: a, b, c, d with a < c, a < d, b < c, b < d.

Theorem 8.3. [4] Let n ≥ 3. Then La(n, on) =
(

n
bn/2c

)

+
(

n
bn/2c+1

)

.

9. A Further Generalization

Observe that the main part of a large family is near the middle, the total
number of sets far from the middle is small. More precisely, let 0 < α < 1

2
be a fixed real number. The total number of sets F (for a given n) of size
satisfying

(9.1) |F | /∈

[

n

(

1

2
− α

)

, n

(

1

2
+ α

)]

is very small. It is well-known (see e.g. [1], page 214) that for a fixed constant
0 < β < 1

2
β
∑

i=0

(

n

i

)

= 2n(h(β)+o(1))

holds where h(x) = −x log2 x − (1 − x) log)2(1 − x). Therefore the total
number of sets satisfying (9.1) is at most

(9.2) 2

bn( 1

2
−α)c
∑

i=0

(

n

i

)

= 2n(h( 1

2
−α)+o(1)) =

(

n
⌊

n
2

⌋

)

O

(

1

n2

)
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where 0 < h(1
2 − α) < 1 is a constant.

In view of this observation we can improve our main tool, Theorem 5.1.
First we have to generalize c∗n(Q). Let c∗αn (Q) denote minQ→Q∗

n
c(Q∗

n) where
only those realizations Q∗

n are considered whose member subsets are of size
in the interval (9.1). It is obvious that c∗n(Q) ≤ c∗αn (Q). We actually believe
that they are equal for large n, but we cannot prove this statement.

Theorem 9.1. Let 0 < α < 1
2 be a real number. Then

La(n,P) ≤
n!

infQ∈Q(P)
c∗α
n (Q)
|Q|

+

(

n
⌊

n
2

⌋

)

O

(

1

n2

)

.

Proof. Let F be a family containing no subposet belonging to P. Define
Fα ⊂ F consisting of the sets F of sizes in the interval (9.1). The rest,
F − Fα is denoted by Fα.

(9.3) |Fα| ≤

(

n
⌊

n
2

⌋

)

O

(

1

n2

)

is a consequence of (9.2). We have to prove only that

(9.4) |Fα| ≤
n!

infQ∈Q(P)
c∗α
n (Q)
|Q|

.

The proof of Theorem 5.1 can be repeated. The only difference is that since
all the sets in Fα are of size in the interval (9.1), the components have the
same property therefore c∗n can be really replaced by c∗αn . The sum of (9.3)
and (9.4) gives the statement of the theorem.

Theorem 9.2. Let 1 ≤ r be a fixed integer, independent on n. Suppose
that every element Q ∈ Q(P) has the following property: if a ∈ Q then a
covers at most r elements of Q. Then

La(n,P) ≤

(

n
⌊

n
2

⌋

)(

1 + 2
r

n
+ O

(

1

n2

))

.
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Proof. Theorem 9.1 will be used with 0 < α < 1
8r+12 . Suppose that

Q ∈ Q(P), Q → Q∗
n, that is, Q∗

n is a realization of Q and its member
sets are of size in the interval (9.1). Using the first two terms of the sieve

(9.5)

c(Q∗
n) ≥

∑

F∈Q∗

n

|F |!
(

n − |F |
)

! −
∑

F,G∈Q∗

n,G⊂F

|G|!
(

|F | − |G|
)

!
(

n − |F |
)

!

=
∑

F∈Q∗

n

(

|F |!
(

n − |F |
)

! −
∑

G∈Q∗

n : G⊂F

|G|!
(

|F | − |G|
)

!
(

n − |F |
)

!

)

.

Consider one term of (9.5) and divide it by n!:

(9.6)
1
(

n
|F |

)

(

1 −
∑

G∈Q∗

n : G⊂F

1
(|F |
|G|

)

)

.

n(1
2 −α) ≤ |G| < |F | ≤ n(1

2 +α) implies |F |− |G| ≤ 2αn, therefore |G| can
be |F |−1, |F |−2, . . . , |F |−b2αnc. The number of sets G with |G| = |F |−1
is at most r by the assumption of the theorem. It is easy to see that the
number of sets G with |G| = |F |− i is at most ri. Hence the following lower
estimate on (9.6) is obtained:

(9.7)
1
(

n
|F |

)

(

1 −

b2αnc
∑

i=1

ri

(

|F |
i

)

)

.

We will show that these negative terms are increasing in absolute value,
when n ≥ 4r. Compare two neighboring terms.

ri

(

|F |
i

)
≥

ri+1

(

|F |
i+1

)

holds iff

(9.8) |F | ≥ (r + 1)i + r.

Since |F | ≥ n(1
2 − α) and i ≤ 2αn, it is sufficient to show

n

(

1

2
− α

)

≥ (r + 1)2αn + r
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rather than (9.8). However this is an easy consequence of 0 < α < 1
8r+12

and n ≥ 4r. By the monotonity a new lower estimate is obtained for (9.7):

(9.9)
1
(

n
|F |

)

(

1 −
r

|F |
−

r2

(

|F |
2

)
− 2αn

r3

(

|F |
3

)

)

.

A further decrease can be obtained by choosing the appropriate, but differ-
ent values of |F | in the two factors of (9.9). Choose |F | = bn

2c in the first

factor and |F | = dn(1
2 − α)e in the second one. The lower estimate

(9.10)
1

( n
bn

2
c
)

(

1 − 2
r

n(1 − 2α)
+ O

(

1

n2

))

is obtained.

(9.6)–(9.10) are lower estimates on one term of (9.5). Since (9.10) does
not depend on F , we have the lower estimate

n!|Q∗
n|

1
( n
bn

2
c
)

(

1 − 2
r

n(1 − 2α)
+ O

(

1

n2

))

on (9.5). Using the trivial |Q∗
n| = |Q|

c∗αn (Q)

|Q|
≥ |Q|

n!
( n
bn

2
c
)

(

1 − 2
r

n(1 − 2α)
+ O

(

1

n2

))

can be obtained what is independent on Q. Substitute this lower estimate
into the first term of the statement of Theorem 9.1 to obtain an upper
estimate:
(

n
⌊

n
2

⌋

)

1

1 − 2r
n(1−2α) − O

(

1
n2

) =

(

n
⌊

n
2

⌋

)(

1 +
2r

n(1 − 2α)
+ O

(

1

n2

))

.

Theorem 9.1 gives

La(n,P) ≤

(

n
⌊

n
2

⌋

)(

1 + 2
r

n(1 − 2α)
+ O

(

1

n2

))

.

Since this holds for arbitrary small α, the proof is complete.

If the family F contains no Vr+1 then the components cannot contain
a set which is contained in r + 1 other sets. Therefore the conditions of
Theorem 9.2 are satisfied (in the dual form). This is why Theorem 9.2
implies Theorem 1.5. However, as we will see in the next section, a stronger
statement follows.
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10. Excluding Induced Posets, Only

One can ask what happens if we exclude the posets R belonging to P only
in a strict form, that is, there is no induced copy in the poset induced in Bn

by the family. Given a “small” poset R, La](n, R) denotes the maximum
number of elements of Y ⊂ 2[n] (that is, the maximum number of subsets
of [n]) such that R is not an induced subposet of the poset spanned by Y
in Bn. This obviously generalizes for La](n,P) where P is a set of posets.

For instance, calculating La(n, V2) the path of length 3, P3 is also
excluded, while in the case of La](n, V2) this is allowed, three sets A, B,
C are excluded from the family only when A ⊂ B, A ⊂ C but B and C are
incomparable. As we saw in the proof of Theorem 1.3, Q(V2) consists of
Λrs (0 ≤ r). The set Q](V2) of possible components when only the induced
V2s are excluded is much richer. Q](V2) contains all posets whose graph is
a “descending” tree with one maximal vertex. That is, not only the sizes
of these posets are unbounded, but their depths, as well. Yet, this case can
be also be treated, on the basis of Theorem 9.2. To be precise we have
to modify the formulations of our previous theorems. These modifications
need no proofs, since the original proofs did not really depended on P, only
on Q(P) and this is simply replaced by Q](P).

Theorem 10.1.

La](n,P) ≤
n!

infQ∈Q](P)
c∗n(Q)
|Q|

.

Theorem 10.2. Let 0 < α < 1
2 be a real number. Then

La](n,P) ≤
n!

infQ∈Q](P)
c∗α
n (Q)
|Q|

+

(

n
⌊

n
2

⌋

)

O

(

1

n2

)

.

Theorem 10.3. Let 1 ≤ r be a fixed integer, independent on n. Suppose
that every element Q ∈ Q](P) has the following property: if a ∈ Q then a
covers at most r elements of Q. Then

La](n,P) ≤

(

n
⌊

n
2

⌋

)(

1 + 2
r

n
+ O

(

1

n2

))

.

It is quite obvious that if Q ∈ Q](Vr+1) then no element of Q is covered
by more than r other elements. Theorem 10.3 can be applied in a dual
(upside-down) form.
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Theorem 10.4.

La](n, Vr+1) ≤

(

n
⌊

n
2

⌋

)(

1 + 2
r

n
+ O

(

1

n2

))

.

This is a stronger form of Theorem 1.5. The special case r = 1 was
solved in [6].

11. Concluding Remarks

1. We obtained Theorem 8.1 almost free after having the proof of Theorem
1.3 with our method. This probably will often happen. The solution for a
given excluded configuration can be obtained by putting together estimates
for “allowed” posets, which have been already solved for other excluded
patterns.

2. In most of our results the extremal configuration consist of some full levels
plus a thinned out level. Theorem 4.1 shows that this is not necessary true
in all cases.

3. We do not see the limits of our method. We hope we will be able to
generalize for more levels, like Theorems 8.3 and 1.2. However we are quite
sure that it will not give the solution for every family P of posets.

4. The problem P = {V2, Λ3} is very instructive. It is easy to see that
Q(P) = {P1, P2, Λ2}. The cases of even and odd n are somewhat different.
Consider first the case when n is even. Then 1

3c∗n(Λ2) = n
2 !n

2 !(1 − 2
3n) <

1
2c∗n(P2) = c∗n(P1). Therefore Theorem 5.1 implies

Theorem 11.1. If n is even then

La(n, V2, Λ3) ≤
n!

n
2 !n

2 !
(

1 − 2
3n

) =

(

n
n
2

)(

1 +
2

3n
+ O

(

1

n2

))

.

Observe that Theorem 9.2 would only give 2
n in the second term. The

conclusion is that, although Theorem 9.2 is rather strong in general, it
could be week in special cases. On the other hand, it seems that the
obvious construction, taking all n

2 -element subsets is not optimal. We found
a better construction for n = 4:

{

{1, 2}, {1, 3}, {1, 4}, {2, 4}, {3, 4}, {1, 2, 3},
{2, 3, 4}

}

. But we do not know such a construction for infinitely many n.
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Suppose now that n is odd. Then 1
3c∗n(Λ2) = n−1

2 !n−1
2 !(n

2 − 1
6) <

1
2c∗n(P2) < c∗n(P1). Theorem 5.1 gives the following upper estimate. The
lower estimate comes from Theorem 4.1.

Theorem 11.2. If n is odd then
(

n
n−1

2

)(

1 +
1

n

)

≤ La(n, V2, Λ3) ≤

(

n
n−1

2

)(

1 +
4

3n − 1

)

.

Since the right hand side is an integer (42) for n = 7, it might cherish
the hope that there are some nice constructions (similar to the construction
of Theorem 4.1) giving equality in the upper bound, at least for some n.
This equality can be achieved only by 14 Λ2s: consisting of 14 four-element
subsets F1, . . . , F14 and their 3-element subset pairs: T 1

i , T 2
i where these

are 28 distinct 3-element subsets, T 1
i , T 2

i ⊂ Fi but T j
i 6⊂ F` holds whenever

i 6= `. Let R1, . . . , R7 denote the remaining seven 3-element sets. Since every
F contains exactly four 3-element subsets, it must contain two of the Rs.
Consequently there are 28 pairs R ⊂ F . Since each R has four 4-element
supersets, they must be all in the family of F s. However the minimum
number of 4-element supersets of seven 3-element sets is 15. (This can be
shown by taking the complements. The minimum size of the shadow of a
family of seven 4-element sets can be obtained from 7 =

(

5
4

)

+
(

3
3

)

+
(

2
2

)

. It

is
(

5
3

)

+
(

3
2

)

+
(

2
1

)

= 15.) Our hopes failed.

But there might be other (perhaps infinitely many) n giving equality in
the upper bound of Theorem 11.2. The next candidate is n = 15.

5. One feels that the optimal construction uses sets in the middle, only.

Conjecture 1. For every poset P there is a constant c(P) (independent
on n) such that La(n,P) can be achieved by a family containing sets of size
in the interval

[n

2
− c(P),

n

2
+ c(P)

]

.

Let us remark that we have proved a much weaker version in Section 9:
La(n,P) can be asymptotically achieved by sets from the interval

[

n

(

1

2
− α

)

, n

(

1

2
+ α

)]

where 0 < α is arbitrarily small.

The conjecture is not true for the induced case. For instance if the
induced Λ2 is excluded (P3 is allowed, determination of La](n, Λ2) then the
optimal construction always contains the ∅.
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