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Information Sources with Different Cost Scales
and the Principle of Conservation of Entropy

I. CsiszARr, G. KATONA and G.TUSNADY *

Summary. The aim of this paper is to provide a mathematically rigorous and sufficiently general
treatment of the basic information-theoretic problems concerning sources with symbols of different
costs and noiseless coding in a general sense. The main new concepts defined in this paper are the
entropy rate (entropy per unit cost) of a source with respect to a stochastic cost scale and the encoding
(in particular decodable encoding) of a source in a general sense. On the basis of these concepts, we
prove some general theorems on the relation of entropy rates with respect to different cost scales and
on the effect of encoding to the entropy rate. In particular, the “principle of conservation of entropy”
and the “ noiseless coding theorem™ are proved under very general conditions.

Introduction

Despite of the vast progress information theory has made in the last decade,
some problems important from the point of view of the very foundations — to the
authors’ knowledge — still lack a rigorous and sufficiently general exposition. In
this paper we attempt to fill some of these gaps, concerning problems of the
following type (precise definitions will be given in Section 2):

(i) If the message symbols produced by an information source are of different
cost, the entropy per unit cost can be defined either as the limit of the entropy
of the message sequence of cumulative cost ¢ divided by ¢, or as the entropy per
symbol (limit of the entropy of the first n symbols divided by n) divided by the
average symbol cost. (Most frequently, the cost of a symbol is its duration and
entropy per unit cost is entropy per second.) Dating back to Shannon’s fundamen-
tal paper [16], in general the second definition is adopted (see also [12, 15], etc.)
but in heuristic reasonings it is often implicitly assumed to be equivalent to the
first one. In the literature consideration is usually restricted to the simplest case
that each symbol of the source alphabet has some fixed cost (duration), but no
proof of the equivalence of the two possible definitions of entropy per second
seems to have been published even for that case. It should be noted that also the
general case has considerable interest, in particular if one looks at sources pro-
ducing message symbols at random times — according to some point process —
and “ cost ” is interpreted as the length of the time interval between two subsequent
symbols.

(i) For the interpretation of entropy as the measure of the amount of informa-
tion the so-called noiseless coding theorem is of basic importance. It asserts,
intuitively, that the greatest lower bound of the average number L of code charac-
ters per symbol needed to encode in a uniquely decipherable way the output of a

* The main results of this research have been reported at the Second Congress of Bulgarian
Mathematicians, Varna, August 1967, at the International Symposium on Information Theory,
San Remo, September 1967 and at the Colloquium on Information Theory, Debrecen, September 1967.
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where s’ is the size of the coding alphabet.

’

0g, s

The “noiseless coding theorem™ is usually stated and proved, however, for rather
special codes only, namely for those defined by a fixed assignment of sequences of
code symbols to the letters of the source alphabet, or to sequences (“ blocks™) of
fixed length of letters of the source alphabet (see e.g. Feinstein [9], Ash [1], etc.).
On the other hand, the theorem is expected to be true for “all conceivable” codes
and in order that it be really valuable from the “foundations™ point of view it
should be proved for “arbitrary” codes, including blockwise encodings with
variable block length and the code mapping varying from block to block, in
dependence on the previously encoded message symbols. The strongest results
known in this direction are apparently those of Billingsley [2]. Moreover, if the
message symbols or the code characters or both are of different cost, if H is inter-
preted as the entropy per unit cost, L as the average cost dilation due to the
encoding, and log, s" is replaced by the “capacity of the noiseless channel” as
defined by Shannon [16], one may infer that the statement still remains valid. In
fact — for the case of fixed symbol costs — this statement occurs already in [16],
but, to the authors’ knowledge, no exact proof has been published so far, except
for special (Markovian) sources.

source of entropy rate H equals 1

(iii) It is “intuitively clear™ that uniquely decipherable coding gives rise to a
message of entropy (per symbol) H/L where H is the entropy (per symbol) of the
original message and L is the average number of code characters per message
symbol. A rigorous proof of this assertion for finite-state Markovian sources and
encodings performed by finite-state transducers has been given by Sidel’nikov [17],
and for arbitrary sources and simple letter codes by two of the present authors [ 10].
In case of symbols of different cost, a similar relation is to be expected for the
entropies per unit cost. In this direction there seems nothing to have been published.

The problems listed under (i), (ii) and (iii) are very closely related to each other.
As a main tool for dealing with them we introduce the concept of entropy rate
with respect to a stochastic cost scale and establish a theorem on the relation of
entropy rates with respect to different cost scales under general conditions.
Applying this result, we obtain an apparently satisfactory solution of problems
(1) — (iii), for sources with finite alphabet; in particular we prove the “ principle of
conservation of entropy™ for a very wide class of encoding procedures. Our
method is straightforward and follows closely intuition. Our aim was to make
familiar heuristic reasonings rigorous rather than to replace them by ad hoc non-
information-theoretic arguments; in this respect, even for the particular cases of
our results that have been proved earlier, our proofs seem preferable to the
existing ones.

In Section 1, some notational conventions are introduced and, for the sake of
later reference, some simple lemmas are established (without any claim of novelty).

In Section 2, we define entropy rate with respect to an arbitrary cost scale
(Definition 2.2) and we prove the entropy rate comparison theorem (Theo-
rem 2.2). This theorem can be considered as a general solution of problem (i), as
one sees most clearly from its specialisations (Theorems 2.3 and 2.4). It is also
shown, how the entropy rate with respect to an arbitrary cost scale is bounded by
the channel capacity (Theorem 2.5).
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In Section 3, we define encoding (and, in particular, decodable encoding) in a
general sense (Definitions 3.1, 3.2 and 3.3). Applying a strengthened version of the
entropy rate comparison theorem, we prove a general form of the principle of
conservation of entropy (Theorem 3.3); this result and, in particular, its specialisa-
tion Theorem 3.4 provides a solution of problem (iii). We also prove a general
version of the noiseless coding theorem (see problem (ii)) even for such cases where
the principle of conservation of entropy does not hold (Theorem 3.5).

Both Sections 2 and 3 contains several examples; some of them are illustrations
of our general concepts and results showing their relation to familiar ones, while
the others show the limitations of eventual further generalizations.

Section 4 contains some comments and unsolved problems.

§ 1. Preliminaries

(A) Throughout this paper, the terms “random variable”, “discrete random
variable” (=random variable with finite or countable state space), “ integer valued
random variable”, “almost surely” (=with probability one), “uniformly
integrable” and “if and only if” will be abbreviated as RV, DRV, IRV, a.s., u.i.
and iff, respectively.

All RV’s will be assumed to be defined on the same probability space (2, §, P).
RV’s will be denoted by greek letters, omitting, as a rule, the argument w. Except
Q and o (typical element of ), all greek letters occurring in this paper denote
RV’s. In case of families of RV’s (=stochastic processes) we shall write the para-
meter as an argument rather than as an index; thus a typical element of a sequence
of RV’s will be denoted by £(n) rather than by &, (of course, &(n) means really
&(n; m)).

If Ae§, P(A)>0, symbols with subscript 4 will refer to the probability meas-
ure Py (+)=P(+|4); if P(4)=0, such symbols will be meant to be 0. E.g., Ececn(n)
means E(n|la<{Z<bh) if P@<ELh)>0 and 0 otherwise.

(B) By entropy (conditional entropy) of DRV’s we shall always mean entropy
in the sense of Shannon:

H()=-) P(é=x)log, P(¢=x), (L.1)
H =) Plr=y)H,_,(&)=—Y P(n=y) P(¢=x|n=y)log, PE=x|n=y) (1.2)

where x and y range over the state space of & and 5, respectively (eventual undefined
terms in (1.1) and (1.2) are considered as zeros).

We shall need also the concept of information distance (of DRV’s)
d(S,m=H(En+HMn|S) (1.3)
and the mutual information (of DRV’s with d(&, 1)< + oc)
IS, n)=H(E)—H(|n)=H(n)— H(n|&). (1.4)

The equality H(E)— H(E|n)= H(n)— H(n| &) follows from (1.5) below, if d(&, n)< + o0.
For the purposes of this paper, we need not define I(&, 5) if d(&, )= + .
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The well-known basic identities and inequalities concerning entropies and
conditional entropies (due essentially to Shannon [16], see also e.g. [ 1, 9]) such as

H(, n)=H()+Hn[)=HMn)+H(n), (1.5)

H(E nlO)=H(E|IO+HM|E )=Hnl)+H(En,J), (1.5)
0=H(In, )=H(In)=H(), (1.6)
0<1(& )< max(H(E), H(n), (1.7)
0= H(¢)<Llog, {number of possible values of &}, (1.8)
0 H(¢|n)Z E log, {number of possible values of & given #} (1.8)

will be used freely, without any further reference. We shall need also some other
simple but somewhat less standard inequalities summarized in the following
lemmas:

Lemma 1.1. We have for arbitrary DRV's

d(&,n)+dn,0)=d(E0), (1.9)
[H(E)—H(n)|=d(&,n), (1.10)

|H(E Im)—H(Ealno)|SdEy, &) +d (g, n,), (1.11)
(&1, m)— 12, n2)|=d (&4, $2)+d(11,712) (1.12)

provided (in (1.10)—(1.12)) that the left hand side is meaningful.

Remark 1.1. This lemma means that the information-distance is a metric in
the space of DRV’s with finite entropy and the different information quantities
are (uniformly) continuous functions with respect to it.

Lemma 1.2. If £ is an IRV with finite expectation then

H(§)ZE|&|+1og, 3 (1.13)
and

2
H(&) < Elog, (€] + 1)+ log, (“T—l). (1.14)

Proof of Lemma 1.1. The triangle inequality (1.9) follows from
HEmM+HMOZHE I, O+H@|O=HE nH)=H(E|) (1.15)

and the corresponding inequality obtained by changing the role of £ and {. (1.10)
is an immediate consequence of (1.5) and (1.3). By obvious substitutions, (1.15)
gives rise also to

|H(E ) —H (G, In)|£d(&,8,),  |HEIm)—HEIn)|Sd(ny,n,)  (1.16)
whence (1.11) directly follows:

IH(51|'71)_H(¢2|'12)|§ |H(61|W1)_H(521’h)|+ |H(§2|’71)_H(éz|’72)‘
Sd(&y, &) +dmy,n2);
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at last, from (1.4), (1.5) and the second inequality of (1.16) we get

]I(éla m)—1(&2,my)|= IH(fl)—H('?z)“H(f1|'11)+H('12|‘fz)|
= |H(51|Wz)_H('?zléﬂ_H(éll’h)‘*‘H('Tzlfz)‘
Sd(ny,ny)+d(&,, &)
i.e. (1.12).

Proof of Lemma1.2. Set p,=P(£=k) and g,=3%2" (k=0, +1, ...). Then {g,}
is a probability distribution and the well-known inequality

¥ pilog, 220
qx
gives rise to (1.13).
(1.14) can be proved in the same way, with the choice

¢ 7.[2 -1

= k=0, +1,..), :(__1) ‘
LRNTTEST =

(C) We shall have to do with three types of convergence of RV’s: convergence

in probability (or stochastic convergence), almost sure convergence (convergence

with probability one) and convergence in L,-norm. They will be denoted by

P, 2%, and -5, respectively.

Lemma 1.3. Let £(t), t=0 be a family of RV’s and let E(t) 2> & (t— + o).
Then the conditions
(a) &(t) is uniformly integrable (u.i.) for t — oo and
(b) E|E@)|— E|¢|<o (t— + )
are equivalent and imply &(t) 2 & (t — o), and conversely, &(t) —2> Ee L, implies
E(t)—*t> & and both (a) and (b).
Here condition (a) means that
lim | |E@0)|P(dw)—0 as K— +o0.
=% JewlzK
Remark 1.2. 1f there exists t,=0 such that for every finite t,>1t, the RV’s
(1), to=t=t, are u.i. then, obviously, condition (a) is equivalent to saying that
E(t) is w.i. for t=1¢,.

Proof. From &(t)—» ¢ L, obviously follows both &(t) —2- ¢ and (b). These,
in turn, imply, on account of

EIEOI-EKI= [ (IE@I-IE)Pdw)+ [ |E@)|PAw)— [ €| Pdw)
AL, K) A(t,K) A(t, K)
(with A(t, K)={o: |E()—E|<K, |é|<K}, A(t,K)=D\A(t,K), K>0 fixed) the
relation o
lim | [E@IPAw)<lim | [¢|Pdw)= [ [ Pdw)
1= ez 2K =0 4, K) HESS
(we used that {w: [£(1)|=2K}<A(t,K)) whence (a) directly follows. Finally,
E()—F ¢ and (a) obviously imply &(f)—2 &, completing the proof.
14 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 12
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(D) If X=1{x,,...,x,} is an arbitrary finite set, we denote by 1 (X) and 2((X)
the set of all finite and infinite sequences, respectively, of elements of X. Here
“sequence” means simply juxtaposition of elements without commas. The void
sequence u, will be also considered to belong to U (X). The set X will be called
an alphabet iff identical sequences from U (X)u X (X) are elementwise identical,
too, ie. x; x;,...X; =X; X;,...X; implies n=m and i,=j,(k=1,2,...,n),x; x;, ---=
Xj, X;, ... implies iy =j; (k=1, 2, ...) and W(X) and 1 (X) are disjoint. Thls u)ndmon
means only that the elements of X are really “elementary”, excluding e.g. the
possibility of x;=a, x,=b, x3=ab or x;,=a, x,=bc, x3=ab, x,=c etc.

For each alphabet X, U(X) is a free semigroup with respect to juxtaposition;
the zero element is the void sequence u,. Observe, however, that our concept
of alphabet means somewhat more than this; e.g. for x;, =0, x,=01, x3=11 the
set X ={x,,x,,x53} is not an alphabet in our sense (as €.g x; X3 X3 X3 "=
X, X3 X5 ...), though U (X) is obviously a free semigroup.

The elements of an alphabet will be referred to as letters. If X is an alphabet
and u=x;, ... x; e (X) then m, the length ' of the sequence u, is uniquely deter-
mined by u; it will be denoted by ||u||. Of course, we set |uy| =0 and for uell(X)
we set ||ul| =+ oo. For u,vell(X)ul(X) we shall write u<v iff |u| <|/v| and
the sequence of the first m=|ju|| letters of v is identical with u. Obviously, < is
a partial order on W(X)U(X). Subsets of W (X) of form C(u)={ii: it>>u}
(uel(X)) will be referred to as cylinder sets; the smallest o-algebra of subsets
of U (X) containing all cylinder sets will be denoted by B.

(E) For the rest of this paper, it will be convenient to restrict the use of certain
letters, attaching them some specific meanings in a consistent way. Our notational
conventions will be the following ones:

X finite alphabet
&(n) (n=1,2,...) sequence of DRV’s with common state space X
X abbreviation for the above sequence
E(k) ... E(n) if k<n
k' =
¢ (k; m) {the void sequence u, if k>n

{(n) (n=1,2, ...) sequence of nonnegative real RV’s, such that

iC(k)m‘-’ﬁ'u++oo as n— oo

3 abbreviation for the above sequence

) (n=1,2,..)tm)= Y k) (2(0)=0)
k=1

v(t) (0=t < + o) number of n’s with t(n) =t

n(r) O=Zt<+w)n()=E&(1;v(2)
(v(t) and n(t) are well-defined a.s., due to the assumption t(n) "> + ).

L. ln this paper, the term “length™ will be used also in another sense, cf. Example 2.2. The nota-
tion |u|, however, will always mean the number of letters in u, while other types of length will be
denoted by I(u).
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Processes 3 will be thought of as associated to processes X (cf. Definition 2.1
below). Different X processes will be distinguished by dashes; different 3 processes
associated with the same X will be dashed in the same way as X, and they will
be distinguished by indices. Given X and 3, the corresponding &’s, (s, s, Vs
and n’s will be given the same dashes and (or) indices as X and 3.

Instead of (n), {(n), t(n), v(t) and () we shall often write simply &, {, 7, v
and #, if omitting the argument does not cause ambiguity.

Observe that 3 is uniquely defined both by the RV’s t and v; each non-
decreasing sequence of nonnegative RV’s t(n) (n=1,2,...) with t(n) 2>
defines a sequence J and so does each family of IRV’s v(1)=0 (0=t < + ) with
right-continuous sample functions tending to infinity as t — oo.

§ 2. Information Sources with Different Cost Scales;
Comparison of the Corresponding Entropy Rates

Definition 2.1. An information source X with finite alphabet X is a sequence
of DRV’s &(n) (n=1,2,...) having the finite alphabet X as common state space.
A cost scale 3 is a point process on [0, + «) described in terms of {’s,7’s and v’s,
see Section 1, (E). A cost scale 3 will be called regular if v(t)/t is u.i. for t —
(or, equivalently 2, for t=t,>0).

Intuitively, £(n) represents the n’th message symbol emitted by the source,
{(n) its cost, 7(n) the cumulative cost of the first n message symbols and v(r) the
number of message symbols with cumulative cost just not exceeding t. E.g. the
“cost” may be time as in Examples 2.2 and 2.3 below; then 7(n) representes the
epoch at which the emission of the n’th message symbol terminates and v(t) is
the number of message symbols emitted up to the epoch t.

Remark 2.1. A source X can be interpreted also as a measurable mapping of
(2, F) into (I(X), B); it maps also the probability measure P defined on § into
a probability measure F; defined on 8. Often a source is defined as the triple
(I1(X), B, B) or its dnalogue with doubly infinite sequences, as e.g. in [9]. This
definition has, however, the shortcoming that it does not leave room for RV’s
not uniquely determined by the message sequence. Thus, for our purposes, the
mentioned definition would be adequate only in case of “intrinsic” cost scales,
cf. Example 2.2 below.

Example 2.1. The simplest cost scale is defined by
(=1, tm=n =12, v)=[t] (0=t<w). (2.1

This cost scale will be referred to as the counting scale €.

Example 2.2. Let I(u) be a nonnegative valued function on M(X) such that
l(up)=0 and u<v implies [(u)<I(v). Then, for any source X with alphabet X,

C=1EWm)—1EWn=1), tm=IE0n)  ¢n=12.) (@22)
2. As lhe sample functions of v(r) are non-decreasing, v(t)/t is u.i. in every finite interval (tgsty)
(0<ty<t,), provided that Ev(r;)< + oo. Hence follows at once that v(t)/t is u.i. for ¢ — oo iff it is u.i.
for t=ty; cf. Remark 1.2.
14
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defines a cost scale 3. Cost scales of this kind will be called strictly intrinsic (in
general, we shall say that 3 is an intrinsic cost scale for X iff each {(n) is uniquely
determined by the infinite message sequence &(1) £(2) ...). In particular, if

W= I(x)  @=x, .. %), 23)
j=1

J

the corresponding cost scale 3 defined by
Lm=1Em), M= 1(&K) (h=1,2; ) (2.4)
k=1

may be called a memoryless intrinsic cost scale; observe, that I(x)=1 gives rise
to the counting scale €. E.g. I(x) may be the length or duration of the symbol
xe X. Then, if the symbols are emitted consecutively, without intervals,

n

t(n)= 3 1(¢(k)

k=1

is the epoch at which the emission of the n’th message symbol terminates.

Example 2.3. The cost of transmission may depend on random external dis-
turbances independent of the symbols to be transmitted; in our model this means
that X and 3 are independent stochastic processes. The same holds if the symbols
are emitted at random epochs, independent of the symbols themselves and ““ cost”
means time.

Example 2.4. A cost scale may be defined by letting 7(n) denote the number
of binary digits needed to encode the first n message symbols when a particular
method of encoding is used.

Remark 2.2. A cost scale J is trivially regular if v(t)/t is uniformly bounded;
e.g. a strictly intrinsic cost scale (cf. Example 2.2) is surely regular if [(u)/|u| is
bounded away from 0 (u=u,). For cost scales 3 with the property that there
exists a RV 7 such that v(t)/t —F- 7y, the necessary and sufficient condition of
regularity consists in

Ev(t)
t

—Ey<oo

on account of Lemma 1.3 (observe that if 3 is regular, i.e. v(t)/t is u.i. for t — o0
then necessarily E y< o).

If X is a source, sequences of type &(1; n) will be called finite messages of X
(for the notations cf. §1,(E)). In particular, n(t)=£~(1; v(t)) is the message of
cumulative cost just not exceeding ¢ (with respect to the cost scale 3). E.g. if
“cost” is time then #(t) is the message emitted in the time interval [0, t].

Obviously, 5(t) is DRV its possible “values” are finite sequences belonging
to U(X), including, possibly, the void sequence ug.

The entropy of n(t)=¢&(1; v(t)) can be considered as the average information
content of a message of cost ¢ (with respect to the given cost scale). This suggests
the following
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Definition 2.2. The entropy rate of the source with respect to the cost scale 3
is the limit

HE|3)=lim - H{(0) @5)

provided that it exists. If the limit does not exist, we shall denote the limsup
and liminf of (1/t) H(n (1)) by H(X|3) and H(X|3), respectively. (The double bar
is used in order to avoid confusion with conditional entropy.)

If the cost of each symbol is unity i.e. 3=C€ (cf. Example 2.1) then ()=
¢(1;[¢]) and Definition 2.2 reduces to the usual definition of entropy per symbol

H(%)—hm— H(E(1;n)=H(X|C). (2.6)

The idea underlying Definition 2.2 is that the relevant information is carried
by the message symbols i.e. by the process X and not by the process 3. For certain
purposes also the other alternative, i.e. that both X and 3 are information-
carrying, may be of interest; this, however, would involve considering the pair
E(Lv(), {(1:v() (with {(1;v(0)=((),...,{(v(1)) rather than E(15 () itself,
leading to entropies of possibly continuous distributions, a problem we do not
want to tackle in this paper. Of course, if 3 is a strictly intrinsic cost scale (cf.
Example 2.2) there is no difference between the two approaches.

Adopting the viewpoint that all relevant information is carried by the process
X, the quantity

1
H*(X]| 3)= lim — H(n ()| v(z)) 2.7

might seem a better measure of entropy rate than (2.5). E.g. if ¥ is a trivial source
emitting a sequence of identical symbols and thus producing no information
at all, the quantity (2.5) may happen to be positive while (2.6) obviously equals 0.
However, in view of the simple relation

.1
H(X| 3)=H* (X[ 3)+ lim — H(v() 28)

between H and H* (which is an immediate consequence of Hn)=H(n,v)=
H(n|v)+ H(v)), we loose nothing by adopting as a definition of entropy rate the
more convenient (2.5) rather than (2.7). Moreover, in practically interesting cases
we always have H(v(t))=o(r) (see Lemma 2.1 below) thus actually H(X|3)=
H*(X| 3).

In the sequel we shall omit the arguments ¢ where doing so does not cause
ambiguity.

Lemma 2.1. If for some a> 0, the a’th moment of v(t) exists and it is exp {o(t)} then

H(v(t)=o0(t)  (t— o). (2.9)

In particular, (2.9) holds for every regular cost scale 3.
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Furthermore, for two arbitrary cost scales 3, and 3,
d(vi,v,)S2E |vi—v,|+2log, 3; (2.10)
thus if
(B — v, (f
Valt)—va {8 Ly,
t
then (2.9) holds or does not hold simultaneously for 3, and 3,.
Proof. As

1 1
Elog,(v+1)= ry Elog,(v+1)*<—log, E(v+1)*=0(t)
a
if Ev®=exp {o(t)}, the first statement is an immediate consequence of Lemma 1.2;

il 3 is regular ie. if v(t)/t is u.i. for =1, then Ev(t)=0(t) and all the more
Ev(t)=exp{o(t)}. Furthermore, as

d(vi,v))=H(v|vy)+H(v,|v)=H(v,—v,|v,)+ H(vi—v,| vWSE2H(vi—v,),

the inequality (2.10) is a consequence of Lemma 1.2. The last assertion follows
from (2.10) and Lemma1.1.

Example 2.5. Let the possible values of the costs {(n) be 0 and 1; for a binary
sequence u of n digits set

27 if the first digit of u is 1
. - k1l azk 2-¢=0 if the first k— 1 digits of u are 0
k:%l*kl(;z K if u consists of n zeros

where
1 @ 1 -1
“zi(k; k log? icm) ’

Clearly, the joint distributions of the {(n)’s have been defined in a consistent
way. It is easily seen that in the sequence {(1), {(2), ... a 1 appears a.s. and under
the condition that {(n) is the first 1, the RV’s {(n+ 1), {(n+2), ... are independent
and take on their values with probabilities 3 —%; hence, in particular,

tn) . 1

n 2

This cost scale 3 is not regular. As we have v(t)=k+[¢] iff there are exactly
[¢] I’s in the cost sequence (1), ..., {(k+[t]) and if {(k+[t]+1)=1, we have (if
k>1)
Prv()=k+[])ZPEN)=-=E(k)=0; E(k+1)=---=E(k+[t]+1)=1)

= s b U]
(k+1)log?(k+1) ’
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thus H(v(t))= oo for all t=0. This pathological property remains unaffected if we
replace the zero costs by small positive ones (depending on n), provided that they
tend to zero rapidly enough as n— oo.

In this section we shall be interested in the relation of entropy rates with respect
to different cost scales of the same information source. Let us remark that for
memoryless intrinsic cost scales® (2.4), when interpreting I(x) as the length or
duration of the symbol xe X, “entropy per second” is commonly defined (cf.
[16, 12], etc.) as entropy per symbol (2.6) divided by the “average symbol length
L” and not as in Definition 2.2; in some reasonings, however, this H(X)/L is
implicitely replaced by our H(X|J). Our results will, in particular, provide a
justification for such reasonings under general conditions and show their limita-
tions, too (cf. Theorem 2.4 and Remark 2.5).

For an arbitrary real number r and K > 0 we set

[r|+=max(0, r)a |r‘—: _min(oa r), |r|=|r|++|r|_ (2 11)
Irlg =min(r|*,K), |rlg =min(|r|,K), |rlg=min(r, K). ‘

The following estimates will play a fundamental role in the sequel.

Theorem 2.1. Let X be a source with alphabet X of size s, and let 3, and 3, be
two different cost scales for X. Then*

H(ny[n) SH(vilv;)+1ogy s- E|vy —v,|* (2.12)

and also, if A€ is such that on A=Q\A we have v, —v, <Kt (where K>0 is
arbitrary)

H(ny|n,) S14+P(A)H 3 (vi|v,)+1log, s - E |v; — v, |k, + P(A) Hy (). (2.13)

Proof. As v;=/n;| is uniquely determined by n,=¢&(1; v;) (i=1, 2), we have
Hnilna)=H vy, milva, m) S H W, [vo) + Hm vy, va, ). (2.14)
As for given v,, v, and 1, =£&(1; v,) the number of possible “ values™ of 5, =&(1; v;)

is at most s 21" the last term in (2.14) is < E(log, s 2" )=log, s - E|v, — v,|*,
proving (2.12). We may also write (setting =1 if we 4 and « =0 otherwise),

H(ny|n2) < H(ot, my|n2) = H(2)+ P(A) Hz (11 112) + P(A) H , (,115);
hence, applying (2.12) to H 4 (1,|n,) and taking into account
P(A) Eglvi—va|* SE v, —v,lf, (2.15)

and using the obvious inequalities H(x)< 1, H,(1,|n,) = H ,(1,) we obtain (2.13).

3. More general cost scales do not seem to have been considered in the literature.
4. Actually, the assumption that v; equals v;(t) corresponding to 3; (i=1,2) is nowhere used in
the proof; thus the estimates (2.12) and (2.13) hold for arbitrary IRV’s v; and v, and ;= &(1; v) (i=1, 2).
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In order that the implications of Theorem 2.1 can be formulated concisely,
we introduce some definitions concerning cost scales.

If 3 is an arbitrary cost scale and ¢>0, we may define the cost scale ¢ 3 as
the sequence of RV’s ¢ {(n) (n=1, 2, ...). Let us denote the v’s and v’s corresponding
to the cost scale ¢ 3 by t° and V¢, respectively:

t
“(n)=ct(n), n=1,2,...; v‘(t)=v(?), 0Zt< .
Definition 2.3. For two cost scales 3, and 3, we write

1
J1—=3, iff T|V2(t)_"1(t)|+i*0: (2.16)

Bi~3: T (40— v20) 0. @17)

If 3, <3, or 3, ~ 3., we say that 3, preceeds 3, or 3, is equivalent to 3,, respec-
tively.

Ifin (2.16) and (2.17) instead of L,-convergence only convergence in probability
is required, we shall say that 3, weakly preceeds 3, or 3, is weakly equivalent

to 3,:

3153, i - )= 20, (2.16)
3 1
=gz iff T(vl(t)—vz(t))—”ao. (2.17)

The cost scales 3, and 3, will be said to be quasi-equivalent (weakly quasi-
equivalent) with quotient ¢;, =¢>0if 3,~c¢ 3, (or 3, % ¢ 3,) i.e. if

1 1
T O—v50)=— (vl(t>~ v (%)) 50 2.18)

% (vl(t)— % (%)) B (2.18))

Of course, in case of regular cost scales, the replacement of L,-convergence
by stochastic convergence in the above definitions makes no difference. Thus the
“weak ” concepts defined above provide a real generalisation only for non-regular
cost scales.

Intuitively, 3, ~J3, means that “in general” {;(n)<{,(n) i.e. the “cost” of one
symbol is for 3, “smaller” than it is for 3,. 3,~ 3, means that the cost of one
symbol is essentially the same for both scales. We think that these loose statements
do have some heuristic value but the reader may prefer to disregard them com-
pletely.

Clearly, — and *¢ are partial orders and ~ and % are equivalence relations
for cost scales. ¢c<1 and c¢>1 imply ¢ 3—<3 and 3 —c 3, respectively. Quasi-

or
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equivalence, too, is an equivalence relation; the quotient ¢, , is uniquely deter-
mined by 3, and 3,, except for the trivial case E v;(t)=o(1) (i=1,2). If 31> 32
and 3 are (weakly) quasi-equivalent cost scales, there obviously holds

1
C12C23=C13, 021=T. (2.19)
12

Theorem 2.2. Let 3, and 3, be two cost scales for a source X with finite alphabet
X, and let the entropy rates H(X| 3,) and H(X||3,) exist.

(a) If 3,=3, and ui—H(vz(t))HO (t — o0) then

H(X[3)2 H(X]3,). (2.20)

(b) 31~ 3, implies
HX|3)=H(X|3,). (2.21)

(c) If 31~<c 3, 0r 3;~c3,, the right hand sides of (2.20) or (2.21), respectively,
should be divided by c.

In particular, if 3, is quasi-equivalent to 3, with quotient ¢,,=c>0 then
’ 1 :
HX[3)=—H(X|3,)- (2.22)

If the entropy rates in question do not exist, all assertions remain true both for
the lower and upper entropy rates. In particular, for equivalent (or quasi-equivalent )
cost scales, if the entropy rate with respect to either of them exists, it exists also
with respect to the other and (2.21) (or (2.22)) holds.

Proof. The assertions follow easily from Theorem 2.1. In fact, as

H(n)£H(n,, n2)=H(n)+ H(n,ln,),

and as H(v,|v,)< H(v,), the estimate (2.12) (interchanging the role of the indices 1
and 2; recall that v; and #; are abbreviations for v;(t) and 5,(t), i=1, 2) and (2.16)
imply H(n,)<H(n)+ H(v,)+0(t) (t— ). This, by Definition 2.2 and the as-
sumption (1/t) H(v,) — 0 means just (2.20). Furthermore, (2.12) implies also

d(’?laﬂz)éd("bV2)+10825'E|"1_Vz|- (2.23)
Hence, using (1.10) and (2.10), we obtain
|H (1) —H(n,)| S(2+1og, s) E|v; —v,|+2log, 3

thus 3, ~ 3, implies, in fact, (2.21). To prove (c) we have only to observe that for
any cost scale 3 and any ¢>0

=—H(X[3) (2.24)

twod CF &

(where n (O =E(1; v (1) =¢ (1 v (%))=n (%))

The last statement of Theorem 2.2 is obvious from the proof of assertions

(a)—(c).

e 3= H(T(t)) _pim F11 (,t’)) 1
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Remark 2.3. The intuitive meaning of Theorem 2.2 is clear. In certain cases the
conditions of the theorem may be weakened, replacing the relations —< and ~
by their “weak” analogues. This is the case when some additional conditions
ensure that the conditional entropy figuring in the last term of (2.13) is O(t); then
(2.13) may be used instead of (2.12) to yield the desired results. We shall encounter
such situations in Section 3. Let us also remark, that if in (a) we drop the condition
(1/t) H(v, (1)) = 0, 3, <3, still implies H(X|3,)=H*(X|3,) (cf. (2.8)), and that
assertion (b) holds also for H* instead of H (cf. (2.8), (2.10) and (1.10)).

Just in view of the “intuitively obvious” character of Theorem 2.2, it is in-
structive to point out that e.g. 3,% 3, is not sufficient, in general, for (2.21) to
hold. This follows also from Example 2.5, but the following example seems more
suitable.

Example 2.6. Let X be a source with alphabet X ={0, I, 2}; let the joint dis-
tribution of the &(n)’s be defined by

1

k(k+1)2“‘"""’-2“‘"‘“ if u contains [ 2’s (=1,
P(E(1:m)=u)= the first at the K’th place (1=ks=n—1+1)
=0 if u consists of 0’s and 1’s.
n+1

Let [(0)=1(1)=0, 1(2)=2, {(n)=1((n)). Then, in the same way as in Example 2.5,
we have
T(n) a.s

and " )
P(v(t)zk+[—;~1);P(é(z’)+2,izl, ook 1)=---=6(k+[£]+1)=1)
:(k+1)1(k+2) A

whence we see that 3 is not regular (actually, E v(t)= + c0,t=0). Furthermore,
given v(t)=k+[1/2], the k letters of n(t)=E&(1;v(1)), different from 2, may be 0
and 1 independently of each other and with probabilities 3 —1, thus

Hy - k2 (n(0) 2K,

implying H(n(1)|v(t))= + o for all =0, i.e. H*(X|3)= + oo, and all the more
H(X||3)= + 2. Observe, that our 3 is a memoryless intrinsic cost scale weakly
equivalent to €, while (2.21) does not hold for 3, =3, 3, =C. Of course, the zero
costs {(n)=0 may be replaced by small positive ones, tending rapidly enough to 0
as n— oo without any essential change.

In order to apply Theorem 2.2 to concrete problems it will be convenient to
establish some simple sufficient or necessary and sufficient conditions of the rela-
tions —, ~ for different cost scales.
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Lemma 2.2. Let 3, and 3, be two arbitrary cost scales.
(a) Let )
- v

fim P(%;K)HO for K0,

1— 0

Then the relations
vl(t
v, (1)

vl(t) ‘P—> l
vy (1)

‘ P50 and

are sufficient conditions for 3,3, and 3, 3,, respectively, and if v,(t)/t is
bounded away from 0, they are necessary, too.

b) 31—~3; or 3, ~3, holds iff 3,3, or 3,% 3, and, in addition,

va(t)— (1) |*
t

vi(t)— v, (1)
t

is u.i. for t — oo, respectively. The last conditions are certainly fulfilled if 3, resp.
both 3, and 3, are regular.

(c) If 3, is regular and
Vl(f)i P
vy (rit)

1, (r>0)),

then 3,* ¢ 3, where c=1/r, and also 3,—~c 3,; if 31 too, is regular, then actually
\’}INC ;2

Remark 2.4. 1f 3, is regular then

lim P (Z(I)>K) 0 (K — )

t— o0

surely holds. If the cost scale 3, is such that (;(n)zb>0as. (n=1,2,...), then

v, (1) <_
t b’

L.e, in this case v, (1)/t is trivially regular; if {, (1)< B a.s. (n=1,2,...) then

v, (1)
L

E

| —

thus in this case v, ()/t is bounded away from 0. Observe that in respect of

V2= (@ |*
t

s Vi ()= Vz(t)
t

“u.i. for t — " does not necessarily imply “u.i. for t=¢,” as these RV’s may
not be u.i. in finite intervals.
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Proof of Lemma 2.2. From

Mi=Va_ Vs (V_l_ 1)
t t vy
immediately follows that the relations

vy (t)
= |
vy (1) v, (1)
imply (2.16") and (2.17’), respectively, provided that
lim P (lzt—(tlg K) 0

1— 0

liﬂP 0 and 2l

for K — 00 and that if v, (t)/t is bounded away from 0, also the converse implica-
tions are true, proving assertion (a). The statement (b) is a direct consequence
of Definition 2.3 and of Lemma 1.3. At last, (c) follows immediately from (a) and
(b), applying them to v§(t)=v,(t/c)=v,(rt) instead of v,(t), and using the first
assertion of Remark 2.4.

Lemma 2.3. Let 3, and 3, be two cost scales and let one of them have the property

b={(n)=B a.s. O<b<B; n=12,...). (2.25)
Then each of the three conditions
vl(t) P
— 1 2.26
D : (2.26)

TZ(vl(t)) 4}1'
t

1)
t

r>0; (2.27)

c>0 (2.28)

is equivalent to 3,~c 3,, where c=1/r.
Proof. According to (2.18"), 3,%(1/r) 3, means

vi(t)—vy(rt) ,
t

0. (2.29)

Without any loss of generality, let e.g. 3, have the property (2.25), i.e. 0<
b<{,(n)<B; then
[r—t]<v (r I)<—ri
O el

a.s., thus the equivalence of (2.26) and (2.29) is obvious. Furthermore, as by the
definition of the 7’s and v’s the relation 7, (v,()) < y t is equivalent to v, (t) < v, (y 1)
(0 <y < o0), the relation (2.27) is equivalent to

0 if y<r

P(vi()=v,(y 1) — {1 IF
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and this, in turn, is equivalent to (2.29), in view of the assumption 0<b={,(n)<B.
Similarly, (2.28) is equivalent to

0 if y<c
) <y ) 00
P(vy ()= vy (y t))-’{l i o= (t — o0)
i.e. to
0 if y >l
=—>—=r

P(vz(y’r)évl(t))ﬂ{ Y=y 7% (t—o0)

1 if y'<r

which, again, is equivalent to (2.29).

The following consequence of Theorem 2.2 and Lemmas 2.2 and 2.3 is worth
being formulated as a new theorem.

Theorem 2.3. Let X be a source with finite alphabet and let 3, and 3, be two
cost scales for X such that

(a) one of them has the property (2.25)

(b) also the other is regular.

Then either of the three equivalent conditions (2.26)—(2.28) implies

H(X|3)=rH(X|3,) (2.30)

(in the sense that if either side exists so does also the other and they are equal).
If the condition (b) is dropped, the relations (2.26)—(2.28) still imply

(=1 (HX| 3,)—r H(¥[|3,) =0 (2.31)

if 3; has the property (2.25), provided that both entropy rates exist.

If the entropy rates in question do not exist, (2.30) (or (2.31)) still holds both
for the lower and upper entropy rates.

The most important cost scales are those quasi-equivalent to the counting
scale € (cf. Example 2.1). By Definition 1.3, a cost scale J is quasi-equivalent
(weakly quasi-equivalent) to the counting scale ¢ iff there exists a constant ¢>0

such that
0 L (o M0 e, 1
t e t c

Of course, all cost scales quasi-equivalent to the counting scale are regular
and thus for such cost scales always H(X|3)=H*(X| 3) (cf. Lemma 2.1).

If for a given cost scale (1/t) v(t) converges in probability to a (finite) constant r,
this r will be called the symbol rate® of the source with respect to the given cost
scale.

Similarly, if (1/n) T(n) converges in probability to a (finite) constant ¢, this ¢
will be called the average symbol cost (with respect to the given cost scale).

5. The term is really suitable only for the case where “cost” is time, when r represents the average
number of symbols per second; for the sake of brevity, however, we adopt it for the general case, too.
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In view of Lemma 2.3 (with 3,=3, 3,=C¢), a symbol rate r>0 exists iff an
average symbol cost ¢>0 exists (c=1/r) and these are necessary and sufficient
conditions of 3% ¢@, too. In order that also 3~c¢@ hold i.e. that 3 be quasi-
equivalent to €, the regularity of 3, or, equivalently, the relation

Ev(r)

(cf. Remark 2.2) is necessary and sufficient. Thus we obtain, as a particular case
of Theorem 2.3,

Theorem 2.4. If for a source X with finite alphabet X and with cost scale 3
a positive symbol rate r or, equivalently, a positive symbol cost ¢ exists (¢ r=1), then ®,

HE| )2 rHE)=— H(); @32
if 3 is regular, i.e., if v(t)/t is u.i. for t=t, or, equivalently, if also
Ev()
holds, we have the equality
HE|3)=rH @)= H(¥) 233

if either of H(X) and H(X|3) exists.

Remark 2.5. If 3 is a cost scale of type (2.4) (cf. footnote 3) and the source X
is such that

1 n
E S IEKk) > L>0 (2.34)
k=1
(e.g. if X is a stationary ergodic source, i.e. if £(1), (2), ... is a stationary ergodic
sequence of DRV’s), “entropy per unit cost” is often defined as the ratio H(¥)/L.
By Theorem 2.4, this definition is equivalent to (2.5), provided that

Ev(t) 1

. —>1— (t— o0).

This is the case, in particular, if [(x)>0 for all xeX, or if the message symbols
¢(n) are independent and identically distributed (in the latter case, L=E{(l) by
the law of large numbers and
Ev(t) 1
Y .
t E{(1)

by the renewal theorem). As Example 2.6 shows, the strict inequality in (2.32)
can obtain even for memoryless intrinsic cost scales, if there are no restrictions
on the source X. For stationary ergodic sources this is probably impossible;
actually, it seems most likely that any stationary ergodic sequence {(1), {(2), ...
defines a regular cost scale, but we did not succeed in proving this. Observe that

6. If the entropy rates do not exist, the result holds both for the lower and upper entropy rates.
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for more general cost scales (even for strictly intrinsic ones) the pathological
phenomenon of Example 2.6 can occur also for strictly positive { (n)’s, as indicated
in the same example.

Example 2.7. Let X be an arbitrary source with finite entropy per symbol
H(X)=H (i.e, H is the entropy rate with respect to the counting scale €). Con-
sider an arbitrary cost scale 3 which is stochastically independent of the process X.
Then

H(n)—H)=Hn|v)=H((;v)|v) ZP(\‘—H)H‘ (&5 V)

n=0
Z (v=n)H(,(1; n)),
thus, using the assumption H(&(1;n))=n(H +o(1)) (n > ) and the fact v(r) =5
-+ o0 we obtain

H(n(0)=H(v(t))+Ev(t)(H+o(1) (t— o).

; . : : Ev(t .
This means that in this special case —IQ — r< oo (when, according to Lemma 2.1,

H(v(t)=o(t)) implies H(X||3)=rH(X), and also that if (1/t) E v(t)— + o then
H(X|3)= + 0.
Of course, the relation

Ev(n

-~ 5 r

is, in general, by no means sufficient for H(X||3)=rH(X), as e.g. the following
example shows.

Example 2.8. Let X be an arbitrary source (with finite alphabet) with regular
cost scale 3, such that

Ty i)

where 7 is a DRV taking on the (positive) values c,, c,, ..., ¢, with probabilities
P1> P2, ---, Py We have, using (1.1), (1.2) and (1.4)

Hn@)=H(n@)|y)+1(n@),y)= Zp, ey M@O)+T(n(2), 7). (2.35)
Assume now that

I
He=lim — H,_,(£(1:m)

exist for i=1,...,r. Then Theorem 2.4 applies for the conditional probability
measures ' P()=P(-|y=c;) (i=1, ..., q), yielding

tllrrnx THW:C-‘E(W(T)): ; (i:I""’q)’

7. If 3 is regular i.e. v(t)/t is u.i. for 1= 1¢,, it is u.i. also with respect to the conditional probability
measures P(-).
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whence
q Hl
HX|3)= llm — H(n @)= Z sl
as, in (2.35), the term I(5(t), y) is bounded by H(y). By the same argument
q
H&X)= H(3€|i(,)—11m — H(&E(1; n))= Z

Let us denote by H,(X||3) and H,(X) the random variables taking on the values

. 1
lma]a 1 H,_y(n(1)=

t— i

and H;, respectively, if y=c;. Then our result may be written as
; 1 y
HEIY=E(— H,@).  HE=EQH,EI3), (2.36)

Hence we see, in particular, that the relation

Ev(t . 1 1 p;
:( )ﬁr’ (m our case r=E —= Zﬂ)
Y ooi=1 G

in general does not imply H(X!3)=rH(X); neither does
Ez(n) (

< . t(n) . .
—c in our case, c=Ey= ) p,¢;, provided that il is u.1.)
n i n

imply
1
H(£H3)=7 H(X).

This fact is not due to the eventual inadequate definition of entropy rate; indeed,
as 3 is regular, H(X|3)=H*(X||3).

Remark 2.6. 1If

P

t(n)
L i SO

n

where 7 is an arbitrary RV, the formulas (2.36) cannot be expected to remain
true, in general. E.g. if X=1{0,1} and

n—-1 ¢ k
(=5 S0, £

th e
2 +n = en — ;

contains full information on the whole message, thus both H,(X) and H,(X|23
are identically 0. It can be shown, under certain regularity conditions, that the
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first (second) equality in (2.36) holds iff I(n(¢), y)=o0(t) (I(¢(1;n), 7)=o0(n)). Here
we do not enter the problem of giving sufficient conditions for these last relations.

Example 2.9. Let us be given a finite-state noiseless channel as defined by
Shannon [16]; such a channel is specified by the input alphabet X, the set of
states A, an assignment of subsets X(a) of X to each aeA4 and by a function
G(x,a) defined for aeA, xeX(a) and taking its values in A (X and A are finite
sets). In each state a, the channel is capable of transmitting letters from X (a)
only; if xe X(a) is transmitted, the new state will be a’=G(x, a). Let an a, A
be fixed as the initial state; a sequence u=x, x;, ... x; €M (X) is transmissible iff
X, €X(a; ) (k=1,...,n) where a, is defined recursively by a;, =G(x;,,a;, )
(k=1, ..., n); denote the set of all transmissible sequences by U,. Let I(x,a)=0
(aeA, xeX(a)) be the cost of transmission of x at the state a: then

W= I(x, . a; )
k=1

represents the cost of transmission of the sequence u=x; ... x; €ll,. We make
the usual assumptions that for each pair of states a’, a”eA there exists u=x, ...
X --- X;, u€ly such that a; =da', 4, =a”, and that for all uell, with lu|=zm
(say) I(u)>0. Let X be a source transmissible by the channel (e E(LY v &lm)yell,
as. n=1,2,...) and let the (regular) cost scale 3 be defined by (2.2), with the
present I(u). Let N(t) denote the number of different sequences uell, with l(u)<t
and such that I(u x) >t for some xe X, with u xel,; we define the channel capacity
by

C=lim lo_gi(t)'

t— o0

(2.37)

Then 5 (t)=¢(1; v(1)) has at most N(t) possible values, implying H(n(1)<log, N(t),
H(X|3)= C; thus if

T(n)

=;1f(«:(1;n))¢, L.

we have, according to (2.33),

1

TH(f)

lIA

C. (2.38)

It may be shown that in (2.37) actually the limit exists; its value has been
calculated by Shannon® [16]. He obtained C=log, w,, where w, is the greatest

8. Shannon, apparently having commensurable symbol costs in mind, considered the number
of sequences uel, such that exactly /(u)=r; the present interpretation of N(t) is more adequate and
it gives rise to the same system of difference equations as the original one. A rigorous proof of Shannon’s

log, N(t)

capacity formula lim .6 = log, wq (with w,, defined as above and with an unessential difference

= o0
in the definition of N(t)) has been given by Ljubi¢ [13]; he has pointed out, too, that with Shannon’s
original interpretation of N(t), this relation holds only for the upper limit. For the case of [(u)= |u|
see also [14] (with another terminology) and for the case of no different states see also [12].

15 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 12
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positive root of the equation
k=1

here K;=1(x;,a) if x,€eX(a), G(x;,a,)=a; and O otherwise and d;;=1 if i=j
and 0 otherwise.

The inequality (2.38), first appearing in Shannon’s fundamental paper [16]
is often considered to be “obvious”. However, its familiar “justification” relays
on the equivalence of the two possible definitions of entropy per unit cost and
can be made rigorous only on the basis of Theorem 2.4. The existing rigorous
proofs of (2.38) concern stationary Markovian sources only °, and they boil down
to the formal verification of the inequality between the algebraic expressions
representing the both sides. (A simple non-computational proof of this kind is
given in [7]; a computational approach is presented in [15].)

As a matter of fact, (2.38) is a much weaker result than (2.33) and an inequality
of this type can be proved under more general conditions. We conclude this
section by a generalization of inequality (2.38) for entropy rates H(X||3) instead
of H(X) and to the case that an “average symbol cost” L exists only in an expecta-
tion sense (observe that in the latter case, as we have seen in Example 2.8, no
equality of type (2.33) holds).

Theorem 2.5. Let 3, be a cost scale for the source X such that

1727(’1)fgl)>0 for n=ny (say).
n
Let N(t) denote the number of different possible values of n,(t)=£&(1;v,(1)). Let
31 be another cost scale for X such that E t,(v,(t))=0(t) (t — o). Then

H(n ()£ CEty(vi(t)+o(t)  (t—>x) (2.40)
with
C—iim log, N(t) < log, s . (2.41)
t— 4 b
In particular, if
L=1im E—Tiag37!(~tl)< o (2.42)
t— oo
exists, we have B
H(X|3)=LC. (2.43)
Proof. Let us define a DRV x(t) by
x(:)—fr fi (v, (t ki k=12 2.44
=< Ssum@)<gt  k=L2.)  Q4)

9. For the simplest case that there is only one state, when I(x, a) reduces to [(x) and N(r) to the
number of sequences uel(X) with t —B<!(u)<t (B=max I(x)), (2.39) reduces to 3 w ' =1. This
xeX

xeX
model has been considered in [5] and [12], and (2.38) has been proved for independent £(1),£(2) ...;
in this particular case hence one easily obtains a proof for arbitrary X, too, but in the general case a
transition from stationary Markovian sources to arbitrary ones does not seem easy.



Information Sources with Different Cost Scales 207

where K is a fixed positive number. From (2.44) immediately follows
t
w2 (60— )E O, (c(0): (243)

in particular, if n, (x (1)) is given, n,(t) is uniquely determined by the value of v,(r),
thus

H(ny(1) < H(n,(1), ’12(’\'(’)):’1{(’72("“))"‘H("l(f)|'72(’\'“)))' (2.46)

Now, using (2.41) and (1.8'), we have for t > 1, (K) (say)

H(n, (k1)< ()< Elog, N (x(1) < C(l +KL) Ek(t), (2.47)

whence, in view of

K K
H(k(t)=H (_r_ K(I))g E (T K(I))Jr log, 3
(cf. Lemma 1.2) we obtain

H(na (k(0)) = H(n (k (1), k(1) = H (1 (< (0) |1 (1)) + H (1))

1 K (2.48)
§_C(1+?)EK(T)+T Ex(t)+log, 3 (t=1,(K));

(n)

furthermore, the assumptions —r—2~¥§b>0 (n=n,) and E1,(v,(1))=0(t) imply
n

Ev,(t}=0(t), thus, by Lemma 2.1,
H(v,(0)=0(1). (2.49)

As, according to (2.44), k(1)< 1,(v,(1))+(¢/K), (2.46), (2.48) and (2.49) immediately
give rise to (2.40), using the assumption E1,(v,(1))=0(t) and that K>0 was
arbitrary.

The inequality (2.41) is an obvious consequence of the assumption

W b, yidlding v;,_(z)g%, N()<-
n

(2.43) follows from (2.40) and (2.42) by Definition 2.2.

Example 2.10. Let U, be a subset of U (X) such that u<vell, implies uell,
and that for each uell, there exists xe X with u xell,,. Let further /(u) be a non-
negative-valued function on !, such that u<vell, implies

lW<I() and --ﬂ—‘-ﬁ%;bo it ul=n,.
u



208 I. Csiszar, G. Katona and G. Tusnady:

Let N(t) be the number of different sequences uell, such that [(u) <t and [(ux)>t
for some xe X with uxell,. One may consider the pair (2, I(-)) as a noiseless
channel in a general sense, and

C=1lim

= log, N(1)
I— o0 t

may be interpreted as its capacity. Theorem 2.5 implies that if a source X is trans-
missible by the channel (i.e. if £(1;n)el, a.s, n=1,2,...) and if 3 is a cost scale
for X satisfying E I(5())=0(t) then

H(n(0)= CEl(n(1)+o() (2.50)
and if
ﬂ?ﬂ —L>0
then B
H(in& - loiz s e

Of course, the finite-state channels (cf. Example 2.9) deserve the main interest;
even for that case (and even for the case of one state only, cf. footnote 9), (2.51)
provides a considerable generalization of (2.38).

Remark 2.7. The assumption

2 2p20  zny

in Theorem 2.5 has been made in order to exclude the trivial case C = o and to
ensure H(v,(t))=o(t). In the second respect, what really needed is only

H(v,(t)|n, (k@) =o0(t)

(cf. (2.46)); this relation trivially holds if 3, is any strictly intrinsic cost scale, as
then (cf. (2.45)) v,(t) is uniquely determined by #, (x(1)). Also, if instead of
1,(n) 75(n)

=>b>0 weassumeonly ———=>b(n) with b(n)—o0 as n— o0,
n log, n

the relation E t,(v,(t))=0(t) still implies E log, v,(t)=o(t) thus H(v,(t))=o0(1) (cf.
Lemma 1.2). For quite arbitrary 3, and J3,, however, even if

Lzﬁmm

t— 00

exists, (2.40) and (2.43) may not hold in pathological cases. E.g. if X is a trivial
source such that £(n)=¢&(1)a.s. (n=1, 2, ...) and 3, is the cost scale of Example 2.5
then H(¥||3,)= oo while C=0 for any strongly deterministic J3,; in particular, 3,
can be chosen in such a way that E 7, (v,(t))=o(t) thus L=0 (e.g. {5 (n)=1 if n=2%"
and 0 otherwise).
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§ 3. The Principle of Conservation of Entropy

Let X and X' be two sources with finite alphabets X and X, respectively. Let J
be a cost scale for X and 3’ a cost scale for X’; then we define the rates

HE X3, 3)=lim ~ H(n(@). (1), ()
HEIF |3, 3)=lim  Hroly (), (32
I X138, )=l In(.1/0), (3.3
A, X138, 3)=lim - d(n(0.1'(0) (3.4

provided that the limits exist (1(¢) and #/'(t) are defined as in § 1, (E); the argument t
will be often omitted). If the limits do not exist, one may consider the corresponding
upper and lower rates (upper and lower limits) to be denoted by

HX ¥|3.3). HEX3,3), HXX|3,3), HE¥|3 3), et

As an immediate consequence of Theorem 2.1, Lemma 2.1, and Lemma 1.1 we
have

Theorem 3.1. All the rates (3.1)—(3.4), as well as the corresponding upper and
lower rates, remain unchanged if either of 3 and 3’ is replaced by an equivalent
cost scale.

In this section we shall apply the results of Section 2 to the case that X’ is
obtained from X by encoding (or conversely).

We wish to consider encodings in “the most general sense” that can “rea-
sonably” be given to this term. The definition of a “ general” code has to conform
with the intuitive requirement that the encoding proceeds “from letter to letter™
(in practice, the encoding often proceeds “from block to block™; blockwise
encoding, however, may be described by assigning to each but the last letter of
any block the void sequence u, while the code of the whole block is assigned to
the last letter of the block). Thus, an arbitrary (measurable) mapping of 1 (X) into
U (X")(cf. Section 1, (D)) will not be considered as a code. A possible way of defining
a “real” code is to specify for each letter xe X, the rule how a “code word” is
assigned to x, in dependence, in general, on the previously encoded letters. In this
sense, a code is a mapping g of X x W(X) into U(X’) assigning to xe X the (con-
ceivably void) “ code word ™ g(x|u) if the sequence of previously encoded letters is
uel(X). Another possible way is to define a code as a mapping of U (X) into
2 (X’) which is monotone with respect to the partial order <. In fact, writing for

f(u)=g(xnIuo)g(x,-zlxsl) won @ X 12, s Xi, 1) (3.5)

the functions /" and g uniquely determine each other.
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We prefer to adopt the following

Definition 3.1. Let X and X’ be finite alphabets. An arbitrary mapping f of a
subset D, of U(X) into U(X") will be called a semicode from X to X' (D, will be
called the domain of the semicode f). A semicode with domain [ (X) such that

=1t and
fuo)=to an u<v implies f(w)=< f(v) (3.6)

will be called a code from X to X'.

Each code f from X to X" defines a mapping of infinite sequences, too; in fact,
for i=x;, x;, ... eU(X) we may write (cf. (3.5))

.f(ﬁ):g(xr,“‘o)g(-‘fiz|xi,) cg(x Xy, - Xipy) een e

in

Observe that Definition 3.1 does not exclucje that the “code” f(i1) of some infinite
sequence @ be finite. The set of those 1el(X) for which f(i1) is infinite, will be
denoted by D,. More generally, we define for any semicode f

D,=1{ii: ueD,, f"< L"), n=1,2,...; lim | f(u")] = o0} (3.7)

where " is the section of length n of @i, i.e. u"=x; ... x; fli=x; x;, ....

Infinite sequences belonging to 13 can be encoded even if f is only a semicode;
in fact, f (&) (fieD;) may be defined in an obvious way. Of course, for an arbitrary
semicode f the set Df may be concelvably void; if D,=|=Q) the restriction of f to
Df— {u: ue D, u<ii for some ueDJ,} certainly satisfies (3.6); if we extend f from
DY to U (X) by setting [°(u)=f(u*) where u* is the longest section of u belonging
to D} (or, if no section of u belongs to D} then f°(u)=u,) we obtain a code that
gives rise to the same Df and the same mapping of Df into I[(X) as the original .

The number of sequences uelI(X) encodable by a semicode f may be in-
creased if we prescribe a sequence of “ block ends”. More exactly, for a sequence f
of integers 0=k, <k, <--- we set

Dj={i: ueDy, fU)<f@* ), n=1,2, . lim|| f@™)|=0c};  (3.8)

sequences ﬁeﬁ} may be encoded by f, namely as
SH@=lim f@)e(X)  (@eD)), (3.9)

the limit being understood with respect to the partial order <.

If T is the sequence of all posmve integers then Dj= Df for any semicode [
if f is a code than Df—Df and f(it)=f(di) (ueDf ) for any sequence f. Observe,
however, that lff is only a semicode then some infinite sequences 7ell(X) may
be]ongtoseveralDIbutf (i) may depend on the particular “ block end sequence " £.

Remark 3.1. Tt is easy to see that ijeﬂ_’) for any semicode f and any sequence f;
also, the mapping /*: Df — 1 (X’) is measurable with respect to the o- algebras B
and B’ spanned by the cylinder sets. If f is a code, the mapping f: Dfa (X)
may be called an infinite-code; clearly the concept of an infinite-code is much more
restrictive then that of an arbitrary measurable mapping I (X)— M (X’) (though
all practically realizable mappings seem to belong to this class). Similarly if f is
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a semicode, we may call the system of the mappings f*: f)'f > 1[(X) an infinite-
semicode. Two different codes (semicodes) f; and f, may give rise to the same
infinite-codes (infinite-semicodes). In this case we shall say that f; and f, are
equivalent and write f; ~ f,. Of course, each infinite-code (infinite-semicode) may
be identified with the corresponding equivalence class of codes (semicodes) and
vice-versa.

Remark 3.2. A different way of defining codes in a general sense has been
suggested by Billingsley [2]. His approach is based on infinite sequences and
encoding of finite sequences does not enter to his definition. Instead of this, a
continuity condition is imposed in order to bring the general definition closer to
real possibilities; it may be seen that each code in the sense of Billingsley is an
infinite-code in our sense (cf. Remark 3.1), with’ D, =1(X).

If f is a code from X to X" and u=x; x,, ... x;, €U(X), let k, =k, (u) denote the
n’th point of increase of the sequence

ORI 79 ] R G RPN 30 | OO ) J ¢ AR 7 | (3-10)

and k,=0. For iiel((X) we define k, (%) in a similar way; in particular, if iie D,
then k, (i) is well-defined for n=0,1, 2, ....

Each uell(X) may be partitioned into blocks x; ... x; with j=k, , +1, =k,
and, conceivably, an *incomplete™ block X;, ... X; , where j—1 is the last point
of increase of the sequence (3.10). The n’th block Xi oo Xy U=k 1+ 1, I=k,) is
encoded by the nonvoid sequence g (x; |x;, ... x;,_,)(cf. (3.5)), and the last incomplete
block (if any) is not encoded (i.e., it is encoded by the void sequence u,). This
interpretation suggests to define the essential domain of f by

- X0 p=k,(u) for some n=1} U {u,}, (3.11)
i.e. as the set of all uel(X) consisting of complete blocks, including the void

SEqUENCE Uy .

Example 3.1. If, in (3.5), g(x|u)=g(x), where g(x) is some fixed mapping of X
into U (X")\ {u,}, the resulting code will be called a simple letter code.

In this case we have

Jw)=g(x;) g(x;,) ... g(x;,) (u=x, ... x;, €U(X))

f@)=g(x;) g(x;) ... (B=x,; x;, ...eD,=1(X))
and

D =M(X).

Example 3.2. Let X and X' be finite alphabets, let 4 be a finite set to be called
the set of states, and let us be given two functions F and G mapping the Cartesian
product X x A into U (X’) and A, respectively.

Let an initial state ay€ A be specified, set f(uy)=u, and for u=x; ... x; ,n>0

set
JWw)=F(x;,a0) F(x;,,ay) ... F(x; ,a,_;) (3.13)
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where the states q, are defined, recursively, by a,=G(x,, , a,_,). Then f is a code
in the sense of Definition 3.1; the encoder (X, X', 4, a,, F, G) will be called fol-
lowing Shannon [16], a finite-state transducer'® and f will be referred to as the
code generated by this finite-state transducer. Observe that if we drop the condition
that the set of states is finite then each code f can be generated in this way, setting
A=U(X), ag=uy, and F(x,a)=g(x|a) G(x,a)=a x for aecl(X). A simple letter
code (Example 3.1) may be thought of as a code generated by a trivial finite-state
transducer, having only one state.

Definition 3.2. Let X be a source with finite alphabet X and let f be a semicode
from X to X'. We say that X is encodable by f, with respect to a cost scale 3, if
E(DEQ).. eD‘“’ a.s. where the (random) sequence n consists of the values taken
on by v,(t) (OS t < + ). The encoding results in a new source X' = f(X) defined by
¢'(1),¢'(2), s E'(EQR)...=f™(E(1)&(2)...). We also define the mapped cost
scale 3; = f(3,) by

Vi) =11/ (1))l (3.14)

or, equivalently, by
tm=t iff |[fin@)|<ns|f @)  forall ¢’ <. (3.15)

According to (3.8) and (3.9), if X is encodable by f with respect to 3,, all RV’s
&' (k), vi(t) and 7}(n) are well-defined a.s. and the latter ones do define a cost scale
for X'. (Of course, both f(X) and f(3,) depend, in general, both on X and 3,; we
think, however, that our notation will not cause ambiguities.)
If f is not only a semicode but a code, when saying “ X is encodable by /" we
need not mention the cost scale, as for codes D{? =D, does not depend on f. As a
point of fact, X is encodable by a code f iff the IRV’s

k(n)=k,(E(1)E(2)...) (3.16)

(k, has been defined in connection with (3.10)) are well-defined a.s. forn=1,2, ....
Furthermore, if {(n)>0 a.s. (n=1, 2, ...), then, in Definition 3.2, n is the sequence
of all nonnegative integers and encodability does not depend on the cost scale,
even for semicodes; in this case, in fact, one may restrict attention to encodings by
codes. If, however, some {(n)’s may be zero with positive probability, the sequence
n becomes really a random one and semicodes offer a greater generality then codes.
For the following, it is essential to allow this possibility, too; in particular, for
mapped cost scales of type (3.14), (3.15), v'(¢) has, as a rule, jumps greater than 1,
i.e. for such cost scales there exist symbols of zero cost (cf. Remark 3.5 below).

If a source X is encodable by a semicode f with respect to a cost scale 3,
and we set X'=f(X), 3, =/(3,). (3.14) implies #;(t)=&'(1; v} (t))=f(n, (1)) and thus
H(ni ()= H(n, (1), i.e."!

HX'3D=H(X[3,). (3.17)

10. Also the term “finite state automaton™ has been used, but we prefer to avoid it, since the set
of the possible outputs (in one tact) is no alphabet, in general.

11. If the entropy rates in question do not exist, the inequality holds both for the lower and
upper entropy rates.



Information Sources with Different Cost Scales 213

If 3" is a given cost scale for X’ and there exists ¢’ > 0 such that 3, = f(3,) <¢' 3’
(cf. Definition 2.3) then, in view of Theorem 2.2, (3.17) implies !

HX'|3)=c HX|3,)) (3.18)
provided that H(v'(t))=o(t) or else that f(3,)~c¢ 3.

Remark 3.3. If a source X is encodable by a semicode (or code) f with respect
to a regular cost scale 3,, the mapped cost scale f(3,) need not be regular, in
general. In order that the regularity of 3, imply that of f(3,), a simple sufficient
condition consists in the boundedness of || f(u)| /| u| for ue Dy (u=u,). In particular,
for codes generated by finite-state transducers (cf. Example 3.2), this condition is
trivially fulfilled.

Though the regularity of a cost scale 3 may get lost in the transition to f(3),
an important property of regular cost scales remains preserved, as the following
partial sharpening of Theorem 2.2 shows.

Theorem 3.2. Let 3| and 3, be two cost scales for a source X'; let there exist
sources X;, cost scales 3; and semicodes f; (i=1,2) such that X; is encodable by f;
with respect to 3; and f;(X)=%', f:(3)=3i(i=1,2). Then, if 3, and 3, are regular
and 3y and 3 are weakly quasi-equivalent, i.e. 3,2 ¢’ 35 for some ¢’ >0 then

1
H(£’\I31)=—c: H(X'|3%) (3.19)

in the sense that if either side exists so does also the other and they are equal; if the
entropy rates do not exist, the equality holds both for the lower and upper entropy
rates.

Proof. In view of (2.24) and the obvious relation f, (¢’ 32)=¢"13(3,), we may
assume ¢’'=1, without any loss of generality. Applying Theorem 2.1 with A=
{w: [vi—V3|>1}, we obtain (the arguments ¢ being omitted)

Hniln) S 1+ P(A) Hy (vi|vh)+log, s E v —valF + P(4) Hy(nh),  (3.20)
where s’ denotes the size of the alphabet X’ of X'. Here
Hi(vivy)<log,2t+1) (3.21)

as, if 4 obtains, the number of possible values of v given v} is <2t + 1. On account
of ,

; ;o vi—V

31~3,, ie %ﬁ*’» 0,
we also have

EV, vyl =0(1). (3.22)

To prove that also the last term of (3.20) is o(t), let M be a fixed positive integer,
and set By={w:v,SM1t},B,={w:(k—1)t<v,<kt},k=M+1,M+2,.... Then,
if B, obtains (k=M, M +1,...), n, =&(1; v,), and thus ;= f,(y,), too, can take on

at most -

3 5Tt
i=0



214 I. Csiszar, G. Katona and G. Tusnady:

different values, where s, is the size of the alphabet of the source X, ; thus, intro-
ducing the IRV f by setting f=k if we B,, we may write

HA(fvi)éHA(ni,/f):HA(ﬁHHA(nSIﬁ):HA(ﬁHk_ZMP(BktA) H,4 o, (1))

<H P)+logys, Y, P(BilA)(kt+1) (3.23)
k=M
=HA(ﬁ)+logZ51(1+P(BM|A)MI+ T P(BM|A)kt)
. . k=M+1
implying
P(A) H,(n)) S P(A) H,(p)+P(A)log, s,(1+M1t)+log,s;, [ v, Pldw). (3.24)

vi>Mt

Here, as 3, is regular and f is a function of v,, P(A) H ()= H(f)=H(v,)=o0(1).
By the assumption 3;% 3}, we have P(4) — 0 thus also the second term on the
right hand side of (3.24) is o(t) for any fixed M. Finally, as 3, is regular i.e. v/t
is u.i. for t =1t,, the last term divided by ¢t can be made arbitrarily small for t > ¢,
if M is large enough. Hence we see that P(A4) H,(n})=o(t) for t — oo, that, together
with (3.21) and (3.22), gives rise to

H(nilnz)=o0(t)  (t— ). (3.25)
We obtain, in the same way
H(nyny)=o(t)  (t—c0), (3.26)

too, whence, by inequality (1.10) of Lemma 1.1,
H(m)—H(n3)=o(t) (3.27)

completing the proof of Theorem 3.2.

In order that a code be of any practical value, it ought to be possible, in some
sense, to recover the original message from its encoded form. We adopt the fol-
lowing

Definition 3.3. Let X be a source with finite alphabet X and let X be encodable
by a semicode f from X to X', with respect to some cost scale 3,. The encoding
X — X'=f(X) will be said to be decodable if there exists a semicode [’ from X’
to X such that X’ is encodable by f’ with respect to 3} = f(3,) yielding /' (X')=X%
a.s. If, in addition, f” can be chosen in such a way that the cost scale 3,=71"(3}) is
(weakly) equivalent to J,, the encoding will be said to be (weakly) properly
decodable (with respect to 3,).

Remark 3.4. The last conditions seem, at first sight, a bit artificial; however,
as we are going to see, only proper decodability (or its weak version) is adequate
for our purposes. Observe that the conditions f'(3})~ 3, and f'(3;)% 3, mean,
in view of (3.14) and Definition 2.3,

1 1
i (L (f ()] = v3(1)) >0 and = (ILF(f a @)l = v4 (1) =0,

respectively.



Information Sources with Different Cost Scales 215

Example 3.3. Let f be a code from X to X’ and assume that there exists a code
/' from X' to X such that Df = /(Df) and f'(f(@))=1u for each ueD Such codes
may be called infinite-decodable (in accordance with the concept of mflmte code,
cf. Remark 3.2). Obviously, for any source X encodable by such an f; the encoding
X - f(X) is decodable (but not necessarily properly decodable). E.g. if f(u) is
defined as the sequence of the first [2 ||u||] letters of u, then f is infinite-decodable
but not properly decodable.

Example 3.4. Let f be a code from X to X', and let D be the essential domain
of f, see (3.11). The code f will be called wide sense finite-decodable if u, ve DF,
u=v implies f(u)=+f(v). For any source X encodable by a wide sense finite-
decodable code the encoding X — X'= f(X) is decodable in the sense of Definition
3.3, with respect to any cost scale 3, ; an appropriate semicode f’ from X' to X
is defined by

D,=f(X)=f(D}), ['W)=u iff fw=u, ueD}.

In order to exhibit a condition of proper decodability, let us introduce, for an
arbitrary sequence 8 of IRV’s 0=x(0)<x(1)<k(2)<--- and an arbitrary cost
scale 3 the notation 3| R, where 3*=3|K is defined by

K (k)
(i if n=xr(k —1)f k=1
0% ()= i:x<;1)+1l’(l) if n=r(k)>K(k—1) for some (3.28)

0 otherwise.

Using this notation, letting ! be the sequence defined by (3.16), we may write

32=1"(3)=3:IK. (3.29)

Thus the encoding by a wide-sense finite-decodable code f is properly decodable
(weakly properly decodable) if 3,~ 3,|8 (or 3,% 3,|8). In particular, if X is
encodable by f (i.e., the RV’s k(n) are well-defined for n=1,2,...) and 3 is an
arbitrary cost scale, the encoding is surely properly decodable with respect to
31 =3|8. Observe, too, that a simple sufficient condition of 3,~ 3,=23,|R con-
sists in the uniform boundedness of the “ block lengths” k (n)—k(n— 1) (n=1,2,...).

Example 3.5. Let the code f from X to X' have the property that u 4 v implies
S+ f(v) for every u,vell(X); such codes may be called strict sense finite-
decodable. A code f is strict sense finite-decodable iff it is wide sense finite-
decodable and, in addition, no g(x; |x;, ... x;, _,) equals the void sequence u,. For
such codes D¥=U(X), D,=M(X), and 3,=/"(/(3,)) is identical to 3, for arbi-
trary 3,. This means, that each strict sense finite-decodable code defines a properly
decodable encoding, for any source X with alphabet X and with respect to any
cost scale 3. For simple letter codes (cf. Example 3.1)) finite-decodability (in both
senses) is identical to the usual concept of unique decipherability (see e.g. [9]).

Observe that strict sense finite-decodability does not imply infinite-decodability,
as already the example of the simple letter code

X:{O, 1’2}’ X’:{Oal}a g(O):O, g(I)ZOI-» g(2)=
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shows. (E.g. for #=022---+5=122 we have f(ii)=f(#=01111....) On the other
hand, a code [ may be infinite-decodable and give rise to a properly decodable
encoding without being wide sense finite-decodable. A simple counterexample is
the code defined by delating the last letter of each uell(X) (for u=u, we set
S (w)=uy); for simple letter codes, however, infinite-decodability does imply finite-
decodability.

Remark 3.5. The fact that finite-decodability does not imply infinite-decodability
means that it is essential in Definition 3.3 to allow for the “ decoding™ /" also semi-
codes, even if f itself is a code. The above simple example shows that it can happen
already for uniquely decipherable simple letter codes that as “decoding” only a
semicode /* may be found, and, in order that ¥’ = f(X) be encodable by this f” (to
obtain X = f’(¥’)) a particular cost scale — defined through f — has to be chosen.

Theorem 3.3. Let X be a source with a cost scale 3. Let X be encodable by a
semicode [ with respect to some cost scale 3,~ 3. Let the encoding result in the
source X' = f(X) and let 3' be a cost scale for X'. Then, if the encoding X — X' is
properly decodable (with respect to 3,) and if the mapped cost scale 3} = f(3,) is
quasi-equivalent to 3, i.e. 3\~c' 3, ¢’ >0, we have'?

HX(3)=c H(X|[3). (3.30)

If 3 and 3’ are regular, the conditions of proper decodability and of quasi-
equivalence of 3y and 3' may be replaced by the corresponding weak concepts.

Proof. If the encoding X — X’ is decodable, (3.17) may be applied with inter-
changed X and X’ to obtain for 3,=/"(3})

H(X|3,)=H(X'| 3). (3.31)

In case of proper decodability i.e. 3,~3, we have H(X|3,)=H(¥|3,), by
Theorem 2.2, thus (3.17) and (3.31) imply

HX'|31)=H(X|3,); (3.32)

If 3 (and thus 3,~ 3, too) is regular, already 3, % 3, is sufficient for H(X|3,)=
H(X||3;), on account of Theorem 3.2 (observe that 3,=f"(f(3,)) and that 3,
may be considered as the map of itself for the identity code f'(u)=u).

Furthermore, 3;~ ¢’ 3’ implies, on account of Theorem 2.2,
1 fily
H(f'153])=7 H(X'|| 3).

If 3,~3 and 3’ are regular, the same equality follows already from 3% ¢ 3, in
view of Theorem 3.2. In both cases, (3.32) gives rise to (3.30), and Theorem 3.3 is
proved.

12. In the sense that if either entropy rate exists so does also the other and the equality holds;
if the entropy rates do not exist, the equality holds both for the lower and upper entropy rates.
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The intuitive meaning of Theorem 3.3 is clear. (3.30) represents the “ principle
of conservation of entropy”, i.e. that (properly) decodable encoding does not
change the entropy rate apart from a factor representing the quotient of average
costs after and before encoding. The inequality (3.18) means that in the non-
decodable case some information may get lost. Observe, that proper decodability
is essential in order that the equality (3.30) hold. E.g. if f(u) consists of the first
[n/2] letters of u if ||u| =n, the code f is obviously infinite-decodable, but if X is
any source and =3 =, we have ¢'=2, while the encoded source is identical
with the original one. Thus H(X')=H(X).

As a point of fact, X'=f(X) always depends merely on the equivalence class
or infinite-code (infinite-semicode) defined by f (cf. Remark 3.1); thus if to a given
f an fi~f exists with ¢} <c/, the inequality (3.18) can always be improved by
replacing ¢’ by c}.

In order to exhibit a * principle of conservation of entropy”, a comparison of
the cost scales of the original and the secondary sources is needed, and to this
end one of the two cost scales has to be “lifted ” to the other process. Theorem 3.3
refers to comparison of costs in the secondary process. Also the other alternative
would be possible, though, as we are going to see, it seems a bit less convenient.
Let us consider only the case that f is a code; let 3 and 3’ be cost scales for X
and X'= f(X), respectively, and define the “inverse image™ 3,=/f"'(3’) of 3’ by
assigning to each symbol & (n) the cost of its image, i.e.

K’ (n)

L= Y Uk, w&@=]fED;n)]. (3.33)

k=Kx'(n—1)+1

Then we clearly have (cf. (3.28))

SHSQ)=3IK,  f(/'3)=3I8 (3.34)
with the & and &’ defined by (3.16) and (3.33), respectively. Thus, in particular,
(3.17) holds for 3,=7"'(3") and 3;=1(3,)=3'|K". If the encoding is properly
decodable with respect to 3, =/ '(3'), then the equality holds, and thus, if 3, is

quasi-equivalent to 3,i.e. 3, ~¢ 3 for some ¢>0and if 3'|R ~ 3, we obtain, using
Theorem 2.2,

1
HX'I3)=—_HX|J). (3.35)

The following corollary of Theorem 3.3 is worth formulating as a new theorem.

Theorem 3.4. Let X be a source with a given regular cost scale 3; let X be
encodable by a code (or semicode) f with respect to 3. Let 3’ be a cost scale for
X' = f(X) such that

b<{(m<B as (n=1,2,...; 0<b<B). (3.36)

| fn@)])

7(
t

Then, if

—£,r>0, (3.37)
we have

HX|J3)=-

H(X|J3)
Lt (3.38)
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If, in addition, also the decodability condition
(D) there exists a semicode f” such that f'(f(n(t)) is defined a.s. for all t=0,
S f@E)= L (S (e)<n(ty) a.s. for 0=t, <t, and such that

; (=[S (fm@n)]) -0 (3.39)

is fulfilled, in (3.28) the equality holds, i. e.

=81 (3.40)

Proof. According to Lemma 2.3, (3.37) is equivalent to f(3)%(1/r) 3". Thus
(3.38) is a particular case of (3.18), as f(3)<(1/r) 3" implies f(3)—~(1/r) 3" if 3
is regular (here the regularity of 3 is not needed). The condition (D) ensures that
the encoding X — X’ is weakly properly decodable with respect to 3, thus Theo-
rem 3.3 applies to yield the identity (3.40).

Most commonly, X' has a memoryless intrinsic cost scale (cf. Example 2.2)
defined by fixed symbol costs I(x') (x'e€ X) so that {'(n)=1[('(n)); or, somewhat
more generally, if X' is to be transmitted by a finite-state noiseless channel (cf.
Example 2.9), the symbol costs may depend on the “state of the channel”, i.e.
{'(n)=1(&'(n),(n—1)) where a(k) represents the state of the channel after the
transmission of the k’th message symbol. In these cases the condition (3.36) is
trivially fulfilled provided that [(x) (or [(x’, a)) is strictly positive. The most impor-
tant special case is, of course, that 3’ is the counting scale € or, at least, 3’ is quasi-
equivalent to €, in which case in (3.38) and (3.40) H(X'||3') may be replaced by
FH(X) G r 3~ C)

Remark 3.6. Theorem 3.4 is perhaps the most impressive form of the “ principle
of conservation of entropy”. As t'(| f(n(1))||) is the cumulative cost of the code of
a message of cumulative cost ¢ (i.e., of n(t)=¢(1; v(t))), the condition (3.37) requires
the existence of an average code cost r per unit message cost, in the sense of
convergence in probability. If both 3 and 3’ are the counting scale €, (3.37)
reduces to

[FAUED)|

SR (3.37)
(3.39) reduces to !
% I (fEasn))| 21, (3.39))
and the identity (3.40) becomes
)= 1% (3.40')

¥

This relation, dating back to Shannon [16], has often been regarded as “ ob-
vious” but, to the authors” knowledge, it has never been proved in a rigorous way,
for arbitrary sources and codes. For the case that f is a simple letter code, a proof
of (3.40') appears in [10]. The more general case of codes generated by finite-state
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transducers (cf. Example 3.2) has been considered by Sidel'nikov'? [17]; he, how-
ever, restricted attention to Markovian sources (though, as he has remarked, some
of his results hold in more general cases, too).

Remark 3.7. The decodability condition (D) is not necessary for the equality in
(3.38). The role of (proper) decodability was to ensure that in inequality (3.17) the
equality sign hold. Of course, this may be the case for non-decodable encodings,
too; what really needed is the relation'*

H(m@lm(@)=o0(@)  (t—>w0). (3.41)

(3.41) surely holds if the number of different possible values of () yielding the
same 13 (t)=f(1,(t)) is exp {o(t)}; this condition is trivially fulfilled e.g. if f has the
property that for any given u'e(X’) there are at most d different uell(X) with
f(w)=u" (d=1 means that the code is strict-sense finite-decodable; if d> 1, the
code may still be properly decodable, but it need not be so). E.g. one may require
that is u; #u, and both the first and last letters of u, and u, coincide then f'(u,)=+
f(u,) (in this case, with the above notation, d =s2, where s is the size of the al-
phabet X). Sidel'nikov [17] has imposed just such a condition on the encoding,
generated by a finite-state transducer and proved that it implies (3.40); actually,
he has shown this condition to be necessary, too, for the class of sources considered
by him. Of course, for arbitrary sources such a simple necessary condition of the
equality cannot be hoped for.

We conclude this section by exhibiting a general form of the “ noiseless coding
theorem”. Let us mean by a general noiseless channel with alphabet X’ a subset
U, of U(X") together with a nonnegative function /(u’) on U, satisfying the same
conditions as in Example 2.10. Let N(¢) be the number of different sequences u' e,
with the property (1) <t, (1’ x')>t (for some x'e X’ with ' x'ell,) and define the
channel capacity by!'?

— 1
=T 2B N

t— oo

(3.42)

Theorem 3.5. Let X be a source with finite alphabet X and let us be given a
noiseless channel with alphabet X' of capacity C. Let 3 be a cost scale Sor X and
let [ be a semicode from X to X' such that ¥ is encodable by f with respect to 3 in a
properly decodable way (or in a weakly properly decodable way, if 3 is regular)
and the resulting source X' = f(X) is transmissible by the given channel (i.e.&'(1;n)ely
a.s.n=1,2,...). Then, if

El(f(n(t
L=1im 21U E(”.r(—))) (343)
exists, it necessarily satiesfies -
H(X(3
L2 c_ (3.44)

13. Cf. the next remark.
14. For decodable encoding, H (n2()| 5 (1)) =0 trivially holds (3, =/1"(31); if 3, ~ 3,, this implies
(3.41), by Theorem 3.1.
15. Tt can be shown under mild regularity conditions, that in (3.42) actually the limit exists; a
related problem is discussed in [18].
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Proof. Proper decodability implies H(X|| 3)=H(X'| f(3)), by Theorem 3.2, and
if 3 is regular, this identity holds in the weakly properly decodable case, too. As
for 3 =1(3) we have vi(t)=| f(n(1)[|, T (vi(®)=1(f (1 (1)), (3.44) is an immediate
consequence of Theorem 2.5.

Remark 3.8. For channels with all conceivable sequences transmissible (i.e.
U, =U(X")) and with memoryless intrinsic cost scales, in the special case of simple
letter codes and 3 =C, (3.44) has been proved in [6] and [12], where also suitable
code constructions are presented. For the case of stationary ergodic sources with
J=Cfor Uy =2U(X"),l(u')=|lu| and for general codes as defined by him, Billingsley
[2] has proved even a stronger theorem than the corresponding particular case
of Theorem 3.5. For more general cases, to the authors’ knowledge, the assertion
is, though “intuitively obvious”, as a mathematical theorem new.

For trivial noiseless channels, with all conceivable sequences transmissible
(i.e. Uo=U(X") and all symbols having unit cost (i.e. [(w')= ||| for all w'e(X")),
inequality (3.44) reduces to B

H(X|3)

L
log, s

1\

(3.44)

In particular, if s=2, (3.44') means that it is impossible to encode the source ¥
by binary digits in a properly decodable way such that the average number of
binary digits used per unit cost be less than the entropy rate of X with respect to
the cost scale in question, in accordance with the intuitive concept of entropy. In
our mind, to have an exact formulation and a general proof of this familiar assertion
is essential for the interpretation of entropy as the measure of the amount of in-
formation. Observe that the usual “ noiseless coding theorem” (the particular case
of (3.44') that 3=C and f is a simple letter code) is less satisfactory in this respect,
as it concerns a very special type of encoding only. (Billingsley’s results [2] are
much more relevant in this respect; in view of the different definitions of “ general ”
encoding, however, there is only a slight overlapping between his results and that
of ours.)

Remark 3.9. Of course, if the principle of conservation of entropy (Theorem 3.4)
is valid, (3.44) is an immediate consequence of (3.40); in fact, then (3.44) holds with

1(f(n()

the r of (3.37) in place of L (observe that if ———"" js u.i. for t — oo then L=r:
otherwise we have L>r). !

§ 4. Concluding Remarks

In this paper, we restricted ourselves to information sources with finite alpha-
bet; the finiteness assumption has been essential for our basic estimations (2.12)
and (2.13) (Theorem 2.1) and it remains an open problem, under what conditions
does the “entropy rate comparison theorem” (Theorems 2.2 and 3.2) hold for
countable alphabets, too. Theorem 2.5, however, remains unchanged also for
countable X (except for the bound C <(log, s)/b). Observe, too, that the theorems
involving coding (Theorems 3.3, 3.4, 3.5) can obviously be extended to countable
X (provided, in the case of the first two, that X’ remains finite), if some additional
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assumptions (e.g. strict sense finite-decodability) ensure the validity of (3.41). A
possible approach to problems concerning countable alphabets in general would
be to reduce them to the finite-alphabet case by an appropriate encoding, using
the above remark.

One could generalize the concept of cost scale permitting v(t) to be any family
of nonnegative IRV’s (dropping the condition that the sample functions are non-
decreasing). Some of our results would remain true for this case, too, but in lack
of examples where a need for such a generalization would arise, it does not deserve
closer attention. ‘

As to the generality of the concept of coding used in this paper (Definitions 3.1
and 3.2) one might make the objection, that in some cases the code sequence
assigned to a (finite) message sequence may conceivably depend not only on this
sequence but on some subsequent letters, too. In all practical cases, however, the
encoding is “of finite delay”, i.e. the code sequence assigned to the first n letters
of the message to be encoded is uniquely determined by these letters and m sub-
sequent ones, where m is fixed. Then one may consider that the code sequence
obtained in this way is actually assigned to the first n+m letters of the message se-
quence (rather than to the first #n ones); as m is constant, this change of viewpoint
does not cause any change in the results. Sometimes one considers randomised
encodings, too, where the code sequence assigned to a message sequence is not
uniquely determined but it depends on chance. The mapped cost scale f(3,) can
be defined in this case, too, but (3.17) need not hold, except if some additional
conditions ensure

H(my(0)ln, (1)) =0(2) (3.45)

(such a condition would be e.g. that f(u), though not uniquely determined by u,
can take on at most d different values, where d does not depend on u). In general,
in case of randomised encodings, in Theorems 3.3 and 3.4 the entropy rate
H(X'[| 3') has to be replaced by the mutual information rate 1(X’, X||.3', 3) (cf. (3.3));
of course, if (3.45) is valid, Theorems 3.3 and 3.4 hold in their original form.

As randomised encoding is essentially equivalent to a noisy channel, the above
remark indicates how to extend our results in order to include the case of informa-
tion transmission in the presence of noise. E.g., our results may conceivably be
useful in the theory of channels with synchronisation errors, investigated by
Dobrusin [8]. A closer study of noisy channels with arbitrary cost sclaes, how-
ever, though very desirable both from the theoretical and practical points of view,
is beyond the scope of the present paper.

In connection with the “noiseless coding theorem” (Theorem 3.5), we did

H(X|
not tacle the problem whether the lower bound # of L can be attained (or

approximated to any specified degree) by an appropriate encoding. In practically
important cases, this question may be answered in the affirmative using familiar
methods, though in the most general case there may arise some difficulties.
Another problem we did not enter is that of generalizing McMillan’s theorem for
sources with cost scales; this problem, though of considerable interest, apparently
requires different methods than those used in this paper.

16 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 12
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