A coding problem for pairs of subsets

Béla Bollobás* Zoltán Füredi ${ }^{\dagger}$ Ida Kantor ${ }^{\ddagger}$ G. O. H. Katona ${ }^{\S}$ Imre Leader ${ }^{〔}$

March 6, 2014

Keywords: Transportation distance, packings, codes, designs, difference sets, randomized constructions.

Abstract: Let X be an n-element finite set, $0<k \leq n / 2$ an integer. Suppose that $\left\{A_{1}, A_{2}\right\}$ and $\left\{B_{1}, B_{2}\right\}$ are pairs of disjoint k-element subsets of X (that is, $\left|A_{1}\right|=\left|B_{1}\right|=\left|A_{2}\right|=\left|B_{2}\right|=k, A_{1} \cap A_{2}=$ $\left.\emptyset, B_{1} \cap B_{2}=\emptyset\right)$. Define the distance of these pairs by $d\left(\left\{A_{1}, A_{2}\right\},\left\{B_{1}, B_{2}\right\}\right)=\min \left\{\left|A_{1}-B_{1}\right|+\mid A_{2}-\right.$ $B_{2}\left|,\left|A_{1}-B_{2}\right|+\left|A_{2}-B_{1}\right|\right\}$. Let $C(n, k, d)$ be the maximum size of a family of pairs of disjoint subsets, such that the distance of any two pairs is at least d.

Here we establish a conjecture from [2] concerning the asymptotic formula for $C(n, k, d)$ by using the randomized packing theorem of J. Kahn [10] for k, d are fixed and $n \rightarrow \infty$. Also, an infinite number of exact results are given by using special difference sets of integers. Finally, the questions discussed above are put into a more general context and a number of coding theory type problems are proposed.

1 The transportation distance

Let X be a finite set of n elements, if it is convenient we identify it with the set $[n]:=\{1,2, \ldots, n\}$. The family of the k-sets of an underlying set X is denoted by $\binom{X}{k}$. For $0<k \leq n / 2$ let \mathcal{Y} be the family of unordered disjoint pairs $\left\{A_{1}, A_{2}\right\}$ of k-element subsets of X (that is, $\left|A_{1}\right|=\left|A_{2}\right|=k, A_{1} \cap A_{2}=\emptyset$). We define the transportation distance d on \mathcal{Y} by

$$
\begin{equation*}
d\left(\left\{A_{1}, A_{2}\right\},\left\{B_{1}, B_{2}\right\}\right)=\min \left\{\left|A_{1}-B_{1}\right|+\left|A_{2}-B_{2}\right|,\left|A_{1}-B_{2}\right|+\left|A_{2}-B_{1}\right|\right\} . \tag{1}
\end{equation*}
$$

In fact, this is an instance of a more general notion. Whenever (Z, ρ) is a metric space, we can define a metric $\rho^{(s)}$ on Z^{s} by

$$
\begin{equation*}
\rho^{(s)}\left(\left(x_{1}, \ldots, x_{s}\right),\left(y_{1}, \ldots, y_{s}\right)\right)=\min _{\pi \in S_{s}} \sum_{i=1}^{s} \rho\left(x_{i}, y_{\pi(i)}\right) . \tag{2}
\end{equation*}
$$

[^0]It is not hard to verify that $\rho^{(s)}$ satisfies triangle inequality, i.e., it really is a metric. The transportation distance defined above is obtained by taking $s=2, Z$ to be the set of k-elements subsets of X and ρ is half of their symmetric difference.

The minimization problem (2) (where ρ can be an arbitrary metric) is one of the fundamental combinatorial optimization problems, a so called assignment problem, a special case of a more general MongeKantorovich transportation problem (see, e.g., the monograph [17]).

Transportation distance between finite sets of the same cardinalities is one of the interesting measurements among many different ways to define how two sets differ from each other. In [1], Ajtai, Komlós and Tusnády considered the assignment problem from a different perspective, and determined with high probability the transportation distance between two sets of points randomly chosen in a unit square.

Although the transportation distance is an important notion, especially from algorithmic point of view, and there are monographs and graduate texts about this topic, see, e.g., [17], it is not mentioned in the 668 page Encyclopedia of Distances [4]; so even the simplest packing problems are still unsolved. Packings of sets in spherical spaces with large transportation distance are considered in [7].

2 Packings and codes

Given a metric space (Z, ρ) and a distance $h>0$, the packing number $\delta(Z, \geq h)$ is the maximum number of elements in Z with pairwise distance at least h.

A (v, k, t) packing $\mathcal{P} \subseteq\binom{[v]}{k}$ is a family of k-sets with pairwise intersections at most $t-1$ (here $v \geq k \geq t \geq 1$). In other words, every t-subset is covered at most once. Its maximum size is denoted by $P(v, k, t)$. Obviously,

$$
\begin{equation*}
P(v, k, t) \leq\binom{ v}{t} /\binom{k}{t} \tag{3}
\end{equation*}
$$

If here equality holds then \mathcal{P} is called a Steiner system $S(v, k, t)$, or a t-design of parameters v, k, t and $\lambda=1$ (for more definitions concerning symmetric combinatorial structures esp., difference sets, etc. see, e.g., the monograph by Hall [9]). More generally, for a set K of integers, a family \mathcal{P} on v elements is called a (v, K, t)-design (packing) if every t-subset of $[v]$ is contained in exactly one (at most one) member of \mathcal{P} and $|P| \in K$ for every $P \in \mathcal{P}$.

Determining the packing number is a central problem of Coding Theory, it is essentially the same problem as finding the rate of a large-distance error-correcting code.

If equality holds in (3) then every i-subset of $[v]$ is contained in $\binom{v-i}{t-i} /\binom{k-i}{t-i}$ members of \mathcal{P} for $i=0,1, \ldots, t-1$. We say that v, k, and t satisfy the divisibility conditions if these t fractions are integers. It was recently proved by Keevash [12] that for any given k and t there exists a bound $v_{0}(k, t)$ such that these trivial necessary conditions are also sufficient for the existence of a t-design.

$$
\begin{equation*}
\text { An } S(v, k, t) \text { exists if } v, k \text {, and } t \text { satisfy the divisibility conditions and } v>v_{0}(k, t) \tag{4}
\end{equation*}
$$

This implies Rödl's theorem[16], that for given k and t as $v \rightarrow \infty$

$$
\begin{equation*}
P(v, k, t)=(1+o(1))\binom{v}{t} /\binom{k}{t} \tag{5}
\end{equation*}
$$

Even more, (4) implies that here the error term is only $O\left(v^{t-1}\right)$. The case $t=2$ was proved much earlier by Wilson [18]. For this case he also proved the following more general version. For a finite K there exists a bound $v_{0}(K, 2)$ such that for $v>v_{0}(K, 2)$

$$
\begin{equation*}
\text { a }(v, K, 2) \text { design exists if } v \text { and } K \text { satisfy the generalized divisibility conditions, } \tag{6}
\end{equation*}
$$

namely, g.c.d. $\left.\binom{k}{2}: k \in K\right)$ divides $\binom{v}{2}$ and g.c.d. $(k-1: k \in K)$ divides $v-1$.

3 Packing pairs of subsets

In this paper, we concentrate on the space \mathcal{Y} of pairs of disjoint subsets. We say that a set $\mathcal{C} \subset \mathcal{Y}$ of such pairs is a $2-(n, k, d)$-code if the distance of any two elements is at least d. Let $C(n, k, d)$ be the maximum size of a $2-(n, k, d)$-code. Enomoto and Katona in [5] proposed the problem of determining $C(n, k, d)$. For the origin of the problem see [3]. Connections to Hamilton cycles in the Kneser graph $K(n, k)$ are discussed in [11]. The problem makes sense only when $d \leq 2 k \leq n$. It is obvious, that a maximal $2-(n, k, 1)$ code consists of all the pairs, $C(n, k, 1)=|\mathcal{Y}|=\frac{1}{2}\binom{n}{k}\binom{n-k}{k}$. A $2-(n, k, 2 k)$ code consists of mutually disjoint k-sets, hance $C(n, k, 2 k)=\lfloor n / 2 k\rfloor$.

In Section 5 we present a method for the determination the exact value of $C(n, k, 2 k-1)$ for infinitely many n. However, we were able to complete the cases $k=2,3$ only, the cases of pairs and triple systems.
Theorem 1. If $n \equiv 1 \bmod 8$ and $n>n_{0}$ then $C(n, 2,3)=\frac{n(n-1)}{8}$.
If $n \equiv 1,19 \bmod 342$ and $n>n_{0}$ then $C(n, 3,5)=\frac{n(n-1)}{18}$.
The following theorem was proved in [2]. Let $d \leq 2 k \leq n$ be integers. Then

$$
\begin{equation*}
C(n, k, d) \leq \frac{1}{2} \frac{n(n-1) \cdots(n-2 k+d)}{k(k-1) \cdots\left\lceil\frac{d+1}{2}\right\rceil \cdot k(k-1) \cdots\left\lfloor\frac{d+1}{2}\right\rfloor} \tag{7}
\end{equation*}
$$

Quisdorff [15] gave a new proof and using ideas from classical coding theory he significantly improved the upper bound for small values of n (for $n \leq 4 k$). For completeness, in Section 6 we reprove (7) in an even more streamlined way.

Concerning larger values of n one can build a $2-(n, k, d)$ code from smaller ones using the following observation. If $\left|\left(A_{1} \cup A_{2}\right) \cap\left(B_{1} \cup B_{2}\right)\right| \leq 2 k-d$ holds for the disjoint pairs $\left\{A_{1}, A_{2}\right\} \in \mathcal{Y},\left\{B_{1}, B_{2}\right\} \in \mathcal{Y}$ then $d\left(\left\{A_{1}, A_{2}\right\},\left\{B_{1}, B_{2}\right\}\right) \geq d$. Take a $(2 k-d+1)$-packing \mathcal{P} on n elements and choose a 2 - $(|P|, k, d)$-code on each members $P \in \mathcal{P}$. We obtain

$$
\begin{equation*}
\sum_{P \in \mathcal{P}} C(|P|, k, d) \leq C(n, k, d) \tag{8}
\end{equation*}
$$

This gives

$$
\begin{equation*}
P(n, p, 2 k-d+1) C(p, k, d) \leq C(n, k, d) \tag{9}
\end{equation*}
$$

Fix p (and k, t and d) then Rödl's theorem (5) gives $(1+o(1))(\underset{2 k-d+1}{n})(\underset{2 k-d+1}{p})^{-1} C(p, k, d) \leq C(n, k, d)$. Rearranging we get, that the sequence $C(n, k, d) /\binom{n}{2 k-d+1}$ is essentially nondecreasing in n, for any fixed $p($ and k, t and $d)$

$$
C(p, k, d) /\binom{p}{2 k-d+1} \leq(1+o(1)) C(n, k, d) /\binom{n}{2 k-d+1}
$$

Since, obviously, $C(2 k, k, d) \geq 1$ we obtain that $\lim _{n \rightarrow \infty} C(n, k, d) /\binom{n}{2 k-d+1}$ exists, it is positive, it equals to its supremum, and finite by (7).

It was conjectured ([2], Conjecture 8) that the upper estimate (7) is asymptotically sharp. We prove this conjecture in Section 7.

Theorem 2.

$$
\lim _{n \rightarrow \infty} \frac{C(n, k, d)}{n^{2 k-d+1}}=\frac{1}{2} \frac{1}{k(k-1) \cdots\left\lceil\frac{d+1}{2}\right\rceil \cdot k(k-1) \cdots\left\lfloor\frac{d+1}{2}\right\rfloor}
$$

4 The case $d=2$, the exact values of $C(n, k, 2)$

Besides the cases mentioned in the previous Section (the cases $d=1, d=2 k$ and $(k, d) \in\{(2,3),(3,5)\})$ we can solve one more case easily, namely if $d=2$. Since $C(n, 2 k, 2)]=|\mathcal{Y}|=\frac{1}{2}\binom{2 k}{k}$ the construction (9) gives $P(n, 2 k, 2 k-1) \frac{1}{2}\binom{2 k}{k} \leq C(n, k, 2)$. Then the recent result of Keevash (4) gives the lower bound in the following Proposition. The upper bound follows from (7).

Proposition 3. $C(n, k, 2)=\binom{n}{2 k-1} \frac{1}{4 k}\binom{2 k}{k}$ for all $n>n_{0}(k)$ whenever the divisibility conditions of (4) hold.

5 The case $d=2 k-1$, the exact values of $C(n, k, 2 k-1)$

The distance $\delta(a, b)$ of two integers $\bmod m(1 \leq a, b \leq m)$ is defined by

$$
\delta(a, b)=\min \{|b-a|,|b-a+m|\} .
$$

(Imagine that the integers $1,2, \ldots, m$ are listed around the cirle clockwise uniformly. Then $\delta(a, b)$ is the smaller distance around the circle from a to b.) $\delta(a, b) \leq \frac{m}{2}$ is trivial. Observe that $b-a \equiv d-c \bmod m$ implies $\delta(a, b)=\delta(c, d)$.

We say that the pair $S=\left\{s_{1}, \ldots, s_{k}\right\}, T=\left\{t_{1}, \ldots, t_{k}\right\} \subset\{1, \ldots, m\}$ of disjoint sets is antagonistic $\bmod m$ if
(i) all the $k(k-1)$ integers $\delta\left(s_{i}, s_{j}\right)(i \neq j)$ and $\delta\left(t_{i}, t_{j}\right)(i \neq j)$ are different,
(ii) the k^{2} integers $\delta\left(s_{i}, t_{j}\right)(1 \leq i, j \leq k)$ are all different and
(iii) $\delta\left(s_{i}, t_{j}\right) \neq \frac{m}{2}(1 \leq i, j \leq k)$.

If there is a pair of disjoint antagonistic k-element subsets mod m then $2 k^{2}+1 \leq m$ must hold by (ii) and (iii).

Problem 4. Is there a pair of disjoint, antagonistic k-element sets $\bmod 2 k^{2}+1$?
We have an affirmative answer only in three cases.
Proposition 5. There is a pair of disjoint, antagonistic k-element sets $\bmod 2 k^{2}+1$ when $k=1,2,3$.

Proof: We simply give such k-element sets in these cases. It is easy to check that they satisfy the conditions.

$$
\begin{aligned}
& k=1: S=\{1\}, T=\{2\} \\
& k=2: S=\{1,8\}, T=\{2,3\} \\
& k=3: S=\{1,5,19\}, T=\{2,13,15\}
\end{aligned}
$$

Lemma 6. If there is a pair of disjoint, antagonistic k-element sets mod m then $C(m, k, 2 k-1) \geq m$.

Proof: Let (S, T) be the antagonistic pair. The shifts $S(u)=\{a+u \bmod m: s \in S\}, T(u)=\{s+$ $u \bmod m: s \in T\}(0 \leq u<m)$ will serve as pairs of disjoint subsets of X.

Suppose that $S(u)$ and $S(v)(u \neq v)$ have two elements in common: $s_{1}+u=s_{2}+v \neq s_{3}+u=s_{4}+v$ where $s_{1}, s_{2}, s_{3}, s_{4} \in S,\left(s_{1}, s_{2}\right) \neq\left(s_{3}, s_{4}\right)$. The difference is $s_{1}-s_{2}=s_{3}-s_{4}$ contradicting (i). One can prove in the same way that $T(u)$ and $T(v)(u \neq v)$ and $S(u)$ and $T(v)$, respectively, have at most one element in common. In other words the intersection of any pair from the sets $S(u), T(u), S(v), T(v)$ has at most one element.

Suppose now that both $S(u) \cap S(v)$ and $T(u) \cap T(v)$ are non-empty for some $u \neq v$. Then $s_{1}+u=$ $s_{2}+v, t_{1}+u=t_{2}+v$ holds for some $s_{1}, s_{2} \in S, t_{1}, t_{2} \in T$. This leads to $v-u=s_{1}-s_{2}=t_{1}-t_{2}$, contradicting (i), again.

Finally suppose that both $S(u) \cap T(v)$ and $T(u) \cap S(v)$ are non-empty for some $u \neq v$. Then $s_{1}+u=t_{1}+v, t_{2}+u=s_{2}+v$ is true for some $s_{1}, s_{2} \in S, t_{1}, t_{2} \in T$. Here $v-u=s_{1}-t_{1}=t_{2}-s_{2}$ is obtained, contradicting either (ii) or (iii) (the latter one, if $s_{1}-t_{1}=t_{1}-s_{1}$ is obtained).

This proves that the distance of the pairs $(S(u), T(u))$ and $(S(v), T(v))(u \neq v)$ is at least $2 k-1$.

Corollary 7. Suppose that there is Steiner family $\mathcal{S}\left(n, 2 k^{2}+1,2\right)$ and a disjoint, antagonistic pair of k-element subsets $\bmod 2 k^{2}+1$ then

$$
C(n, k, 2 k-1)=\frac{n(n-1)}{2 k^{2}} .
$$

Proof: The upper bound $C(n, k, 2 k-1) \leq n(n-1) / 2 k^{2}$ is a corollary of (7).
The lower estimate is obtained from (9). By Lemma 6 one can choose $2 k^{2}+1$ pairs of disjoint k-subsets with distance $2 k-1$ in a set of $2 k^{2}+1$ elements. This can be done in each of the members of $\mathcal{S}\left(n, 2 k^{2}+1,2\right)$. Since the members have at most one common element, the distance of two pairs in distinct members of $\mathcal{S}\left(n, 2 k^{2}+1,2\right)$ will have distance at least $2 k-1$. Therefore all the

$$
\left|\mathcal{S}\left(n, 2 k^{2}+1,2\right)\right|\left(2 k^{2}+1\right)=\frac{\binom{n}{2}}{\binom{2 k^{2}+1}{2}}\left(2 k^{2}+1\right)=\frac{n(n-1)}{2 k^{2}}
$$

pairs have distance at least 1 .
Proof of Theorem 1. We only need lower bounds, i.e., constructions. The case $k=3$ follows from Wilson's theorem (4) of the existence of $S(n, 19,2)$, Proposition 5 and Corollary 7.

Similarly, the case $k=2$ for $n \equiv 1,9 \bmod 72$ follows in the same way using Steiner systems $S(n, 9,2)$ and the fact $C(9,2,3)=9$ from Corollary 7. However, one can see that $C(17,3,2)=34$ and then the results follows from Wilson's theorem (6) of the existence of $S(n,\{9,17\}, 2)$ for all large $n \equiv 1 \bmod 8$ and costruction (8).

The construction for $C(17,2,3)$ is similar to the proof of Lemma 6 . The 9 pairs there are defined as $\left.\{\{x+1, x+8\},\{x+2, x+3\}\}: x \in Z_{9}\right\}$. These correspond to a perfect edge decomposition of K_{9} into C_{4} 's with side lengths $1,3,4$, and 2 . For $n=17$ we take the pairs $\left.\{\{x, x+7\},\{x+2, x+6\}\}: x \in Z_{17}\right\}$ and $\left.\{\{y, y+11\},\{y+7, y+8\}\}: y \in Z_{17}\right\}$ which correspond to C_{4} 's of side lengths $(2,5,1,6)$ and $(7,4,3,8)$, respectively.

Note that the method gives that $C(n, 1,1)=\frac{n(n-1)}{2}$ when $n \equiv 1,3 \bmod 6$. This, however, is trivial for all n.

6 A new proof of the upper estimate

The upper estimate in (7) was proved in [2]. We give a new, more illuminating proof here.
Given a pair $\{A, B\}$ of disjoint k-element sets let $\mathcal{P}(\{A, B\}, u, v)$ denote the family of pairs $\{U, V\}$ where $|U|=u,|V|=v$ and $U \subseteq A, V \subseteq B$ or vice versa. We have

$$
|\mathcal{P}(\{A, B\}, u, v)|=2\binom{k}{u}\binom{k}{v} .
$$

Suppose first $u<v$. Then the total number of pairs $\{U, V\}, U \cap V=\emptyset,|U|=u,|V|=v$ in an n-element set is

$$
\binom{n}{u}\binom{n-u}{v} .
$$

Let $\left\{A_{1}, B_{1}\right\},\left\{A_{2}, B_{2}\right\}$ be two pairs with distance at least d, and $u \leq v$ be two nonnegative integers such that $u+v=2 k-d+1$. By definition (1), $\mathcal{P}\left(\left\{A_{1}, B_{1}\right\}, u, v\right)$ and $\mathcal{P}\left(\left\{A_{2}, B_{2}\right\}, u, v\right)$ are disjoint. We have

$$
\begin{equation*}
C(n, k, d) \leq \frac{\binom{n}{u}\binom{n-u}{v}}{2\binom{k}{u}\binom{k}{v}}=\frac{n(n-1) \ldots(n-2 k+d)}{2 k(k-1) \ldots(k-u+1) k(k-1) \ldots(k-v+1)} \tag{10}
\end{equation*}
$$

for every pair u, v that satisfies the above requirements. If $u=v$, then equality (10) holds by similar arguments.

The numerator does not depend on u, and the denominator is maximized when u and v are as close as possible, i.e., for $u=2 k-\left\lceil\frac{d-1}{2}\right\rceil$ and $v=2 k-\left\lfloor\frac{d-1}{2}\right\rfloor$. Substituting these values, we obtain the upper estimate in (7).

7 Nearly perfect selection

Let \mathcal{W} be the family of pairs $\{U, V\}$ such that $U, V \subseteq[n], U \cap V=\emptyset$, and $|U|+|V|=2 k-d+1$ holds. Note that $|\mathcal{W}|=\frac{1}{2} \sum_{0 \leq u \leq 2 k-d+1}\binom{n}{u}\binom{n-u}{(2 k-d+1)-u}$. For a pair $\{A, B\}$ of disjoint k-element sets, let $\mathcal{P}(\{A, B\})$ denote the family of pairs $\{U, V\} \in \mathcal{W}$ for which $U \subseteq A$ and $V \subseteq B$, or vice versa.
Lemma 8. $d\left(\left\{A_{1}, B_{1}\right\},\left\{A_{2}, B_{2}\right\}\right) \leq d-1$ holds if and only if $\mathcal{P}\left(\left\{A_{1}, B_{1}\right\}\right) \cap \mathcal{P}\left(\left\{A_{2}, B_{2}\right\}\right) \neq \emptyset$.
Proof: Suppose that $\{U, V\} \in \mathcal{P}\left(\left\{A_{1}, B_{1}\right\}\right) \cap \mathcal{P}\left(\left\{A_{2}, B_{2}\right\}\right)$, say $U \subset A_{1} \cap A_{2}$ and $V \subset B_{1} \cap B_{2}$. Then $\left|A_{1}-A_{2}\right| \leq k-|U|,\left|B_{1}-B_{2}\right| \leq k-|V|$ imply $\left|A_{1}-A_{2}\right|+\left|B_{1}-B_{2}\right| \leq 2 k-|U|-|V|=d-1$ proving the statement. The other case is analogous.

Conversely, if the distance is at most $d-1$ then either $\left|A_{1}-A_{2}\right|+\left|B_{1}-B_{2}\right| \leq d-1$ or $\left|A_{1}-B_{2}\right|+\mid B_{1}-$ $A_{2} \mid \leq d-1$ must hold. Suppose that the first one is true. Then $\left|A_{1} \cap A_{2}\right|+\left|B_{1} \cap B_{2}\right| \geq 2 k-d+1$ follows. Take $U=A_{1} \cap A_{2}$ and a $V \subseteq B_{1} \cap B_{2}$ such that $|V|=2 k-d+1-|U|$. Then $\mathcal{P}\left(\left\{A_{1}, B_{1}\right\}\right) \cap \mathcal{P}\left(\left\{A_{2}, B_{2}\right\}\right) \neq \emptyset$ holds, as claimed.

We can view the sets $\mathcal{P}(\{A, B\})$ as the edges of a hypergraph on the vertex set \mathcal{W}. Let us call this hypergraph \mathcal{H}. Then a $2-(n, k, d)$-code corresponds to a matching in \mathcal{H}.

In his celebrated paper [16], Rödl established (5) in the following way. He viewed the t-element sets as vertices of a $\binom{k}{t}$-uniform hypergraph \mathcal{H}_{n} whose edges correspond to the k-element subsets of $[n]$. Equality (5) is in fact a statement about the existence of an almost perfect matching in \mathcal{H}_{n}. Using the same key proof idea, a powerful generalization by Frankl and Rödl [6] guarantees the existence of almost perfect matchings in hypergraphs satisfying certain more general conditions. Various generalizations and stronger versions versions were later proved, e.g., by Pippenger and Spencer [14].

A function $t: E(\mathcal{H}) \rightarrow \mathbb{R}$ is a fractional matching of the hypergraph \mathcal{H} if $\sum_{e \in E(\mathcal{H}) ; x \in e} t(e) \leq 1$ holds for every vertex $x \in V(\mathcal{H})$. The fractional matching number, denoted $\nu^{*}(\mathcal{H})$ is the maximum of $\sum_{e \in E(\mathcal{H})} t(e)$ over all fractional matchings. If $\nu(\mathcal{H})$ denotes the maximum size of a matching in \mathcal{H}, then clearly

$$
\nu(\mathcal{H}) \leq \nu^{*}(\mathcal{H})
$$

Kahn [10] proved that under certain conditions, asymptotic equality holds. Both the hypotheses and the conclusion are in the spirit of the Frankl-Rödl theorem.

Given a hypergraph \mathcal{H} with vertex set $[n]$, a fractional matching t and a subset $W \subseteq[n]$, define $\bar{t}(W)=\sum_{W \subseteq e \in E(\mathcal{H})} t(e)$ and $\alpha(t)=\max \{\bar{t}(\{x, y\}): x, y \in V(\mathcal{H}), x \neq y\}$. In other words, $\alpha(t)$ is a fractional generalization of the codegree. We say that \mathcal{H} is s-bounded if each of its edges has size at most s.

Theorem 9 ([10]). For every s and every $\varepsilon>0$ there is a δ such that whenever \mathcal{H} is an s-bounded hypergraph and t a fractional matching with $\alpha(t)<\delta$, then

$$
\nu(\mathcal{H})>(1-\varepsilon) t(\mathcal{H})
$$

Proof of Theorem 2. In the light of Lemma 8 it suffices to verify the conditions of Theorem 9 and to produce a fractional matching t of the hypergraph \mathcal{H} of the desired size.

Define a constant weight function $t: E(\mathcal{H}) \rightarrow \mathbb{R}$ by

$$
t(e)=\frac{\left\lceil\frac{d-1}{2}\right\rceil!\left\lfloor\frac{d-1}{2}\right\rfloor!}{n^{d-1}}
$$

For a vertex $x=\{U, V\} \in \mathcal{W}$ with $|U|=u$ and $|V|=v$ we have

$$
\operatorname{deg}(\{U, V\})=\binom{n-u-v}{k-u}\binom{n-k-v}{k-v} \leq \frac{n^{d-1}}{(k-u)!(k-v)!} \leq \frac{n^{d-1}}{\left\lceil\frac{d-1}{2}\right\rceil!\left\lfloor\frac{d-1}{2}\right\rfloor!}
$$

hence t is indeed a fractional matching. Note that $t(\mathcal{H})$ is is asymptotically equal to the quantity in the statement of the Theorem 2.

The hypergraph \mathcal{H} is not regular but s-bounded with $s=\frac{1}{2} \sum_{u}\binom{k}{u}\binom{k}{(2 k-d+1)-u}$. Here s does not depend on n. For $x, y \in V(\mathcal{H})=\mathcal{W}$ let $\operatorname{deg}(x, y)$ denote the codegree of $x=\{U, V\}$ and $y=\left\{U^{\prime}, V^{\prime}\right\}$, i.e., the number of hyperedges $\mathcal{P}(\{A, B\})$ that contain both x and y. If $U \cup V=U^{\prime} \cup V^{\prime}$ (they partition the same $(2 k-d+1)$-element set) then the codegre $\operatorname{deg}(x, y)=0$. Otherwise, $\left|U \cup U^{\prime} \cup V \cup V^{\prime}\right| \geq 2 k-d+2$ and $\left(U \cup U^{\prime} \cup V \cup V^{\prime}\right) \subset(A \cup B)$ imply that

$$
\operatorname{deg}\left(\{U, V\},\left\{U^{\prime}, V\right\}\right)=O\left(n^{d-2}\right)
$$

Hence $\alpha(t)=\operatorname{deg}\left(\{U, V\},\left\{U^{\prime}, V\right\}\right) \cdot t(e)=o(1)$ and Kahn's theorem completes the proof.

$8 s$-tuples of sets, q-ary codes

Let $\mathcal{Y}^{(s)}$ be the family of s-tuples of pairwise disjoint k-element subsets of $[n]$. A natural definition of a metric on $\mathcal{Y}^{(s)}$ was already mentioned in the introduction, in equation (2). With ρ being half the symmetric difference, the distance is defined as

$$
\rho^{(s)}\left(\left\{A_{1}, \ldots, A_{s}\right\},\left\{B_{1}, \ldots, B_{s}\right\}\right)=\min _{\pi \in S_{s}} \sum_{i=1}^{s}\left|A_{i} \backslash B_{\pi(i)}\right|
$$

Let $C_{s}(n, k, d)$ denote the maximum size of a subfamily \mathcal{S} of $\mathcal{Y}^{(s)}$ such that any two elements in \mathcal{S} have distance at least d. The proofs presented in Sections 7 and 6 can be easily adapted to determining $C_{s}(n, k, d)$, as well. The proof of the lower and the upper bounds in Theorem 10 is completely analogous to the proofs of equation (7) and Theorem 2.

Theorem 10.

$$
\lim _{n \rightarrow \infty} \frac{C_{s}(n, k, d)}{n^{s k-d+1}}=\frac{1}{s!} \frac{\left\lceil\frac{d-1}{s}\right\rceil!\left\lceil\frac{d-2}{s}\right\rceil!\ldots\left\lceil\frac{d-s}{s}\right\rceil!}{(k!)^{s}}
$$

Let \mathcal{Y}_{q} be the set of q-ary vectors of length n and weight k (weight is the number of nonzero entries). Let $A_{q}(n, d, k)$ be the maximum size of a subset $\mathcal{C} \subseteq \mathcal{Y}_{q}$ such that $\rho^{\prime}(u, v) \geq d$ whenever $u, v \in \mathcal{C}$. Here ρ^{\prime} is the Hamming distance.

With a slightly more technical proof along the same lines, the following can be proven.
Theorem 11. Fix $q \geq 2, k$ and d. If d is odd, then, as $n \rightarrow \infty$,

$$
A_{q}(n, d, k) \sim \frac{n^{k-\frac{d-1}{2}}(q-1)^{k-\frac{d-1}{2}}\left(\frac{d-1}{2}\right)!}{k!}
$$

If $d \geq 2$ is even, then, as $n \rightarrow \infty$,

$$
A_{q}(n, d, k) \sim \frac{n^{k-\frac{d}{2}+1}(q-1)^{k-\frac{d}{2}+1}\left(\frac{d}{2}-1\right)!}{k!}
$$

To use random methods constructing codes is not a new idea. The best known general bounds for the covering radius problems are obtained in this way, see, e.g., $[8,13]$.

We can also consider pairs (or more generally s-tuples) of q-ary vectors of weight k. For simplicity, we will only state the results for pairs here. Define the set $\mathcal{Y}_{q}^{(2)}$ of pairs $\{u, v\}$ of vectors such that

- $u, v \in\{0,1, \ldots, q-1\}^{n}$
- each of u and v has exactly k nonzero entries
- the supports of u and v are disjoint (i.e. $u_{i}=0$ for all i such that $v_{i} \neq 0$, and $v_{i}=0$ for all i such that $u_{i} \neq 0$).

Define distance between these pairs by

$$
\delta(\{u, v\},\{w, z\})=\min \left\{\rho^{\prime}(u, w)+\rho^{\prime}(v, z), \rho^{\prime}(u, z)+\rho^{\prime}(v, w)\right\}
$$

where ρ^{\prime} is again the Hamming distance.
In the following, $A_{q}^{2}(n, d, k)$ will denote the maximum size of a subset $\mathcal{C} \subseteq \mathcal{Y}_{q}^{(2)}$ such that $\delta(\{u, v\},\{w, z\}) \geq$ d for any pair $\{u, v\},\{w, z\}$ of members of \mathcal{C}.

Theorem 12. Fix q, d and k. If d is odd and $q \geq 3$, then, as $n \rightarrow \infty$,

$$
A_{q}^{2}(n, d, k) \sim \frac{1}{2} \cdot \frac{n^{2 k-\frac{d-1}{2}} \cdot(q-1)^{2 k-\frac{d-1}{2}} \cdot\left\lfloor\frac{d-1}{4}\right\rfloor!\left\lceil\frac{d-1}{4}\right\rceil!}{(k!)^{2}}
$$

If $d \geq 2$ is even and $q \geq 2$, then, as $n \rightarrow \infty$,

$$
A_{q}^{2}(n, d, k) \sim \frac{1}{2} \cdot \frac{n^{2 k-\frac{d}{2}+1} \cdot(q-1)^{2 k-\frac{d}{2}} \cdot\left\lfloor\frac{d}{4}\right\rfloor!\left(\left\lceil\frac{d}{4}\right\rceil-1\right)!}{(k!)^{2}}
$$

The distance δ used here is twice the distance defined in Section 1, hence the apparent inconsistency of this result for $q=2$ with Theorem 2 .

For $q=2$ and d odd we have $A_{q}(n, d, k)=A_{q}(n, d+1, k)$.

9 Open problems

We believe that for an arbitrary pair of k and d, there are infinitely many n 's with equality in equation (7).

References

[1] M. Ajtai, J. Komlós, and G. Tusnády, On optimal matchings, Combinatorica, 4 (1984), pp. 259264.
[2] G. Brightwell and G. O. H. Katona, A new type of coding problem, Studia Sci. Math. Hungar., 38 (2001), pp. 139-147.
[3] J. Demetrovics, G. O. H. Katona, and A. Sali, Design type problems motivated by database theory, J. Statist. Plann. Inference, 72 (1998), pp. 149-164. R. C. Bose Memorial Conference (Fort Collins, CO, 1995).
[4] M. M. Deza and E. Deza, Encyclopedia of Distances, Springer, 2nd ed. 2013.
[5] H. Enomoto and G. O. H. Katona, Pairs of disjoint q-element subsets far from each other, Electron. J. Combin., 8 (2001), Research Paper 7, 7 pp. (electronic). In honor of Aviezri Fraenkel on the occasion of his 70th birthday.
[6] P. Frankl and V. Rödl, Near perfect coverings in graphs and hypergraphs, European J. Combin., 6 (1985), pp. 317-326.
[7] Z. Füredi, Packings of sets in spherical spaces with large transportation distance, in preparation.
[8] Z. Füredi and J-H. Kang, Covering the n-space by convex bodies and its chromatic number, Discrete Mathematics 308 (2008), 4495-4500.
[9] M. Hall, Combinatorial Theory, Second Edition, Wiley-Interscience, 1998.
[10] J. Kahn, A linear programming perspective on the Frankl-Rödl-Pippenger theorem, Random Structures Algorithms, 8 (1996), pp. 149-157.
[11] G. O. H. Katona, Constructions via Hamiltonian theorems, Discrete Math., 303 (2005), pp. 87103.
[12] P. Keevash, The existence of designs, arxiv.org 1401.3665.
[13] M. Krivelevich, B. Sudakov, and Van H. Vu, Covering codes with improved density, IEEE Trans. Inform. Theory 49 (2003), no. 7, 1812-1815.
[14] N. Pippenger and J. Spencer, Asymptotic behavior of the chromatic index for hypergraphs, J. Combin. Theory Ser. A, 51 (1989), pp. 24-42.
[15] Jörn Quistorff, New upper bounds on Enomoto-Katona's coding type problem, Studia Sci. Math. Hungar. 42 (2005), pp. 61-72.
[16] V. Rödl, On a packing and covering problem, European J. Combin., 6 (1985), pp. 69-78.
[17] C. Villani, Topics in optimal transportation, vol. 58 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2003.
[18] R. M. Wilson, An existence theory for pairwise balanced designs. II. The structure of PBD-closed sets and the existence conjectures, J. Combinatorial Theory Ser. A, 13 (1972), pp. 246-273.

[^0]: *Department of Pure Mathematics and Mathematical Statistics, Wilberforce Road, Cambridge CB3 0WB, UK, and Department of Mathematical Sciences, University of Memphis, Memphis TN 38152, USA.
 ${ }^{\dagger}$ Alfréd Rényi Institute of Mathematics, 13-15 Reáltanoda Street, 1053 Budapest, Hungary.
 E-mail: z-furedi@illinois.edu. Research supported in part by the Hungarian National Science Foundation OTKA 104343, and by the European Research Council Advanced Investigators Grant 267195.
 ${ }^{\ddagger}$ Computer Science Institute of Charles University, Malostranské nám. 25, 11800 Praha 1. Czech Republic. E-mail: ida@iuuk.mff.cuni.cz. Research supported by GAČR grant number P201/12/P288 and partially done while this author visited the Rényi Institute.
 ${ }^{\S}$ Rényi Institute, Hungarian Academy of Sciences, Budapest, Reáltanoda u. 13-15, 1053 Hungary.
 E-mail: ohkatona@renyi,mta.hu. Research was supported by the Hungarian National Foundation OTKA T029255. This work was done while this author visited the University of Memphis.
 ${ }^{\top}$ Department of Pure Mathematics and Mathematical Statistics, Wilberforce Road, Cambridge CB3 0WB, UK. E-mailI.Leader@dpmms.cam.ac.uk. This work was done while this author visited the University of Memphis.

