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Abstract

Let # be a family of subsets of an n-element set not containing four distinct members such that
AUB C CnN D.Itis proved that the maximum size of % under this condition is equal to the sum
of the two largest binomial coefficients of order n. The maximum families are also characterized. A
LYM-type inequality for such families is given, too.
© 2005 Elsevier Inc. All rights reserved.
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1. The inequalities

Let [n] = {1,...,n) be a finite set and F c 2"l a family of its subsets. The well-
known theorem of Sperner [9] says that if no member of F contains another member then
|FI< (ng), with equality iff 7 consists of all sets of size |n/2] or all sets of size [n/2].
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Moreover the LYM-type inequality [7,8,10] (see also [1])
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also holds for such a family. It is easy to see that the second inequality implies the first one.
On the other hand, equality holds in the second inequality only when J consists of all sets
of a fixed size. A family satisfying the conditions of Sperner’s theorem (that is no member
is contained in another member) is called an antichain.

The following theorem of Erdds [3] was the first generalization of Sperner’s theorem. If
the family J contains no chain Fy C Fy C --- C F (of length k 4 1) of distinct subsets
(k=1 is an integer) then |F| cannot exceed the sum of the & largest binomial coefficients
of order n. Katona and Tarjan [6] determined the asymptotically largest family containing
no 3 distinct members A, B, C satisfying A C B, A C C. The interested reader can find a
large variety of related results in [2].

The main aim of the present note is to investigate an analogous problem, when F contains
no four distinct sets A, B, C, D such that A is contained in both C and D, and at the same
time B is contained in both C and D. In other words,

there are no four distinct A, B,C,D € FwithAUB C CND. ()

Following the suggestion of Professor J. Griggs, a family satisfying (x) will be called
butterfly-free or a butterfly-free meadow. It is easy to check that the family consisting of
all k and k + 1-element subsets satisfies (x). We will see that this is the largest family for
the appropriate choice of k. Observe that if F contains no butterfly then it cannot contain
a chain of length 4, therefore Erdds’s theorem implies that |F| is at most the sum of the 3
largest binomial coefficients of order n. On the other hand, our condition does not exclude
chains of length 3, therefore ErdGs’s theorem does not imply the present result. Another
little surprise is that the result, unlike the result in [6], is sharp.

Theorem 1. Let n > 3. If the family F C 21" satisfies (%) then | F| cannot exceed the sum
of the two largest binomial coefficients of order n, i.e., | F|< (L’:,;ZJ) + (Ln/gj+1)'

The LYM-type inequality holds only if @ and [#] are excluded from the family.

Theorem 2. Suppose n 3. Let F € 21" such that @, (n] ¢ F. If F satisfies (x), then
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Let us first prove Theorem 2 by the method of cyclic permutations [5]. Consider the
elements of [#z] to be arranged along a cycle. That is the elements are considered modulo
n. An interval is a subset of form {k, k+ 1, ...,I} where 1 <k, I <n. (This is clear if k <[.
If however ! < k then the interval is of the form {k, k+ 1,...,n—1,n, 1, 2’; LI=1,1})
Intervals will be denoted by A, B etc. Families of intervals are denoted by A, [;’, etc. The
proof starts with two lemmas.



Lemma 1. Let F be a family of intervals, @, [n] & F, such that any member F € F is
contained in at most one other member of F. If m denotes the number of the maximal
members, a denotes the number of non-maximal members then

a
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holds.

Proof. A full chain is a family of subsets Ly C - + C Ly where |Li| =i for 1<i<n.
We will count the number of pairs (F E) where F € F, L is a full chain of intervals and
F & L. The number of full chains of intervals containing F is 2/¥1=12n—1FI=1 — pn=2,
Hence the total number of such pairs is (m + )22,

Suppose that Al ok # B. We give an upper bound on the number of full chains
containing both of them. The number of choices of the new members of the full chains
“between the two sets” is at most 2!81=141=1 gince, at least once, there is only one choice.
Therefore the number of such full chains is at most 2/41=121BI=l4I=12a—[B|=1 — n=3 Tpe
total number of full chains is n2"~2. Since a full chain contains one or two members, we
obtain the inequality

(m £ a)2" 2 a2t 2 4 gan—3

which is equivalent to the statement of the lemma. [
Lemma 2. If.’f-" is a family of intervals satisfying (x), and ¥, [n] ¢ F, then |]:'| <2n.

Proof. Itis easy to see by complementation that the previous lemma holds for a family in
which any member contains at most one other member. Divide F into three subfamilies:
lhn, maximal (M|) the minimal (Mz) and other members (.A) Introduce the notations
lM|| =my, |J\/l2| = may, |A| = a. It is easy to see that (x) lmpllE§ that M, U A satisfies
the conditions of the previous lemma. Therefore we have m + § <n. On the other hand,
My U A satisfies the complementing of the previous lemma, we obtain the inequality
my + 5 <n. The sum of the two inequalities is m| + my + a <2n as desired. O

Proof of Theorem 2. We will double-count the pairs (C, F) where C is a cyclic permu-
tation of [n], F € F and F is an interval along C. For a fixed F the number of cyclic
permutations is | F|!(n — | F|)! therefore the number of pairs in question is

Z |F|in — |FD.
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For a fixed cyclic permutation C the number of possible F’s is at most 2n by the previous
lemma. We obtain the inequality

> IFIMn — [F)IS (n — 1120,
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This is equivalent to the statement of the theorem. [




Proof of Theorem 1. If none of @ and [n] is a member of F then the statement is an easy
consequence of Theorem 2. If both of them are in F then F — {@, [n]} is an antichain,
therefore we have the upper estimate (L”'/'2 J) + 2, which is less than our need, if n>3.

Suppose that exactly one of @ and [n] is in F. By complementation @ € F can be supposed.
Then F' = F — {f} contains no 3 distinct members A, B, C suchthat A C B,A C C. It
was proved in [6] (our Corollary 2 in Section 2 is slightly weaker) that
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holds under this condition. This upper estimate is strong enough when n>3. [

Remark. Daniel Gerbner (student in Budapest) [4] noticed that there is no need to use
the theorem from [6], since replacing @ by an arbitrarily chosen one-clement set {i} ¢ F
reduces the problem to the case when @, [n] ¢ F. The case when ¥ and all one-element sets
are in JF is trivial.

2. Cases of equality

The methods of the previous section are not strong enough for finding the cases of equality.
The conditions of Lemma 1 allow a large variety of families with equality. Therefore we
have to consider the whole original family, rather than just the intervals.

Lemma 3. Let M and A be two disjoint antichains in 21" where [n] ¢ M. Suppose that
for any A € A there is a unique f(A) € M with A C f(A). Then
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holds, with equality only when either | f(A)| = n — 1 or | f(A)| = |A| + 1 holds for each
Ae A

Proof. The number of chains containing a set M is |[M|!(n — |[M|)!. Adding these numbers
for all members of M and A, a chain is counted once or twice. The latter can happen only if
the chain contains an A € A and f(A) € M. The total number of chains is n!. The number
of chains containing both A and f(A) is |A|!(| f(A)| — |A])!(n — | £ (A)])!. Hence, we have
the following inequality:
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Dividing by n! we obtain
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Since |A| < |f(A)| < n, the inequality n — |A|<(n£ﬁ"ﬂ)|) can be used in (3) to
obtain (2). O '

We know that n — |A| 22, which implies the following immediate corollary.

Corollary 1. Under the conditions of Lemma 3
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holds, where equality is possible only when |A| = n — 2 and |f(A)| = n — 1 for each
Ae A

Corollary 2 (Katona and Tarjdn [6]). Let n>4. Suppose that the family F contains no
three distinct members A, B, C such that A C B, C. Then
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holds.

Proof. If [n] € F then the rest of F satisfies the conditions of Sperner’s theorem. So we
can suppose [n] ¢ F. If we see that

(ar=rarr<() (+5755)
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holds for every 0<|A|<n — 2, then Lemma 3 implies (5). That is, we have to find the
maximum of the function g(i) = ()2 in the interval 0<i <n —2. Here g(i — 1) < g(i)

n—i—l

holds if and only if i (n —i — 1) < (n —i)%. The discriminant /a2 — 6n + 1 of this quadratic
inequality can be bounded from below and above by n — 4 and n — 3, respectively, provided
n > 7.5. Using these estimates it is easy to see that the smaller root of the equation
iln—i—1)= (n—1i)?isin the interval (3 + %, 5 + 1) while the larger root is larger than
n — 2. Hence, g(i — 1) < g(i) holds if and only if 1<i < 7 + 1. The function g(i) takes
on its maximum in the interval 1 <i<n — 2 at L#). This is also true forn = 4,5,6,7
which can be checked separately. [

This corollary is slightly weaker than the statement in [6] , but its proof is much shorter.

Theorem 3. Ifn = 3 or n 25 then equality holds in Theorem 2 only if the family consist
all k and k + 1-element sets for some k. The same is true for Theorem 1, with k equal to
L”—ELJ or I'%'I. If n = 4 then there is up to isomorphism one more extremal family for
both theorems:

4
([2]) U {{1}, {2, 3,4}, {2}, {1, 3, 4}}.



Proof. Firstsupposethat, [n] ¢ F. We will give a new proof of Theorem 2 which does not
use the cyclic permutations. Proceed similarly to the proof of Lemma 2. Define M and M
as the families of maximal and minimal members of F, respectively. A = F — M| — M>.
Itis éasy to see that M| U A satisfies the conditions of Corollary 1. On the other hand, the
complements of the members of MU A also satisfy it. The sum of the two inequalities again
yield the statement of Theorem 2. Let us check the possibilities of equality. If n > 4 there is
no A satisfying the conditions of equality in Corollary 1 for both (direct and complementing)
cases. Therefore in this case the equality in Theorem 2 implies A = @. So F is the union
of two antichains. It is well-known that if such an F satisfies the inequality of Theorem 2
with equality then it may consist of two full levels, only. It is easy to see that if these levels
are not neighboring then the family contains a butterfly. We are done with the case n =5
and Theorem 2.

Since Theorem 1 is a consequence of Theorem 2 in the case @, [n] ¢ F, we are also done
with this case.

Let us consider now the equality in Theorem 1 in the cases when one or both of @, [1]
are in F. The proof of Theorem | can be repeated. To make the paper self-contained, one
can use Corollary 2 instead of the result from [6].

The cases of small n have to be checked separately, by case analysis. [J
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