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Abstract. Some new and improved results on the minimum representa-
tion problem for key systems will be presented. By improving a lemma of
the second author we obtain better or new results on badly representable
key systems, such as showing the most badly representable key system
known, namely of size

2n(1—~c-log logn/ logn) ,

where n is the number of attributes. We also make an observation on a
theorem of J. Demetrovics, Z. Fiiredi and the first author and give some
new well representable key systems as well.
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1 Introduction

Consider a relation name R in the relational database model. Let 2(R) be a
finite set, its elements are called the attributes of R. If |2| = n we say that
the arity of R is n. The relation name and the set of attributes together are
called the relation schema and denoted by R[f2]. Suppose, that there is given a
(countably) infinite set dom. An n-fuple over the relation schema, R[(2] is a total
mapping u from {2 to dom. A relation instance over a relation schema R[] is
a (possibly empty) finite (multi)set I of n-tuples over 2.

The value of the n-tuple u on an attribute A is denoted by wid) . B X C N
then mx (u) is an |X|-tuple v over X, such that v(A) = u(A) forall A e X. A
relation instance I over R[(2] satisfies K—{2, denoted by I £ K—{2, if for each
pair u and v of tuples in I, mg (u)=mng (v) implies Tk (uW)=mTo\k (v). K—§ is
a key dependency where K C 2 is called a key. (Less formally, K C 2 is a key,
if the values in K of an n-tuple determine the whole n-tuple.)
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A key is called minimal key, if it does not contain any otlier key as a proper
subset. Since the set of keys and minimal keys determine each other (each subset
of the attributes that contain a key is also a key), it is natural to investigate the
system of minimal keys, which usually contains fewer members, smaller in size.
Keys can be widely applied in database management, see [1].

A family F of subsets of a finite set is called a Sperner system, if for Fy, Fp € F
the property F} € F5 holds. The system of minimal keys is clearly a non-empty
Sperner system. For a Sperner system K let us introduce the notation

I(K) = {I|I E K—{ if and only if 3K',K' C K,K' € K}.

We call an element of I(K) a representation of K. The following basic theorem
of W.W. Armstrong and J. Demetrovics states, that for every non-empty Sperner
system, there is always a representation of it, i.e., there exists a relation, in which
the system of minimal keys is exactly the given family of sets.

Theorem 1.1. /2, 4] If K is non-empty, then I(K) # 0.

In view of Theorem 1.1 it is natural to ask for the minimum size of a relation,
that represents a given system of keys. Formally let s(K) = min{|I|| I € I(K)}
denote this minimum.

Suppose, that little a priori information is known about the structure of a
given database instance. If a theorem ensures the validity of an inequality among
the parameters of a database and we have information on the actual values of
a part of these parameters then a statement may be deduced for the rest of the
parameters of the given instance. In our case, we have a theorem for the following
three parameters: number of attributes, system of minimal keys (this is not a
number!) and the size of the relation. So if the size of the instance is less than the
size of this minimal sample database, then the system of minimal keys can not be
this one, our hypothesis on the system of keys can be rejected. This argument is
trying to justify the investigation of the quantity s(K). The goal of the present
paper is to extend our knowledge on the minimum representation problem of
key systems. In addition to its importance they usually raise interesting and
sometimes challenging mathematical problems.

Let us start with presenting some earlier results on minimum representation.

A C 2 is an antikey if it is not a key. An antikey is called a maximal antikey,
if other antikeys do not include it. If K is the system of minimal keys, denote the
system of maximal antikeys by K~!. There is a strong connection between s(K)
and |[K~!|, namely the magnitude of s(K) is between |[K~!| and its square root.

Theorem 1.2. [5] If K # 0 is a Sperner system, then the following two inequal-
ities hold,

K1 < (5(§)> and  s(K) <1+|K7Y. (1)
Informally, we say that a Sperner system K is well/badly representable if s(K) is

close to the lower /upper bound of Theorem 1.2. It is easy to see, that a minimal
representation have the following two basic properties.



Proposition 1.1. Suppose, that I € I(K), |I| = s(K) is a minimal representa-
tion of the Sperner system K, then the following properties hold,

(i) for every A € K= there exist two tuples, u and v in I, such that TAlu) =
ma(v),

(ii) there are no two different tuples u and v in I, such that Tx(u) = Tr (V)
holds for some K € K.

Let us mention two results from the 1980’s. K7 denotes the family of all k-element
subsets of the n-element 2.

Theorem 1.3. 5] 2<k <n = e =ci(k),c2 = ca(k)
cinE—1/2 < 3T 2
Theorem 1.4. [8] n > ng(k),k>1 = Fez = c3(k),cq = ca(k)

1 1
can(ZFH1/3 a(E ) < eank, Tinz < 8" )< 5”2'

It has been proved in [7] that there is a Sperner system X such that

el HLZD

Its proof is, however probabilistic. It does not give a construction. No constructed
Sperner system K exists in the literature with exponential s(K). We will show
such ‘a construction in section 3. More precisely, s(K) will have an exponent
nearly n. The method of proving a lower estimate on s(K) is the same as that of
[11]. The method was based on a lemma on labelled (by subsets) trees. Section
2 improves the statement of this lemma, giving a sharp estimate replacing the
estimate of [11]. This improvement makes us able to prove the exponential lower
estimate.

In section 4 we return to Theorem 1.3. First (subsection 4.1) the upper esti-
mate is improved (it becomes independent of k). Subsection 4 is a small observa-
tion showing that the method of [5] can be used to prove a good upper estimate

for other (non-uniform) Ks. In section 5 we summarize the related questions to
be done.

2 An Extremal Problem on Labelled Directed Trees
Revisited: A Tool for Deriving Results on Badly
Representable Key Systems

A tree F is called a directed tree, if there is a direction on the edges, so that
a vertex vg (root) has only out-neighbours, and an arbitrary vertex v#vg has a
uniquely determined in-neighbour n(v). N(v) denotes the out-neighbourhood of
v. The set of the leaves of a tree I is denoted by ¢(F). Let U be a (finite) set.



A tree F = F(U) is called labelled, if a subset A(v) of U is associated with each
vertex v of F'.

For fixed integers kK > 1, £ > 2 and U = {1,2,...,m} consider the family

of labelled directed trees .’F,ET?), for which the vertices of each tree F' € f,i’jz)

are labelled as follows. The label of the root vy of F is A(vg) = U. For an
arbitrary vertex v of F' there is a disjoint partition N(v) = Ule N;(v) of its
out-neighbourhood satisfying the following properties.

A(v) € A(n(v)) (v#vo), (2

|A(v)] 2 k+1, (3

wi,we € N;(v) = A(w) NAwz) =0 (1< £ (4

wy € Ni(v),ws € N;(v) = |A(w1) N A(wz)| < k (1 Zeadl (5

Introduce the notation Tk ¢(m) = max{|¢(F)| | F € F,ET)}. If k = 1, we simply
write ]-“e(m) for F,gfz) and Ty(m) for Tk ¢(m).

Throughout the rest of the paper we write simply log for log,. We have for
F¢ the following:

1 <
<3

)
)
)
)

Theorem 2.1. .
To(m) < §mlog m. (6)
and equality holds if and only if m is a power of 2.

Theorem 2.2.
Ty(m) = O(mlog® m) (7)
for £ > 3. Where a = a(f) = log¥.

In [11], the magnitude of T ¢ was determined.

21 Casel =2

We will use the concept of entropy [3] in the proof. Entropy is a measure of a

random variable X:
H(X)=-) pilogpi, (8)

where Prob(X = i) = p;. It is known, that

H((X,Y)) < H(X) + H(Y). (9)

The proof is by induction on m. (6) holds for m = 2. Suppose that the
statement holds for every integer smaller than m.

Let F € Fgm) be a tree with |[£(F)| = T(m). Furthermore let N(vo) =
{v1,. ., Vs, W1,..., W}, Ni(vo) = {vi,...,vs}, Na(vo) = {wi,..., ws}. Let us
use the short notations A; = A(v), a; = |4, 1 < i < 8), By = A(w;),

b; = |By|, (1 <14 <t). The subtree of F' of root v; (w;) is denoted by F; (Feiil,
l<igsllsgst)



By the induction hypothesis
T(a;) < %ailogai, (ls€i%g, and Tlh)< b loghy; (1 <i<t)

holds. So it is enough to prove that
L)

t
Z a;loga; + Z b;logb; < mlogm, (10)

i=1 i=1
since then

841

Tlm)= 1-2wmm§ﬁ% ij>

el

1
< Z——azlogamﬂ—z —b;logb; < 2mlogm
=1
Let s1 =m —3Y7;_;a; and ' = s+ s;. Add s; disjoint sets Ay 1,..., Ay of

cardinality 1, such that {1,2,...,m} = Uf,:l A;. We define t;, t’ and the sets
Bity,. .., By analogously. The sets A; (1 <7 < s') and B; (1 <j <t') have the
following properties:

{4, 1 <i<s'} isa partition of {1,2,...,m}, (11)
{B,1<j<t} sapartitionof {1,2....,m}, £1%)
Rl sl i T <s (13)

Let f2x = {1,2,...,m} be the event space of the random variable X . Further-
more, let X (w) = w, w € 2x and Prob(X = w) = 1/m. Let us define another two
random variables, Y(X € 4;) =i, 1 <i<sdand Z(X € B;)=j, 1<j<t.
Then

(o7 ; b;

Prob(Yzz')——-—n—2 (A<i<s) and Preb{Z=4j=-L (1<j<t)

The random variables Y and Z are well defined by (11) and (12). Furthermore,
by (13) we get

oo pRebX =Ky =1/m - if A;nNB; = {k},
Prob(¥,2) = (1.0)) = { : s
So we have for the entropies of Y, Z and (Y, 2):

/

: t'
H(Y):Z%logg, Z

=1

Slw
@IS’

TR

H((Y,2))=-> > Prob((Y, Z)=(i, 5)) log Prob((Y, Z)=(3, j)) =

i=1 j=1

m
1
Z—- ogm = logm.
e~ m



Therefore, by (9) we get

logm<Z——1 g~— Z Jlogb

which is equivalent to (10).

2.2 Casef >3

To prove Theorem 2.2 we need somewhat more counting. We could not find a
straightforward way to generalize the concept of entropy for this case, altough the
main idea (see equation (16)) of the proof comes from the proof of the case £ = 2.

In this section we will use the following notations. If u = (uy,...,u) for
some t, then let P;(u) = Z; yub and og(u) = ) i < wit;- Let A(u) =
(Z _,u;)/t and G(u) = (H _,;u;j)}/* denote the arithmetic and geometric

mean, respectively. We will use the notations Az(u) = A(o2(u)) and Gz(u) =
G(O’g(u)) as well.

Lower estimation of Tp(m). Let H}, (¢ < ¢) be a partial affine plane of order
g, i.e., a set of £q lines on ¢* points, such that the lines form ¢ parallel classes
and lines from different parallel classes intersect in 1.

Suppose, that we have for m square
Te(v/m) > Ce - /mlog® v/m, (14)

and let F € fé\/ﬁ) be a tree with |(F)| = Te(y/m). Suppose furthermore, that

there exists a partial affine plane, ’Hz/_"—l.

Let T € F ém) be the following tree. The root has ¢y/m out-neighbours. Each
of them are labelled by one of the £i/m members of the partial affine plane,

Hﬁ. These out-neighbours are roots of one copy of F' each. Then

Ty(m) > |O(T)| = &/mll(F)| > £/m(Cer/mlog® v/im) = C¢ - mlog® m.

It is known, that there exist a partial affine plane of order ¢ with ¢ parallel
classes if and only if there exist £ pairwise orthogonal latin squares of order g.

There are only partial results known about the existence of pairwise orthogo-
nal latin squares, [10]. Of course, partial affine planes exist if affine planes exist,
i.e., for prime powers.

The statement follows from the fact that prime powers occur densly, see (39).

Upper estimation of Ty(m). Let £ > 3 arbitrary. We prove by induction on
m. We have to prove, that

Te(m) < emlog®m (15)

holds for some ¢ = ¢(¢) to be chosen later.

For small m (15) is true if ¢ is large enough. Suppose that the statement is
true for every integer smaller than m. :



Let F € Fgm) be a tree with [¢(F)| = T'(m). Let N(vg) = {v1,...,v:}. The
number of the leaves can be maximal only if for the subtrees F; of F of root

vi, [€(F;)| = T'(m;) holds, where m; = |A(v;)|. Furthermore let us introduce the
short notation N; = N; ('uo), I=<3<§

Case A. J1 < j <t, such that m; > 'm/logl/2
We need the following observation:

Proposition 2.1. Ty(m) < Ty(m — 1) +m — 1.

Proof. Induction on m. The statement is true for m = 1. Suppose that the
statement is true for every integer smaller than m. Let F ¢ 55 (M) he a tree
with [£(F)| = T'(m). Let N(vg) = {v1,...,v;}. The number of the leaves can be
maximal only if for the subtrees F; of F of root v;, [¢(F;)| = T'(m;) holds, where
m; = |A(v;)|. Let m |A(v1)\{m}] Consider the following tree F’ € F(m o
Let N(vj) C {vl,...,vt} v; € N(vg) & mi > 2. A(v}) = (vz)\{m} The
subtree Fj of F' of root v/ is a tree with |€(F’)| = m.. Then

T(m) = ZT(mz‘) ZT ) + Z(T (m;) m;)) = [&(F")|+
> (T(m)~T(mi—1)) < T(m—1)+ > (mi-1)<T(m—1)+m—1.
meA(v;) meEA(v;)

The last inequality holds by (5), the previous one by the induction hypothesislj

Let m; = fm. It is enough to prove, that Z§=1 T'(m;) < emlog® m.

t
T(m) =T(m) +Tm-mg)+ Y (T(ms) - Tlms—1)) <

= 177 A(vi )NA(v; ) #D

cBmlog® m + c(1-B)mlog®(1-B)m + £(m — m;) = cmlog® m+-

cfm(log® fm — log® m) + ¢(1—B)m(log*(1—B)m — log® m) -+ {(1-P)m <

caf(1-08)m

In 2

el |

cmlog®m —2 log®* ' m + £(1—B)Ym < cm log™ m+

2
(1—-08)m(f— T logl/zo m) < emlog® m,

if log!/?° m > (£1In2)/(2ac), which is true for every m if ¢ is large enough. We

have used only (4)-(5) (at the first inequality), Proposition 2.1, and the fact that
the function z + log® z is concave.

Case B.V1<j<t m; < m/log1 i
Let us introduce the notation N’ N; U {u(h) l1<h<m, B e N;:he

A(v;)}. Let A(u (h)) = {h} m; = A(w) for w € N}. Then the following notation
is well defined. Let m = |A(w)|, where w € N’, h € A(w).



We will prove that the following inequality holds for every 1 < A < m and
m > M(¢):
(h), (R
dui <j<k<e My My )

2

£
log®m — Z log® mgh) = IS—% log® ™t m(1 —
i=1

Using this inequality we get for m > M:

mlog® m — Z Z m log® m; = Z(Iog m— Zlog m( N

J= Iz'i,EN’
(h), (h)
e Ly Zl<3<k<£m L
Z—log m(l —
h_lan (g)m
alog® tm & (h)
(1n2)(3)mz Gl mk s
2/ h=11<j<k<e
log® 1 m =
alog Z(m m(h)mﬁc’”)

(m? = () [AD( Y |Aw))) =0.

weNy,

From this, (15) straightforwardly follows in Case B, as well. So, we only have to
prove, that inequality (16) holds in the case when m is large enough and none of

the m;s are too large. Let us fix h, we will omit the upper index of m™ in the rest
of the proof, so from now on, we suppose, that 1 < m; < m/ logt?m (1< j <)
holds.

Case B.1.V1<i<{i{:m; < \/T—T—Llogs m.

Case B.1.1. V1 < j < £:m; = /m+6;,16;| = (1/3)/m.

Proposition 2.2.

S TR ! al - .
(log*) @ (z) Zo“m e et e (17)

and the constants C’,(:) € 7 have the following properties:

@) of = -G -1cf P +c,
(i) CfY = (=11 - 1),
(i) o = g

Proof. Easy induction on 1. O



Proposition 2.3.

SI(5)i<oo s

k=0
holds for a > 1.
Proof.
B [a]—1 . oo (i+1)[a]-1 o
MRIES STIHIESSED o e
k=0 k=0 i=1 i[a]
fd-1 fel-1 4
|(k)1+2ra1 < SIS & <o B
k=0 k=0 i=1

Let ag(a) = 3 5o [($)], and amax(ar) = max ; |(%)]. Note, that amax(a) < £
and ag(a) < £+ 2a + 2.

Let 6 = (61,62,...,0¢). Then we have to prove the following inequality:

2P (6) 02(5)
et T )

¢
e @ « o
log®m — E log (\/m+61-)2—1—r—1—2(10g Lm)(
i=1

If 6 is small enough we know, that

log™ e 4 8) = i (10ga)$i) (z)b% (20)

1!
Je=i

holds, so using (17) we get for every 1 < j < ¢

o 1og“"1\/m a log® 'y/m
log® K e o 2
og¥(vm+§;) = log \/m+ ST 6; — 2 () 65+

ala—1)log* ?m 5 o= O : o C¥ %
65 + : . log® ™" /m.
’2  (Vm)? ; iG/m) ; (@—Klmkz = V™

Using Proposition 2.2 we get

o0 i C(i) o
]Zz'(\/— Z(a k-)‘122 og™™* v/im| <

1651° ~ [« i~k o (1) —k
E ; o E | |k!Nn"™" 2|C," | log® ™" v/m <
s il{y/m)iin"2 & \k




oo

|6 P 191 1 a—2 .
E Bnaxla)i!2® lo M. ==
k. il(v/m)iIn® 2 (@) -2 °
e 2064]

i a—2
T g dmax(e) log ‘/_Z (Fin?

2100amax(ct)( \'/-’) log®? v/m.

Using Proposition 2.2 and substituting into (19) we get that it is enough to
prove the following inequality:

'L'

(=1 )

_9_ loga~1 W(Plz(a) s (28 s 3)P2(6)

"M

In 2 (20 —2)m -
1 Py(6) o — P3(6™)
+ 2100amax 0, (21
T o g+ 2108ma(@) T E 2 0, (21)
where 6% = (|61], |62, .,|6¢]). The LHS of the previous inequality can be un-
derestimated by
a1 = PL(6) + (20 —3)Py(6") 1P5(6")
g 08" vm( (20— 2)m 3 (/m)e®
1 ,P(6T)a-—1 P3(6T) & 1og P} (6)
>
log\/'r—n( ki 2100amax(a) (y/m)3 )z ln2 Vilsr —oym (2 —2)m
Pule*ty 2t —-3 1 1

a—1
e e el - \/n_v,( ma T 100amax(@)))), (22)

which is nonnegative if m > £522200¢=5  (We used in the last estimation that

6| < (1/8)y/m, 1 <i < L)
Case B.1.2. 31 < j < £: |m; — /m| > (1/3)y/m.

Proposition 2.4. Let u = (u1,u2,...,ue), £ > 3, u; > 0,1 < i < £, up ¢

[2/3,4/3]. Then there exist a constant C(£) > 0, such that the following inequality
holds.

Ag(u) —1~—1n Gg(u) 2 C(f)

Proof. The LHS of (24) is nonnegative, since Az(u) > G3(u) holds by the arith-
metic-geometric inequality and Ga(u) — 1 > In G3(u) is true as well due to the
fact 1—1 > Inz, > 0. In both inequalities equality can hold for infinitely many
u’s under the conditions of the lemma, but the statement says that equality
cannot hold simultaneously.

First, suppose that |Ga(u) — 1| > 1/10. In this case, Ga(u) — 1 — In Ga(u) >
min{0.1 — In1.1,—0.1 — In0.9} > 1/214.



So we can assume, that |Ga(u) — 1| < 1/10. Let u* = (u,us,...,us—1) and
u’ = (u1,usg,...,ue—1,v), v(# ug) > 0 to be chosen later. So we have

Al i g v)%A(u*) + Al Gl (i v)%G(u*)Jr

2/t 2/8

Ga(u) = Ga(w) = (ue = 0)(56(u") — "L G(u)*7?) 2
(e — )G ()3 (1 — v/ G (") F) =
w T - DG E I - (@) T, ()

in the first inequality we used the arithmetic-geometric inequality twice, while
in the second ineqality the fact that z — 22/¢ is a concave function.

If ug > 4/3, then G(u*) < G(u) = \/G2(u), so if we choose v = 1.2, we have
a lower estimate of 1/(37¢) for the RHS of (23) (minimizing the product term
by term).

On the other hand, if uy, < 2/3, then G(u*) > G(u) = /Gy(u), so if we
choose v = 0.8, we get a lower estimate of 1/(72¢). ‘

So the statement holds if we choose

C(8) = 1/(720). (24)
]

Let a; = uiy/m, u; < log®m,1 < i < £,up & [2/3,4/3]. So in this case (16)
has the following form:

¢
5 el Zl§j<k§£ UjU
log*m — Z log® (us/m) > =3 log® " m(1 — 0 ). (25)
By the generalized binomial theorem we have

e o)

(logta - 1o ym)® =Y (‘;) (log? u5) (log™ ) >

=0
log™ vm + a(logu;) log® ' v/m + (£ — a — 1)(log? u;) log® 2 /m, (26)

using the fact, that £ = 2% = 3722 | (‘;) If m is large enough (by some counting
it can be checked that logm > 101248 is sufﬁcient) the following inequality holds,

log? u;

Substituting (27) into (26), and (26) into (25) we get the following inequality
to prove after simplifications,

—E(Zmu-) B Sl s BN ¥ 2 1<j<kze Uitk

T T (é)



Let u = (u1,us,...,u¢), then we can write the previous inequality in the
following form,
l—a—1

7202’
which is true by Proposition 2.4 (more precisely, by (24)).

Case B.2. dl<i<f:m; > \/'r'ﬂlog5 m.
Case B.2.1. i #j mym; = mlog?‘m
In this case we have

Az(u) — 1 —InGy(u) >

2
RHS(16) <~ log®~1(1 — 98 (28)

In 2 (g)

LHS(16) > —(¢ — 1) log® m, (29)

so by (28) and (29), (16) holds if m is large enough. (Say, logm > (3£3In2)/(4c)
is a good choice.) .

and

Case B.2.2. Vi # j mymj < mlog®m

We would like to minimize the LHS of (16), for such m;s satisfying the con-
ditions

vmlogbm < my <m/log?m and mim; <mlog?m(2<i<€). (%)

The value of the LHS of (16) will not increase if we replace all m;s by
(mlog® m)/my. So

Ti)nLHS(lG) > min{y/mlog® m < z < m/log"?m)|

2
log“m — log® x — (£ — 1) log® mlog” m

|3
Let f(z) = log® m —log® z — (£ — 1) log®(m log® m/z). This function is mono-
tonically decreasing for z > (£ — 1)/(2(e=1) /mlog m, consider the derivative of
f(x), which is smaller than the lower bound for m; if m > 2. So the minimum
is achieved when z = m/log'/? m.
Substituting into (16) we get

II(li)Il LHS(16) > -(;— log® ! mloglogm — agfla) log® ™% mlog? log m—

(£—1) (—Z—) log®logm > (/8)log® ! mloglogm. (30)

In the first inequality we used the generalized binomial theorem.2 The 4second
inequality holds if m is large enough. Say, m > max{2((¢+2a+2)/@)" p310"1 O
the other hand,

RHS(16) < %log“‘l m. (31)
If m > 2319 then (16) holds by (30) and (31). 0



Remark 2.1. (16) holds for m > M, where
M = max{—=, £5222006=5 910"° 9(3¢°In2)/(4a) g o((¢+20+2)/a)* po10* 93100}

so the constant in Theorem 2.2 is at most

(M) < 22_101286
2 .

3 Construction of a Badly Representable Key System

In [7], it was shown that there exist badly representable Sperner systems, namely

of size
sfic) > %(EJ) (32)

"The proof of this theorem is not constructive. L. Rényai's observation is that
the number of Sperner families that can be represented by a matrix of at most
r rows is quite limited, and so r should be at least as big as in (32) to get a
representation even for all antichains at the middle level of the Boolean lattice.
In the following, we show an explicit badly representable Sperner system close
to the middle level, no worse is known up to now.

Remember, that if K is a Sperner system, K~ denotes the set of maximal
elements, that are not contained in any element of K. K% denotes the complete

k~un1f0rm hypergraph and K + L is the disjoint union of the hypergraphs K and
L on the union of the vertices.

Theorem 3.1. [11] Let n = ny +ng + ... +ny, ny < N(1

< i < t) Let
Kn=K@+K+...+ K. Then

Kot < Tu(s(Kn)) (33)
holds for £ = (,C 1)

Proof (For details, see [11]). Suppose, that K, is represented by a relation I of

size s(Kp,). We can recursively construct a labelled directed tree, F € Fy LEa))
having the property, that there is an injection from K1 to the leaves of F.
A maximal antikey contains exactly & — 1 elements from each clique, so there
are (k”'l) possibilities for the intersection of a maximal antikey and the ith
clique. The key observation is that if 4; and As are two maximal antikeys
and A1 A; NV(KLY), (4 = 1,2), then there is no u and v satisfying both
Tai (u ) = mai(v) and my;(u) = 7 43 (v). (By Proposition 1.1 we know, that a
representation of a Sperner family IC should contain two rows, for each 4 € K1,
that are equal in A, but should not contain two rows that are equal in an element

of K.)



The labels of the vertices of the tree are subsets of I. Let the label of the root
be I, the whole relation. The out-neighborhood of the root can be devided into
(1) classes, each corresponding to a (k — 1)-subset of V(K}*). For a (k — 1)-
subset S consider wg(u) for all u € I. By the equality of mg(u)’s we get a partition
of I. For each element of the partition of size at least two, add a new vertex to
the tree, and label it by its elements. By the above remark labels of vertices
from the same class are disjoint, while labels of vertices from distinct class can
intersect in at most one.

We can continue building up the tree the similar way. The only difference is
that instead of considering subsets of I we consider subsets of the label of the
actual vertex. It is easy to see, that we get a tree of F, (S(K:“)), and by Proposition

14
1.1 the above mentioned correspondence is really an injection.

Corollary 3.1. There exists a sequence of Sperner systems K, such that
S(}Cn) > 2n(1—(26/3) loglogn/logn) (34)
holds for n large enough.

Proof. We would like to apply Theorem 3.1,let n; =s—1lorn; =s,1 <1 <
[n/s]. So our task remains to choose s and k. Let k = g(n)+1 and s = 2g(n)+1,
g(n) to be chosen later.

s—1 R i 1log g(n)

lo }C;1>Elo( )> S n(l — :
Bk 12 S8y 4 29(n) "2 2g(n) — 3 g(n) )

if g(n) > 2% So by Theorem 2.2 and Theorem 3.1,

n(l — %%) < log C(2%9™)) +log s(KCn) + 2g(n) loglog s(Kn).  (35)

where C(z) = 22107°=°,
log g(n)

2g(n)loglog s(K,) < =

69(n) log s(Kn) (36)

holds if, say, g(n) < nl/%/7 (using only, that s(K,) > 2™4, n is large enough).
On the other hand,

log C(22™) < 1‘%’% log s(Ky), (37)

if g(n) <logn/13 — 4. By (35)-(37), we get

log s(KCr,) > n(1 — ey

3 g(n)

1logg(n)
)/ (L + 2 o

By (38), the statement holds if we choose g(n) = [logn/13| — 4. 0

Yo el Zlogg(n))

3 g(n)

(38)



4 Well Representable Key Systems

4.1 Improving the Upper Bound on Complete k-Uniform Key
Systems

In Theorem 1.3 cy(k) depends on k exponentially. We can replace this by a
constant 2.

Theorem 4.1.
(KR} < 2n =18 | o(plE-1)/2y,

Proof (For details, see [5]). Let p be a prime. The original proof defines polyno-
mials of degree at most k over the finite field GF(p). It’s coefficients are chosen
from a difference set D. D is called a difference set, if D — D =GF(p), i.e., each
element of GF(p) can be written as a difference of two elements from D. The
Jjth coordinate of the ith vector of the representing relation instance I is P, (1)
over GF(p), where P; is the ith polynomial. The size of a difference set is about
2./p. Our first observation is one can take 2 classes of polynomials. One of the
classes contains polynomials of degree k — 1 coefficients from D (except for the
coefficient of zF~1, which is 1). The other one contains polynomials of degree
k — 2 and coefficients from Ds.

One can choose D; and Dy so, that each of them have size around /P and
each element of GF(p) is of the form dy — ds, where d; € D;(i = 1,2). Let
Dy = {0, [\/ﬁ]’a(l—\/ﬁ—l e 1)(\/3_9]}7 De=140,1;..., {.\/I_ﬂ}

One can easily check, that the constructed instance represents K%. Two tuples
can not have k equal coordinates. That would mean that the difference of the

corresponding polynomials have k roots, but it is a polynomial of degree at most
k — 1. On the other hand, the polynomial

'I.U(:E) = ($ e tl)(x = tZ) R (:C e tk:——l) = ZEk_l +ak_2$k_2 + T +a1:z:+a0

can be written as a difference of two polynomials that correspond to tuples for
arbitrary different ¢1,...,¢x_1. Each a; can be written as a differnce of di; € Dy
and dy ; € Ds. Then w(z) is the difference of the polynomials

Zj(CI?) = (2 — j)a:k"l -+ dj,k_gitk_Q F o0+ dj,liL' + dj,() (] = 1 2).

If n < p, then T{1,2,..,n}({) is an appropriate representation of K.

Instead of Chebyshev’s theorem (Bertrand’s postulate) on the density of
primes (between n and 2n there is a prime) the statement follows from a theorem
of Luo and Yao [9], stating that for the nth prime p,

Prt1 — pn < p&/1ite (39)

holds for any & > 0. 0

This improvement shows that complete k-uniform key systems are well rep-
resentable, even if k = f(n) slightly tends to infinity.



4.2 New Well Representable Key Systems

We can use the idea of Theorem 1.3 to prove well representability for key systems,
that differ in not too many elements from Y.

First, let us consider the case when the key system K contains one element
{(t1,...,tk—1)} of size Kk — 1 and all k£ element subsets but its supersets. One
can construct sets D' and DS, such that D{® — D{” = GF(p)\{c}, for each

c € GF(p). Let P(z) = (z—t1)(z—12) - (x—tp—1) = ¥ 1+ ep_2z® 2+.. .4 co.
Then the polynomials will be:

i -+ d(lk“ml‘k_z + dl,k_3$kw3 T s i dl,O)

g1 -+ dl,k_gflf:k_z + d(lkﬁs)zvk_‘? +...+di0,.

¥l 4dy poox® 2 4 dy s+ + dﬁo),
dé’““”m’“‘? +dp 323 + ...+ dap,
B pgr® 2 3 dy Vgt dep, s
T O R e FORPE )

where dgt) S D§C", (=12, 0<%t=< k-2),diy € Di(i =1,2) (see Theorem
4.1). So we get each (k — 1)-degree polynomial, except for P(z). The size of this
relation is about 2(k — 1)p(k—1)/2,

Based on the idea above one can construct a good representation for a key
system having o(n'/4) elements of cardinality k — 1 and containing all k element
sets but their supersets. Let V(A) = {B|B 2 A,|B| = |A| + 1} and V(A) =
Uaea V(4).

Theorem 4.2. Let K,, = A, U B, be a Sperner system, such that A, € K}_4,
V(An)UB, = K2, and |An| = o(n'/4). Then

§(Kn) < 2k~ DpP 12 4 g(ntt—112), (40)

Proof. Tt follows from the conditions, that X C K¢ UK} and K~! C K},

n_y-Let A, = {(t(l) i (1)1) (tgm),.. (m))} andp>n.Forl <r <m
let us consider the polynomlal

we(@) = (@ -t )z —t§7) - (@ —t0) =2F 7 el db 2+ ez o)

For each 0 < h < k — 2 let JP = [a},b}], T} = [af,03],..., T8, = [l b0 ]
(mp < m) be the (possibly 1-length) intervals of (the cyclically ordered) GF(p)
such that {af,.. {c(l) ...,ch ™1 and {B%,..., b= e o
( —1} Soa’f<b1-a2 Los cuailh s SR =~ Let {P = b} — a+1
be the length of J[.

Let RF = {1 < i < my | p¥/% < I < p/? '} and ry = [pV?] (t =
1,2,..., [logp]). Let D} = |, ERh{a +r,al 42y, .., [ — 1) /7y |7, b2} and
E,={0,1,2,...,7; — 1}. Furthermore let D = {0,71,2r1,...,72,} and E = F;.



We construct a representation I, of K,,. We give p-tuples of three types. The
coordinates of the tuples triples of form (P;(j), h,t). For each h and t we take
all polynomials P; over GF(p) of the form

Pl(r) = gh-1 + dk_2$k~2 + ...+ dix + dp,

where dj, € D" and d; € D (0<i<k—2,i#h).
Tuples of the second type have coordinates of a triple (Q;(5), h,t), too. For
each h and t we take all polynomials Q; over GF(p) of the form

Qm(:c) = ek_zmk_2 + a0 = 612 4 €5

where ep € B and e; € E (0<i <k —2,i+#h).

Tuples of the third type have coordinates of the form (P(j),1%), two polynomi-
als for each i, where i corresponds to a (k — 1)-tuple of coefficients,
(Ck—2,Ck—3,...cp). All coordinates are a coefficient of some wf)cl < P,
while the polynomial z(z) = z*~! + ct_s2*"2 + ... + ¢o is not among these
polynomials. Choose the two polynomials so, that their difference is z(z). (E.g,
z(x) and the 0 polynomial.)

We get I, by deleting the last p—n coordinates of the tuples of the constructed
relation. There are no two tuples of I, having the same value in & coordinates
(polynomials of degree k — 1 can not have k common roots). It is also easy to
check that there are no two tuples having the same coordinates in A Al =k-1
if and only if A & A,,.

There are p*=1/2 4 o(p(*=1)/2) tuples of type (P;(5), h, 1) and (Q;(5), h, 1)
The number of (Pi(j),h,2) and (Q:i(j),h,2) type tuples are at most
mp/ipk=2/2 = o(pk=1)/2)  Similarly, there is no more than mpl/8plk=2)/2 —
o(p*k=5)/8) tuples of type (P;(j), h, t) and (Qi(4), h,t) (t > 3). Finally, the num-
ber of the tuples of type (P(j),%) is at most m*~1 = o(pk=1)/4),

The statement follows from (39).

5 Further Research

It remains an open problem to determine the exact value of T, ¢(m). Even in the
case of £ = 2 for general m.

The above improvements on the labelled directed tree lemma, (Theorem 2.1
and Theorem 2.2) opens a new dimension of the minimum representation prob-
lem. Is the log factor needed? If yes/no, what is the exact constant?

Erample 5.1. Let C, = {{1,2},{2,3},...,{n — 1,n},{n,1}} be the cycle. We
know from [11]

C | < Ta(s(Ca))
So by (1) and we have for n > 5

2IC ! =
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Note, that in this case the upper bound cannot be the truth. One can construct
an instance in which the rowpairs (see Lemma 1.1) having a non-trivial density,
proving say 0.99|C!| for n large enough. 0

Improvements similar to (41) can be obtained for the problems considered in
[11], maximizing s(K) over K’s from a special class, such as e.g, for all graph.

Theorem 5.1. Let &,, denote the set of all graph on n vertices.

b __3n/3 & <33 41 42
Sie% " s = grréaéﬁs(g) < 4+ 1, (42)

It still remains open to show a key system, that is as badly representable as the
Demetrovics-Gyepesi probabilistic estimate.
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