Semantics in Databases

Leopoldo Bertossi!, Gyula O. H. Katona?, Klaus-Dieter Schewe®, and
Bernhard Thalheim*

! Carleton University, School of Computer Science, Herzberg Building,
1125 Colonel By Drive, Ottawa, Canada K1S 5B6
bertossi@scs.carleton.ca
2 Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences,
PostBox 127, H-1364 Budapest, Hungary
ohkatona@renyi.hu
3 Massey University, Department of Information Systems, Private Bag 11 222,
Palmerston North, New Zealand
k.d.schewe.@massey.ac.nz
* Computer Science Institute, Brandenburg University of Technology at Cottbus,
PostBox 101344, D-03013 Cottbus, Germany
thalheim@informatik.tu-cottbus.de

The term “Semantics” is one of the overloaded in computer science and used
in various meaning. This variety can also be observed in database literature. In
computer linguistics or web research, semantics is a component of the language
which associates words or components of a grammar with their meaning (lin-
guistic content). In modeling and specification, semantics assigns set-theoretic
denotations to formulas in order to characterize truth. At the same time, seman-
tics is used as the basis for certain methods of proof (truth and proof semantics
in semiotics). In programming language technology, semantics is often used in
the sense of operational semantics, i.e. consists in an interpretation of commands
of a programming language by machine operations. This widespread usage of the
term “semantics ” has led to very different goals, methods, and applications. Se-
mantics includes at the same time the interpretation of utterances, temporal,
contextual, subjective and other aspects.-Semantics is either considered opera-
tionally on the basis of applications or implementations, or logically associating
a database state or a collection of database states to a truth value or prag-
matically by relating utterances to the understanding of the user. These three
understandings may be mapped to each other.

We require, however, that a formal mathematical theory is provided beside
these substantial differences of the usage of “semantics”. The same statement
must have a stable interpretation and cannot be differently interpreted by dif-
ferent computer systems. The formal theory provides a way to prove correct-
ness of specifications. A specification has the liveness property if a number of
positive properties can be proven. A specification has the safety property if a
number of negative properties cannot happen. Semantics is specified by means
of formulas in a logic. Formulas reflect three different applications of semantics
in databases. First, formulas are used for communicating the meaning between
parties involved. Second, formulas support to verify whether the implementation
carries the same meaning. Finally, formulas enable in the validation of the spec-



ification by proving liveness and safety properties. This expression of semantics
of databases by formulas allows to consider semantics by means of mathemat-
ical logics, i.e. by theories in a certain logical language. Therefore, a database
application may be considered as a collection of models of the given theory.

~

In the database research, semantics is used in a variety of meanings:

Stable semantics is declared by static integrity constraints. A static integrity
constraint is valid in each database state. Feasibility considerations have led
to the introduction of a number of specific constraints called dependencies.
Static integrity constraints are mapped to transition constraints. Transition
constraints are Hoare triples (precondition, operation, postcondition) spec-
ifying that the postcondition must be valid after the operation has been
applied to a database state that satisfies the precondition. The transaction
approach is based on Hoare triples with equal pre- and postcondition.
Dynamic semantics of applications is often left unspecified. Typical dynamic
constraints are temporal formulas describing the life cycle of database ob-
jects.

Database instances can be either elementary instances or deductively gener-
ated instances. Deductive database are used for generation of instances by
an abstract generator. Different generators led to a variety of semantics such
as stable semantics.

Semantics can be state-dependent. In this case, phases can be distinguished.
The database or parts of it satisfy a theory describing the phase.
Semantics can be partially represented by structural properties. The research
on semantic data models has led to a number of main structures such as
types, subtypes, supertypes, and special types like attribute, entity and re-
lationship types. Further, constructors are used for construction of complex
types.

Structural semantics concentrates on the meaning of singleton word fields.
Research on database components and research on terminological ontologies
follow these approaches.

Conceptual modeling follows approaches developed by generative semantics.
The meaning of a schema is constructed by the meaning of its constituents.
Approaches used in the semantic web and ontology research follow those of
practical semantics. The meaning of constructs is based on rules for practical
application in interaction scenarios.

The semantic aspect of utterances is expressed by the content. Therefore,
content management targets too on semantics of data.

The state of practice does not reflect achievements of research in our area:

A small set of the large variety of integrity constraint classes can be declar-
atively specified in database programming languages. These languages only
have fragmental facilities for the expression of database semantics. More-
over, these facilities are redundant, lack orthogonality, are partially non-
declarative and have side effects.

DBMS have fragmental facilities for handling of database semantics. These
facilities are incomplete and partially unsound.



— Specification languages used in database development tools vary in seman-
tics of similar constructs. The same diagram may have another meaning in
another tool.

— Integrity constraints can be specified in some database development tools. A
translation of the integrity constraints to the programming language of the
DBMS is, however, not provided.

— In most existing relational DBMS, integrity handling and checking is far
from being eflicient.

— The facilities for integrity constraint maintenance are slowly and reluctantly
integrated into implementations of the SQL2 or SQL3 standard.

— Treatment of integrity constraints is not well founded in the SQL3 standard.
Meaning and semantics is not well understood. There exists a large variety
of interpretations for each group of integrity constraints.

— Enforcement policies used in SQL3 are rather confusing. Integrity constraints
can be enforced in deferred or intermediate mode, may be enforced at row
level or at statement level.

Semantics research has been neglected over the last years. In the early days
of database research, issues related to database research played a prominent role,
and papers discussing database models, conceptual design, integrity constraints
and normalization often dominated major database conferences. This began to
change at the end of the 80ies. Nowadays those issues do not appear to be
part of the mainstream research. Dependencies and other constraints have been

considered to be the “dying swan” in the database research. We observe a number
of explanations for this development:

— The research has not found its way to major implementations of DBMS. The
support for integrity constraint maintenance is still rudimentary in DBMS.

— The simple questions got solved. The remaining problems are far more dif-
ficult to tackle.

— The research has been conducted within a large variety of database models
without a reference to research within other models. For instance, there is no
systematic summarization of research on constraints in other models beyond
those for the relational model and the entity-relationship model.

— The results on semantics are spread over a large number of conferences in
the last decade. It is often difficult to find the proceedings or the references.

— The large variety of models has led to a large number of incompatible ap-
proaches and solutions. Their differences are not understood. A lot of re-

search has been conducted for models which are not used or are not known
to young researchers. B

i

Semantics research has left a large number of open problems. We may dis-
tinguish a number of major research areas which are still open: !

Satisfiability of specification should be provable for a collection of integrity con-
straints. If a schema is unsatisfiable the part of the specification causing this
property must be identifiable.



Integration of static and operational constraints allows to consistently switch be-
tween different equivalent constraint sets. A coherent theory of integrity
enforcement for different DBMS enables in switching applications between
DBMS.

Strong and soft interpretation of constraints is not yet solved in a satisfiable form.
Most constraints can be given in a strong logical form. Some constraints may
use fuzzy or deontic approaches.

Global normalization is still not investigated in detail. Normalization is currently
using only a local variant in a type-wise form.

Continuous engineering requires to cope with consistent extensions of structures,
functionality and integrity support of a running database system.

Integration of quality requirements into specification will lead to provide a moti-
vation for requirements such as normal forms and acyclicity.

Complexity of constraint sets is currently only known for simple classes of con-
straints such as sets of keys and functional dependencies. Average complexity
results would lead to a better understanding of semantics in ‘normal’ appli-
cations.

Enforcement of integrity constraint sets is currently mainly supported by DBMS
on the level of rule triggering systems. The alternative approaches to integrity
enforcement should be integrated into these approaches.

Implication problems are tackled on the level of classes of constraints. A database
application uses however a set of constraints from different classes. The in-
teraction of constraints needs more research.

Treatment of semantics by views has not yet been satisfactorily solved. At the
same time, most large database systems are heavily based on views.

Distributed integrity management allows to avoid the centralized integrity man-
agement in distributed applications. Distributed systems are still developed
on the allocation of data sets to nodes without consideration of semantics.

Integration of vertical, horizontal and deductive normalization allow a more flexi-
ble optimization of database behavior. Therefore, a common framework for
vertical, horizontal and deductive normalization is sought.

Treatment of incomplete specifications is necessary for practical reasons. Usually,
specifications are incomplete. An incomplete specification of constraints leads
to completely different normalized schemata.

Implementation of integrity constraints in database systems is still based on
the waterfall model:

1. The initial aim in conceptual database design is the development of struc-
tural or semantical integrity constraints.

2. The operational optimization of integrity constraints is based on normaliza-
tion approaches which restructure the database by decomposition or frag-
mentation and lead to equivalent sets of integrity constraints which integrity
enforcement is simpler in the given DBMS.

3. During the mapping phase check constraints are derived which allow to con-
trol consistency of databases on the row level, by single sub-queries or ag-
gregation or inter-table sub-queries.



4. Constraints which cannot be mapped to check constraints are mapped to as-
sertions on the basis of independent and inter-table constraints if the DBMS
intended to be used for the database implementation supports assertions.

5. Static integrity constraints can be mapped to triggers if the DBMS supports
triggers. Trigger support may vary and uses additional semantics in the
DBMS.

6. Stored procedures enable in encapsulation of operations and integrity con-
straints. Integrity maintenance is wrapped into the stored procedure code.

7. Integrity constraint checking at the application level is mainly performed by
the transaction management or at the level of application programs.

At the same time we observe a number of pitfalls in the existing research liter-
ature:

— Normalization is still considered as the ultimate weapon for structural opti-
mization. The approaches well developed so far cover vertical normalization
at the local type level. Horizontal or deductive normalization is still not
integrated into vertical normalization approaches. Global normalization is
moreover in an embryonic state.

— Tuning and operational optimization lead to physical schemata which are
structurally and semantically different from the conceptual schema. The later
is used for programming and querying.

— The class-centered approach to integrity specification concentrates on the
class-wise treatment of integrity constraints. Instead of that, we should con-

centrate on the treatment of a set of integrity constraints valid in a applica-
tion.

The papers in this volume reflect a variety of approaches to semantics in
databases:

P. Barceld, L. Bertossi and L. Bravo develop a theory of consistent answers from
database that violate constraints, i.e. answers to queries that are generated
in every minimal repair of the database.

J. Biskup and B. Sprick design a wunifying framework for consistent and inte-
grated reasoning on semantic constraints and security constraints in highly
distributed systems. The formalization is based on a propositional multi-
model logic for multi-agent systems with temporal and epistemic operators.

H. Decker discusses the potential of paraconsistent reasoning for datalog, com-
putational logics and for foundations of partially inconsistent databases.

S. Hartmann introduces soft cardinality constrainis. If cardinality constraints are
conflicting then a resolution strategy may use a weakening approach and
may consider only those which are not in conflict and which conflict is not
causing other inconsistencies. A number of conflict resolution strategies is
introduced.

S. Hegner develops a characterization of type hierarchies under open specifica-
tions. The algebraic characterization is based on weak partial lattices, the
logical one on products of models of propositional-based specifications.



H.-J. Klein focuses on sure answers in the case of null values which are rep-
resenting existing but unknown values or are indicating that there is no
information. He uses the introduced theory to generate transformations of
SQL queries that approximate sure information answers.

S. Link generalizes the integrity enforcement on the basis of greatest consistent
specializations to mazimal consistent effect preservers. He introduces a gen-
eral definition and framework that formalizes effect preservation of opera-
tions while maintaining database consistency.

F. Neven and T. Schwentick survey results on pattern languages for tree-struc-
tured data such as XML data. It is shown that an intermediate logic between
first-order logic and monadic sencond-order logic captures the expressive
power of languages with regular path expressions.

D. Seipel and U. Geske investigate the semantics of cardinality constraints on the
basis of disjunctive deductive database programs and consider various deduc-
tive calculi for cardinality constraints. There is no sound and complete cal-
culus using only definite deductive rules. Instead, a mix of disjunctive rules
and rules from the definite calculus can be used.

J.M. Turull-Torres considers the ezpressive power of relational query languages
on the basis of an abstract notion of similarity or indistinguishability of
databases. He develops a general framework for definition of semantic clas-
sifications of queries and shows that the hierarchy is orthogonal with the
time-space hierarchy for Turing machines.



