2-bases of quadruples

ZOLTÁN FÜREDI ${ }^{1 \dagger}$ and GYULA O.H. KATONA ${ }^{2 \ddagger}$

${ }^{1}$ Rényi Institute of Mathematics of the Hungarian Academy of Sciences
Budapest, P. O. Box 127, Hungary-1364.
and
Department of Mathematics, University of Illinois at Urbana-Champaign Urbana, IL61801, USA
(e-mail: furedi@renyi.hu, z-furedi@math.uiuc.edu)
${ }^{2}$ Rényi Institute of Mathematics of the Hungarian Academy of Sciences
Budapest, P. O. Box 127, Hungary-1364.
(e-mail: ohkatona@renyi.hu)

Let $\mathcal{B}(n, \leq 4)$ denote the subsets of $[n]:=\{1,2, \ldots, n\}$ of at most 4 elements. Suppose that \mathcal{F} is a set system with the property that every member of \mathcal{B} can be written as a union of (at most) two members of \mathcal{F}. (Then \mathcal{F} is called a 2-base of \mathcal{B}.) Here we answer a question of Erdős proving that

$$
|\mathcal{F}| \geq 1+n+\binom{n}{2}-\left\lfloor\frac{4}{3} n\right\rfloor
$$

and this bound is best possible for $n \geq 8$.

1. 2-bases

The n-element set $\{1,2, \ldots, n\}$ is denoted by $[n]$. The family of all subsets of $[n]$ is called the Boolean lattice and is denoted by $\mathcal{B}(n)$. Its k th level is $\mathcal{B}(n, k):=\{B: B \subset[n]$: $|B|=k\}$, and $\mathcal{B}(n, \leq k):=\cup_{0 \leq i \leq k} \mathcal{B}(n, i)$. The set system \mathcal{F} is called a 2-base of \mathcal{A} if every member $A \in \mathcal{A}$ can be obtained as a union of two members of \mathcal{F}, in other words $A=F_{1} \cup F_{2}, F_{1}, F_{2} \in \mathcal{F}$. Note that we allow $F_{1}=F_{2}$ and we do not insist that the 2-base is a subset of the set system.

The interest is in how small a base one can find. Let $f(\mathcal{A}):=\min \{|\mathcal{F}|: \mathcal{F}$ is a 2 -base of $\mathcal{A}\}$. This is known exactly in very few cases, even when the set system is a natural

[^0]one. For example, it is not known even for the power-set itself (the discrete cube). In 1993 Erdős [2] proposed the problem of determining $f(\mathcal{B}(n))$ and also the problem of determining the minimum size of a 2-base of the small sets, $f(\mathcal{B}(n, \leq k))$. We also use $f_{k}(n)$ for $f(\mathcal{B}(n, \leq k))$. Erdős conjectured that
$$
f(\mathcal{B}(n))=2^{\lfloor n / 2\rfloor}+2^{\lceil n / 2\rceil}-1
$$
and that the extremal family consists of all subsets of V_{1} and V_{2} where $V_{1} \cup V_{2}=[n]$ is a partition of $[n]$ into two almost equal parts. A lower bound $f(\mathcal{B}(n)) \geq(1+o(1)) 2^{(n+1) / 2}$ is obvious from the fact that
$$
|\mathcal{A}| \leq\binom{|\mathcal{F}|}{2}+|\mathcal{F}|
$$
which holds for any 2-base \mathcal{F} of \mathcal{A}.
The aim in this paper is to answer this question for the family $\mathcal{B}(n, \leq 4)$. The question of the smallest base for $\mathcal{B}(n, \leq k)$ is trivial for $k \leq 2$, and for $k=3$ it turns out to be a question about graphs whose answer follows immediately from Turán's theorem. So the case $k=4$ is the first non-trivial case. It boils down to an interesting question about 3 -graphs (3-regular hypergraphs), and it might be somewhat surprising that it is possible to give an exact answer.

Let $f_{4}(n):=1+n+\binom{n}{2}-h(n)$. The main result of this paper can be summarized in the following table.

n	0	1	2	3	4	5	6	7	$n \geq 8$
$h(n)$	0	0	1	2	4	5	7	8	$\left\lfloor\frac{4}{3} n\right\rfloor$

Theorem 1.1. For $n \geq 8 \quad f_{4}(n)=1+n+\binom{n}{2}-\left\lfloor\frac{4}{3} n\right\rfloor$.
Let $g_{k}(n):=f(\mathcal{B}(n, 4))$, the size of a minimum 2-base for the k-tuples. We will deduce from Theorem 1.1 that $g_{4}(n)+n+1=f_{4}(n)$ for $n \geq 5$.

Theorem 1.2. We have $g_{4}(5)=5, g_{4}(6)=8, g_{4}(7)=13$ and for $n \geq 8 g_{4}(n)=$ $\binom{n}{2}-\left\lfloor\frac{4}{3} n\right\rfloor$.

In the following section we discuss $f_{k}(n)$ in the (easy) case $k \leq 3$. Then give constructions for $f_{4}(n)$ separating the cases $n \leq 7$ and $n \geq 8$ and thus providing lower bounds for $h(n)$. In Chapter 2 the structure of minimal bases of $\mathcal{B}(n, \leq 4)$ is investigated, namely those with minimum deficiency with at least 2 , and then (the upper bounds for) the values of $h(n)$ in the above table is proved in Chapter 3. In Chapter 4 the uniform case (the case of g_{4}) is considered, and in Chapter 5 we close with a few remarks on the case $k>4$.
1.1. The case $\mathcal{B}(n, \leq 3)$

For $k \geq 1$ every 2-base of $\mathcal{B}(n, k)$ must contain the \emptyset and all singletons. This easily leads to

$$
f_{0}(n)=1, \quad f_{1}(n)=1+n, \quad f_{2}(n)=1+n
$$

Suppose that \mathcal{F} is a 2-base of $\mathcal{B}(n, \leq k), 1<k \leq n$, such that $|\mathcal{F}|=f_{k}(n)$ and $\sum_{F \in \mathcal{F}}|F|$ is minimal. Such bases are called minimal. Then
(i) $\emptyset \in \mathcal{F}, \mathcal{B}(n, 1) \subset \mathcal{F}$,
(ii) for every $F \in \mathcal{F}$ we have $|F| \leq k-1$.

Indeed, one only need to observe that in case of $F \in \mathcal{F},|F|=k, x \in F$ one can replace F by $F^{\prime}:=F \backslash\{x\}$, i.e., $\mathcal{F} \backslash\{F\} \cup\left\{F^{\prime}\right\}$ is also a 2-base.

Construction 1.3. Consider a 2-partition $V_{1} \cup V_{2}$ of $[n]$ with $\lfloor n / 2\rfloor \leq\left|V_{1}\right| \leq\left|V_{2}\right| \leq$ $\lceil n / 2\rceil$ and let \mathcal{F} be all the subsets of V_{1} and V_{2} of size at most 2. Every triple from $[n]$ meets $a V_{i}$ in at least 2 elements so it also contains a 2 -element member of \mathcal{F}. Hence \mathcal{F} is a 2 -base of $\mathcal{B}(n, \leq 3)$.

Claim 1.4. $\quad f_{3}(n)=1+n+\binom{\lfloor n / 2\rfloor}{ 2}+\binom{\lceil n / 2\rceil}{ 2}$.
Proof of Claim 1.4. Suppose that \mathcal{F} is a minimal 2-base of $\mathcal{B}(n, \leq 3)$ satisfying the (i) and (ii). Split it into subfamilies according to the sizes of its members, $\mathcal{F}=\mathcal{F}_{0} \cup \mathcal{F}_{1} \cup \mathcal{F}_{2}$ where $\mathcal{F}_{i}:=\mathcal{F} \cap \mathcal{B}(n, i)$. Then \mathcal{F}_{2} is a graph (i.e., a 2 -graph) with the property that every triple contains an edge, so its complement \mathcal{H}_{2} is triangle-free. $\left(\mathcal{H}_{2}:=\mathcal{B}(n, 2) \backslash \mathcal{F}_{2}\right.$.) Then Turán's theorem [7] implies that $\left|\mathcal{H}_{2}\right| \leq\left\lfloor n^{2} / 4\right\rfloor$, hence

$$
|\mathcal{F}|=\left|\mathcal{F}_{0}\right|+\left|\mathcal{F}_{1}\right|+\left|\mathcal{F}_{2}\right| \geq 1+n+\binom{n}{2}-\left\lfloor\frac{n^{2}}{4}\right\rfloor
$$

1.2. Constructions for $\mathcal{B}(n, \leq 4)$ if $n \leq 7$

Let \mathcal{F} be a minimal 2-base of $\mathcal{B}(n, \leq 4)$ satisfying (i) and (ii). Let $\mathcal{F}_{i}:=\mathcal{F} \cap \mathcal{B}(n, i)$, then $\mathcal{F}=\mathcal{F}_{0} \cup \mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3}$ where $\mathcal{F}_{0}=\{\emptyset\}, \mathcal{F}_{1}=\mathcal{B}(n, 1)$. Use the notation $\mathcal{H}_{2}:=\mathcal{B}(n, 2) \backslash \mathcal{F}_{2}$. Then

$$
|\mathcal{F}|=1+n+\binom{n}{2}-\left|\mathcal{H}_{2}\right|+\left|\mathcal{F}_{3}\right|:=1+n+\binom{n}{2}-h(n) .
$$

Since $\mathcal{B}(n, \leq 2)$ is a 2 -base of $\mathcal{B}(n, \leq 4)$ we have $h(n) \geq 0$.
Let us summarize the properties of $\mathcal{F}_{2} \cup \mathcal{F}_{3}$.

$$
\begin{array}{cl}
\text { For every triple } T \subset[n] & \text { either } T \text { contains a pair from } \mathcal{F}_{2} \\
& \text { or } T \in \mathcal{F}_{3} \\
\text { For every quadruple } Q \subset[n] & \text { either } Q \text { contains a triple from } \mathcal{F}_{3} \\
& \text { or } Q \text { is a union of two edges from } \mathcal{F}_{2} . \tag{1.4}
\end{array}
$$

Construction 1.5. For $n \geq 4$ let \mathcal{H}_{2} be a Hamilton cycle, $\left|\mathcal{F}_{3}\right|=0$.
It is easy to show that this family \mathcal{F}_{2} satisfies (1.1) and (1.4) so (together with $\mathcal{B}(n, \leq 1)$) it is a 2 -base. This construction shows that $h(n) \geq n$ (for ≥ 4), and one can see that this is the best possible for $n=4$ and $n=5$.

Claim 1.6. $\quad h(0)=h(1)=0, h(2)=1, h(3)=2, h(4)=4$ and $h(5)=5$.

The proof of this (and the following two claims concering $n=6$ and 7) is a short, finite process. For completeness we sketch them in Section 3.

Construction 1.7. For $n=6$ let \mathcal{F}_{3} be two disjoint triples F_{1}, F_{2} and let \mathcal{F}_{2} be the six pairs contained in either of F_{1} or F_{2}.

Another construction of the same size can be obtained by considering a Hamilton cycle $\mathcal{F}_{2}:=\{12,23,34,45,56,16\}$ with two triples $\mathcal{F}_{3}:=\{135,246\}$.

Claim 1.8. $\quad h(6)=7$.

Construction 1.9. For $n=7$ label the seven elements by two coordinates, $V:=$ $\{v(1,1), v(1,2), v(1,3), v(2,1), v(2,2), v(3,1)\}$. Let \mathcal{F}_{2} be the ten pairs $v(\alpha, \beta) v\left(\alpha^{\prime}, \beta^{\prime}\right)$ with $\alpha \neq \alpha^{\prime}$ and $\beta \neq \beta^{\prime}$, and let \mathcal{F}_{3} be formed by the three triples having a constant coordinate i.e., $\{v(1,1), v(1,2), v(1,3)\},\{v(2,1), v(2,2), v(2,3)\}$ and $\{v(1,1), v(2,1), v(3,1)\}$. (This is a truncated version of Construction 1.13 for $n=9$.)

Claim 1.10. $\quad h(7)=8$.
Construction 1.11. Let n_{1}, n_{2} be nonnegative integers, $V^{1} \cup V^{2}$ a partition of $[n]$ with $\left|V^{i}\right|=n_{i}, \mathcal{F}^{i}$ a minimal 2-base on V_{i}. Define \mathcal{F} as $\mathcal{F}^{1} \cup \mathcal{F}^{2}$ together with all pairs joining V^{1} and V^{2}.

It is easy to see that this construction satisfies (1.1)-(1.4), it is a 2-base. Indeed, it is sufficient to check a triple T and a quadruple Q meeting both V_{1} and V_{2}. Then T contains a pair joining V^{1} and V^{2} thus it satisfies (1.1). If $\left|Q \cap V^{1}\right|=\left|Q \cap V^{2}\right|=2$, then it is a union of two crossing pairs. Finally, if $Q=\{a, b, c, d\}$ and $Q \cap V^{1}=\{a, b, c\}$, then since \mathcal{F}^{1} is a 2-base, $Q \cap V^{1}$ satisfies either (1.1) or (1.2). In the first case $Q \cap V^{1}$ it contains a pair, say $a b$ from \mathcal{F}^{1}, then $\{a, b\} \cup\{c, d\}$ is a partition of Q satisfying (1.4). In the second case $Q \cap V^{1} \in \mathcal{F}^{1}$, so Q satisfies (1.3). We obtained:

Claim 1.12. For n_{1}, n_{2} nonnegative integers $h\left(n_{1}+n_{2}\right) \geq h\left(n_{1}\right)+h\left(n_{2}\right)$.

1.3. Constructions for $n \geq 8$

Construction 1.13. Suppose that \mathcal{F}_{3} is a triple system on $[n]$ of girth at least 4, i.e., $\left|F^{\prime} \cap F^{\prime \prime}\right| \leq 1$ for $F^{\prime}, F^{\prime \prime} \in \mathcal{F}_{3}$ and $F_{1}, F_{2}, F_{3} \in \mathcal{F}_{3}$ and $F_{1} \cap F_{2} \neq \emptyset, F_{1} \cap F_{3} \neq \emptyset$, $F_{2} \cap F_{3} \neq \emptyset$ imply $F_{1} \cap F_{2} \cap F_{3} \neq \emptyset$. Suppose further that every degree of \mathcal{F}_{3} is at most two, i.e., every singleton is contained in at most two triples. Define \mathcal{H}_{2} as the pairs covered by the members of \mathcal{F}_{3}.

This construction (together with $\mathcal{B}(n, \leq 1)$) form a 2-base. Indeed, if a triple $T \subset[n]$ contains no edge from \mathcal{F}_{2}, then it belongs to \mathcal{F}_{3}, so either (1.1) or (1.2) holds. Moreover, if $Q=\{a, b, c, d\} \subset[n]$ is a quadruple and contains no triple from \mathcal{F}_{3}, then the induced graph $\mathcal{H}_{2} \mid Q$ contains no triangle. So $\mathcal{F}_{2} \mid Q$ contains two disjoint edges (and thus
fulfills (1.4)) unless $\mathcal{H}_{2} \mid Q$ has a vertex of degree 3 , say, $a b, a c, a d \in \mathcal{H}_{2}$. Since the degree of \mathcal{F}_{3} at the vertex a is at most two and the edges of \mathcal{H}_{2} are obtained from the triples of \mathcal{F}_{3} we get that there exists a triple $T \in \mathcal{F}_{3}$ with $a \in T \subset Q$. We obtained that Construction 1.13 indeed defines a 2 -base.

For $n=3 k, k \geq 3$ we obtain $h(3 k) \geq 4 k$ as follows. Let $[n]=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\} \cup$ $\left\{b_{1}, b_{2}, \ldots, b_{k}\right\} \cup\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$. Define \mathcal{F}_{3} as all triples of the form $a_{i} b_{i} c_{i}$ and $a_{i} b_{i+1} c_{i+2}$ (indices are taken modulo k). This satisfies the constraint of Construction 1.13. Since $\left|\mathcal{H}_{2}\right|=3\left|\mathcal{F}_{3}\right|$, we get $h(n) \geq 2\left|\mathcal{F}_{3}\right|=4 k$.

If we leave out from the above construction the 2 triples of \mathcal{F}_{3} and the 4 pairs of \mathcal{H}_{2} containing the element $3 k$ we obtain that $h(3 k-1) \geq 4 k-2$. Thus we already have the cases $n=3 k$ and $n=3 k-1$ in the following

Claim 1.14. $\quad h(n) \geq\left\lfloor\frac{4}{3} n\right\rfloor$ for $n \geq 8$.

Proof. We only need a construction for $n=3 k+1, k \geq 3$ to show $h(3 k+1) \geq 4 k+1$. It is enough to show $h(10) \geq 13, h(13) \geq 17$ and $h(16) \geq 21$, then the general case follows from $h(9) \geq 12$ using Claim 1.12.

Define the six triples of \mathcal{F}_{3} as $\{1,2,3\},\{4,5,6\},\{7,8,9\},\{1,4,7\},\{2,5,8\}$ and $\{3,6,10\}$ and \mathcal{H}_{2} as the 18 pairs covered by these triples and $\{9,10\}$. The graph \mathcal{H}_{2} has only these 6 triangles, so (1.1)-(1.2) hold, and it is not difficult to check the four-tuples, too.

The other cases are similar: for $n=13$ we can define $\mathcal{F}_{3}:=\{1,2,3\},\{4,5,6\},\{7,8,9\}$, $\{10,11,12\}$ and $\{1,4,10\},\{2,5,7\},\{6,8,11\},\{3,9,13\}$ and \mathcal{H}_{2} consists of these triangles and the pair $\{12,13\}$.

Finally, for $n=16$ we define \mathcal{F}_{3} as $\{1,2,3\},\{4,5,6\},\{7,8,9\},\{10,11,12\},\{13,14,15\}$ and $\{1,4,13\},\{2,5,7\},\{6,8,10\},\{9,11,14\}$, and $\{3,12,16\}$. Again \mathcal{H}_{2} consists of the triangles obtained from \mathcal{F}_{3} and the edge $\{15,16\}$.

2. Bases with deficiency at least 2

The aim of this paper is to prove Theorem 1.1 so suppose that \mathcal{F} is a minimal 2-base of $\mathcal{B}(n, \leq 4)$ and that $\mathcal{F}_{2} \cup \mathcal{F}_{3}$ satisfies (1.1)-(1.4).

Lemma 2.1. If $a b c \in \mathcal{F}_{3}$, then either $\{a b, b c, c a\} \subset \mathcal{F}_{2}$ or $\{a b, b c, c a\} \subset \mathcal{H}_{2}$.

Proof. Suppose, on the contrary, that $a b \in \mathcal{F}_{2}, a c \notin \mathcal{F}_{2}$. Replace $a b c$ by $a c$ in \mathcal{F}. Since $\sum_{F \in \mathcal{F}}|F|$ is minimal the family $\mathcal{F}^{\prime}:=\mathcal{F} \backslash\{a b c\} \cup\{a c\}$ is not a 2-base. What can go wrong? Since we added a new pair, conditions (1.1) and (1.2) still hold. The only condition we can violate is (1.3)-(1.4). We removed $a b c$, so there exists an $Q=a b c d$ not a union of two members of \mathcal{F}^{\prime}. So $a b c d$ does not contain any triple from \mathcal{F}^{\prime} and also $b d$, $c d \notin \mathcal{F}^{\prime}$. Consider $b c d$. We have $b c d \notin \mathcal{F}$ so (1.1) implies that $b c \in \mathcal{F}_{2}$. Consider acd. Since $a c, c d$, and $a c d \notin \mathcal{F}$ again (1.1) implies that $a d \in \mathcal{F}_{2}$. However, then $Q=a d \cup b c$, a contradiction.

Use the notation $\operatorname{deg}_{2}^{-}(x)$ for the degree of the vertex x in the graph \mathcal{H}_{2} and $\operatorname{deg}_{3}(x)$ for the degree of x in \mathcal{F}_{3}. The difference $\operatorname{deg}_{2}^{-}(x)-\operatorname{deg}_{3}(x)$ is called the deficiency of the vertex $x \in V$. ¿From now on in this Section we suppose that

$$
\begin{equation*}
\operatorname{deg}_{2}^{-}(x)-\operatorname{deg}_{3}(x) \geq 2 \text { for every } x \in[n] \tag{2.1}
\end{equation*}
$$

Let $N(x)$ denote the neighborhood of x in $\mathcal{H}_{2}, N(x):=\left\{y: x y \in \mathcal{H}_{2}\right\}, \operatorname{deg}_{2}^{-}(x)=|N(x)|$. Let $\mathcal{T}(x)$ denote the set of triples T from \mathcal{F}_{3} with $x \in T \subset N(x) \cup\{x\}$, and let $t(x):=$ $|\mathcal{T}(x)|$. Suppose that $D=\max _{x \in[n]} \operatorname{deg}_{2}^{-}(x)$, and a has maximum degree in \mathcal{H}_{2}. Consider $A=\{a\} \cup N(a),|A|=D+1$, let $t:=t(a)$. Then (2.1) implies $t, t(x) \leq D-2$.

2.1. Eliminating the case $D \geq 5$

Claim 2.2. (2.1) implies that $D \leq 4$.
Proof. Consider the $\binom{D}{3}$ four-tuples of A containing x, let $\mathcal{B}:=\{Q: a \in Q \subset A$, $|Q|=4\}$. Note that none of these can satisfy (1.4) so each of them contains a member of \mathcal{F}_{3}. Classify them into two groups as follows:
$\mathcal{B}_{1}:=\left\{a b c d: b, c, d \in A\right.$ and there exits a $T \in \mathcal{F}_{3}$ with $\left.a \in T \subset\{a, b, c, d\}\right\}$,
$\mathcal{B}_{2}:=\left\{a b c d: a b c d \subset A, a b c, a b d, a c d \notin \mathcal{F}_{3}\right\}$.
Each $Q \in \mathcal{B}_{2}$ contains a member of $\mathcal{F}_{3} \mid N(a)$, hence

$$
\left|\mathcal{B}_{2}\right| \leq\left|\mathcal{F}_{3}\right| N(a) \mid .
$$

Each member of $\mathcal{T}(a)$ is contained in $D-2$ four-tuples from \mathcal{B}_{1}, hence

$$
\begin{equation*}
\left|\mathcal{B}_{1}\right| \leq t(D-2) . \tag{2.2}
\end{equation*}
$$

Here the sum of the left hand sides is $\binom{D}{3}$. The sum of right hand sides can be estimated by the degrees of \mathcal{F}_{3} on A. Using $\operatorname{deg}_{3}(x) \leq D-2$ we obtain

$$
\begin{align*}
\binom{D}{3} & =\left|\mathcal{B}_{1}\right|+\left|\mathcal{B}_{2}\right| \leq t(D-2)+\left|\mathcal{F}_{3}\right| N(a)\left|=t(D-3)+\left|\mathcal{F}_{3}\right| A\right| \\
& \leq t(D-3)+\frac{1}{3} \sum_{x \in A} \operatorname{deg}_{3}(x) \leq t(D-3)+\frac{1}{3}(t+D(D-2)) . \tag{2.3}
\end{align*}
$$

Hence

$$
\begin{equation*}
\frac{1}{6} D(D-2)(D-3) \leq t \frac{3 D-8}{3} \tag{2.4}
\end{equation*}
$$

Since $t \leq D-2$ we get $D \leq 6$. In case of $t \leq D-3(2.4)$ implies $D \leq 4$. So two cases left in the proof of the Claim, namely $(D, t)=(6,4)$ and $(5,3)$.

In case of $D=6, t=4$ the right hand side of (2.2) can be improved by 2 , since there are at least 2 coincidences when we estimated the cardinality of \mathcal{B}_{1}. So $\left|\mathcal{B}_{1}\right| \leq 14$, and we can decrease the right hand sides of (2.3) and (2.4) by 2 , and that leads to a contradiction $12 \leq 4 \times \frac{10}{3}-2$.

In case of $D=5, t=3$ we use two things. The first one is implied by Lemma 2.1 and (1.1):
(C1) If $a b c \in \mathcal{T}(a)$ then $b c \in \mathcal{H}_{2}$; if $a b c \notin \mathcal{T}(a)$ and $b, c \in N(a)$ then $b c \in \mathcal{F}_{2}$. Thus $\mathcal{F}_{2} \mid N(a)$ has exactly $\binom{D}{2}-t$ edges.
(C2) If $\operatorname{deg}_{3}(x) \geq 3$, then $t(x)=3$. Indeed, (2.1) implies $\operatorname{deg}_{2}^{-}(x) \geq \operatorname{deg}_{3}(x)+2 \geq 5$. Consequently $\operatorname{deg}_{2}^{-}(x)=5=D, x$ has maximum degree, D, and then the previous considerations for a are valid for x, too, i.e., (2.4) implies that $t(x)=3$ is the only possibility.

Now we are ready to show that, in fact, $(D, t)=(5,3)$ is impossible. Suppose, on the contrary, that there is such a construction and let $N(a)=\{b, c, d, e, f\}$. Consider the 3-edge graph $G:=\left\{x y: a x y \in \mathcal{F}_{3}\right\}$. There are 4 non-isomorphic possibilities for G.
$(\alpha) G$ is a triangle, $\{b c, c d, b d\}$,
$(\beta) G$ is a path of length $3,\{b c, c d, d e\}$,
$(\gamma) G$ is a star, $\{b c, b d, b e\}$,
($\delta) G$ has 2 components, $\{b c, c d, e f\}$.
In each case we will find one or more $x \in N(a)$ with $t(x)=3$. Then the triples containing x cover no pair from \mathcal{F}_{2} and this will lead to a contradiction.

In case of (α) by (1.3) we have bef, cef, def $\in \mathcal{F}_{3}$. Hence $\operatorname{deg}_{3}(f) \geq 3$. Then (C2) implies that $t(f)=3$ and then Lemma 2.1 gives that $\{b, c, d, e\} \subset N(f)$, ef $\notin \mathcal{F}_{2}$. However, ef $\in F F_{2}$ by (C1), a contradiction.

The other cases can be handled in the same way. In case of (β) we have bdf, bef, cef \in \mathcal{F}_{3}, hence $\operatorname{deg}_{3}(f) \geq 3$. Then $t(f)=3$ and $\{b, c, d, e\} \subset N(f)$, ef $\notin \mathcal{F}_{2}$. In case of (γ) we have $c d f$, cef, def $\in \mathcal{F}_{3}$, hence $\operatorname{deg}_{3}(f) \geq 3$. Then $t(f)=3$ and $\{c, d, e\} \subset N(f)$, $e f \notin \mathcal{F}_{2}$. In case of (δ) we have bde, bdf $\in \mathcal{F}_{3}$, hence $\operatorname{deg}_{3}(b) \geq 3$. Then $t(b)=3$ and $\{c, d, e, f\} \subset N(b), b f \notin \mathcal{F}_{2}$. This final contradiction completes the proof of the case $(D, t)=(5,3)$ and Claim 2.2.

2.2. The case $D \leq 4$

¿From now on in this Chapter we suppose that $D \leq 4$.

Claim 2.3. (2.1) and $\operatorname{deg}_{2}^{-}(a)=4$ imply that $t(a)=\operatorname{deg}_{3}(a)=2$ and the two triples containing the element a meet only in a, e.g., $N(a)=b c d e$ and $\mathcal{T}(a)=\{a b c, a d e\}$.

Proof. Suppose, first, that $t(a)=0$. Then all the four triples of the form $x y z, x, y, z \in$ $N(a)$ belong to \mathcal{F}_{3}. Hence $\operatorname{deg}_{3}(b) \geq 3$, contradicting $D \geq \operatorname{deg}_{2}(x) \geq 2+\operatorname{deg}_{3}(x)$. If $t(a)=1$, say $a b c \in \mathcal{T}(a)$, then $b d e, c d e \in \mathcal{F}_{3}$ is implied by (1.3). Hence $\operatorname{deg}_{3}(e) \geq 2$, so $\operatorname{deg}_{2}^{-}(e)=4$. Since (1.1) implies that $b e, c e, d e \in \mathcal{F}_{2}$ we get that $N(e) \cap\{b, c, d\}=\emptyset$, so $t(e)=0$. However, we have seen that $\operatorname{deg}_{2}^{-}(e)=D=4$ implies $t(e)>0$.

So we get $t(a) \geq 2$, i.e., by $t(x) \leq D-2$ we have $t(a)=2$. The only case left to exclude is when the triples in $\mathcal{T}(a)$ meet in two elements, say $\mathcal{T}(a)=\{a b c, a c d\}$. Then $b d e \in \mathcal{F}_{3}$, so $\operatorname{deg}_{3}(b) \geq 2$. Hence we get $\operatorname{deg}_{2}^{-}(b)=4$, this implies $t(b)=2$ and $\{c, d, e\} \subset N(b)$. We get $a b, a e, b e \in \mathcal{H}_{2}$, abe $\notin \mathcal{F}_{3}$, contradicting (1.1).

Claim 2.4. (2.1) and $\operatorname{deg}_{2}^{-}(x)=3$ imply that $\operatorname{deg}_{3}(x)=1$.
Proof. Suppose, on the contrary, that $\operatorname{deg}_{3}(x)=0$. Consider $N(x)=a b c$, we have $a b, b c, c a \in \mathcal{F}_{2}$ by (1.1) and $a b c \in \mathcal{F}_{3}$ by (1.3). Then $a b \in \mathcal{F}_{2}$ implies that $a b c \notin \mathcal{T}(a)$

Therefore $t(a)$ cannot be $D-2=2$. So Claim 2.3 gives that $\operatorname{deg}_{2}^{-}(a) \neq 4$. Since $\operatorname{deg}_{3}(a) \geq$ 1 we get that $\operatorname{deg}_{2}^{-}(a)=3$. Consider $N(a)=x y z$. Note that $y, z \notin\{x, a, b, c\}$. Then $x y z \in \mathcal{F}_{3}$ by (1.3). This contradicts $\operatorname{deg}_{3}(x)=0$, so we have $\operatorname{deg}_{3}(x) \geq 1$. On the other hand, (2.1) implies $\operatorname{deg}_{3}(x) \leq 1$.

Claim 2.5. (2.1) implies that $h(\mathcal{F}) \leq \frac{4}{3} n$.
Proof. For $x \in[n]$ define $\varphi(x):=\frac{1}{2} \operatorname{deg}_{2}^{-}(x)-\frac{1}{3} \operatorname{deg}_{3}(x)$. We are going to prove that $\varphi(x) \leq 4 / 3$ for every x. This implies the Claim as follows

$$
\begin{equation*}
h(\mathcal{F})=\left|\mathcal{H}_{2}\right|-\left|\mathcal{F}_{3}\right|=\sum_{x \in[n]} \varphi(x) \leq \frac{4}{3} n . \tag{2.5}
\end{equation*}
$$

Using the previous three Claims one can split [n] into three parts, $[n]=P \cup Q \cup R$, where $P:=\left\{x: \operatorname{deg}_{2}^{-}(x)=4, \operatorname{deg}_{3}(x)=2\right\}, Q:=\left\{x: \operatorname{deg}_{2}^{-}(x)=3, \operatorname{deg}_{3}(x)=1\right\}$, and $R:=\left\{x: \operatorname{deg}_{2}^{-}(x)=2, \operatorname{deg}_{3}(x)=0\right\}$. For each cases we have $\varphi \leq 4 / 3$.

Note that $h(\mathcal{F})=\frac{4}{3} n$ in Claim 2.5 is only possible for Construction 1.13, especially

$$
\begin{equation*}
P=[n] \text { and } Q=R=\emptyset . \tag{2.6}
\end{equation*}
$$

3. Proof of the main result

Let \mathcal{F} be a minimal 2 -base for $\mathcal{B}(n, \leq 4)$. Then

$$
\begin{align*}
1+n+\binom{n}{2}-h(n) & =|\mathcal{F}|=|\mathcal{F}|([n] \backslash\{x\}) \mid+1+\left(n-1-\operatorname{deg}_{2}^{-}(x)\right)+\operatorname{deg}_{3}(x) \\
& \geq 1+n+\binom{n}{2}-h(n-1)-\left(\operatorname{deg}_{2}^{-}(x)-\operatorname{deg}_{3}(x)\right) \tag{3.1}
\end{align*}
$$

gives that the deficiency of every vertex is at least $h(n)-h(n-1)$.
Proof of Theorem 1.1. We use induction on n to show that $h(n) \leq \frac{4}{3} n$. This is certainly true for $n \leq 2$. Suppose that $h(n-1) \leq \frac{4}{3}(n-1)$ and consider $h(n)$. If $h(n) \leq h(n-1)+1$, then we are done. If $h(n) \geq h(n-1)+2$, then, as we have seen in (3.1) there exists a minimal 2-base \mathcal{F} on $[n]$ with deficiency at least 2 . Then Claim 2.5 gives $h(n)=h(\mathcal{F}) \leq \frac{4}{3} n$.

Proofs of Claims 1.6, 1.8 and 1.10. The case $n \leq 4$ is trivial. Suppose that $5 \leq n \leq 7$ and let \mathcal{F} be a minimal 2 -base on n vertices.

The case $n=5$ is easy. $h(\mathcal{F}) \geq 6$ implies $\left|\mathcal{F}_{2}\right|+\left|\mathcal{F}_{3}\right| \leq 4$. If $\left|\mathcal{F}_{2}\right|=4$, then there is a unique way to satisfy (1.1) (namely, \mathcal{F}_{2} is a union of an edge and a triangle) and then (1.4) is violated. If $\left|\mathcal{F}_{2}\right|=3$, then there are at least 2 triples not containing any member of \mathcal{F}_{2}, so (1.2) gives $\left|\mathcal{F}_{3}\right| \geq 2$. If $\left|\mathcal{F}_{2}\right| \leq 2$, then they satisfy (1.1) with at most $3\left|\mathcal{F}_{2}\right|$ triples. Hence, (1.2) gives $\left|\mathcal{F}_{3}\right| \geq 10-3\left|\mathcal{F}_{2}\right|$. Then $\left|\mathcal{F}_{2}\right|+\left|\mathcal{F}_{3}\right|$ exceeds 4, a final contradiction.

If the minimum deficiency of \mathcal{F} is (at most) 1 then (3.1) gives $h(n) \leq h(n-1)+1$ and we are done. ¿From now on suppose that the deficiency of \mathcal{F} is at least 2, i.e. (2.1) holds.

For $n=6$ Claim 2.5 gives that $h(\mathcal{F}) \leq \frac{4}{3} \times 6=8$. By $(2.6) h(\mathcal{F})=8$ is only possible, if $P=[n]$, i.e., \mathcal{H}_{2} is a 4 -regular graph, and \mathcal{F}_{3} consists of four triples. Then \mathcal{F}_{2} is a matching, say, $\mathcal{F}_{2}=\left\{a_{1} a_{2}, b_{1} b_{2}, c_{1} c_{2}\right\}$. Then (1.2) implies that all the eight triples of the form $a_{i} b_{j} c_{k}$ should belong to \mathcal{F}_{3}, a contradiction. We have obtained $h(\mathcal{F})=h(6) \leq 7$.

For $n=7$ Theorem 1.1 implies $h(\mathcal{F}) \leq\left\lfloor 7 \times \frac{4}{3}\right\rfloor=9$. We claim that $h(7)=8$. Suppose, on the contrary, that $h(\mathcal{F})=9$. Consider the partition of $[n]=P \cup Q \cup R$ defined in the proof of Claim 2.5. For $R \neq \emptyset(2.5)$ gives $|R|=1,|P|=6, Q=\emptyset$. Then $\mathcal{H}_{2} \mid P$ is a 4-regular graph, not joined to R so $\operatorname{deg}_{2}^{-}(R)=2$ is impossible. Finally, if $R=\emptyset,|Q|=2$ and $|P|=5$ then we get $\left|\mathcal{F}_{3}\right|=4$. The four members of \mathcal{F}_{3} can pairwise meet in at most 1 vertex (by Claims 2.3 and 2.4) and have girth 4 . But such an \mathcal{F}_{3} does not exist on 7 vertices.

So we have obtained the exact value of $h(n)$ for every n.

4. 2-bases for quadruples

Here we prove Theorem 1.2. Suppose that \mathcal{F} is an extremal 2 -base for $\mathcal{B}(n, 4)$, i.e., $|\mathcal{F}|=g_{4}(n)$, such that $\left|\mathcal{F}_{1}\right|+\left|\mathcal{F}_{4}\right|$ is minimal. The case $n=5$ is a short finite process, $|\mathcal{F}| \leq 4$ leads to a contradiction. So the pentagon gives $g_{4}(5)=5$.

In the case $n=6$ the 6 pairs of a hexagon and the 2 disjoint triples of second example in Construction 1.7 shows $g_{4}(6) \leq 8$. Consider a minimal 2-base \mathcal{F}. If $\operatorname{deg}_{\mathcal{F}}(x) \geq 3$, then

$$
\begin{equation*}
|\mathcal{F}|=\operatorname{deg}_{\mathcal{F}}(x)+|\mathcal{F}|([n] \backslash\{x\}) \mid \geq \operatorname{deg}_{\mathcal{F}}(x)+g_{4}(n-1) \tag{4.1}
\end{equation*}
$$

implies $|\mathcal{F}| \geq 3+5$ and we are done. Moreover, it is easy to check that a hypergraph of 7 edges on 6 elements with maximum degree 2 cannot be a 2 -base, so $g_{4}(6) \geq 8$. ¿From now on we may suppose that $n \geq 7$.

The upper bounds for $g_{4}(n)$ follows by leaving out the singletons and the empty set from Constructions 1.9 and 1.13 in Chapter 1. To prove a lower bound we proceed like in Chapter 2. The main idea of the proof is that first we investigate the minimal 2-bases with a maximum degree condition

$$
\begin{equation*}
\operatorname{deg}_{\mathcal{F}}(x) \leq n-3 \tag{4.2}
\end{equation*}
$$

for all $x \in[n]$.
We claim that (4.2) implies that $\mathcal{F}_{4}=\emptyset$. Indeed, suppose, on the contrary, that $Q \in \mathcal{F}_{4}$. If Q contains any proper subset $F \in \mathcal{F}, x \in F \subset Q, Q \neq F$, then one can replace Q by $Q \backslash\{x\}$ to obtain another 2-base with smaller $\left|\mathcal{F}_{1}\right|+\left|\mathcal{F}_{4}\right|$. So we may suppose that such a proper subset does not exist. Consider $Q \backslash\{x\} \cup\{y\}$ for some $x \in Q, y \in[n] \backslash Q$. This is a union of (at most) two sets $A, B \in \mathcal{F}$. Both of them contain y. We obtain that the sets $\{F: y \in F \subset Q \cup\{y,|F|>1\}$ cover Q, and some vertex of Q is covered at least twice. Hence there exists an $x \in Q$ covered by these sets more than $n-4$ times while y runs trough $[n] \backslash Q$. Take Q itself, too, we get that $\operatorname{deg}_{\mathcal{F}}(x)>n-3$ contradicting (4.2).

Use that notations of the previous section, like $D:=\max \operatorname{deg}_{2}^{-}(x)$ and $\operatorname{deg}_{2}^{-}(a)=D$, etc. We claim that (4.2) implies that

$$
D \leq 4
$$

In the proof of this one cannot use Lemma 2.1 neither (1.1) nor (1.2), however (2.2)-(2.4) still hold, implying $D \leq 6$. Furthermore, $a b, a c, a d \notin \mathcal{F}_{2}$, and $a b c, a b d, a c d \notin \mathcal{F}_{3}$ imply not only $b c d \in \mathcal{F}_{3}$ but $a \in \mathcal{F}_{1}$. Thus in the case $\mathcal{B}_{2} \neq \emptyset$ (e.g., for $D>4$) one gets $a \in \mathcal{F}_{1}$. Then (4.2) gives $t(a) \leq \operatorname{deg}_{2}^{-}(a)-3=D-3$. So (2.4) gives $D \leq 4$.

Using the same idea one can see that Claim 2.3 remains true. The following analog of Claim 2.4 is obviously true: $\operatorname{deg}_{2}^{-}(x)=3$ implies $\operatorname{deg}_{1}(x)+\operatorname{deg}_{3}(x)=1$.

Like in Claim 2.5 we show that (4.2) implies

$$
\begin{equation*}
|\mathcal{F}| \geq\binom{ n}{2}-\frac{4}{3} n \tag{4.3}
\end{equation*}
$$

Indeed, for $x \in[n]$ define $\varphi(x):=\frac{1}{2} \operatorname{deg}_{2}^{-}(x)-\frac{1}{3} \operatorname{deg}_{3}(x)-\operatorname{deg}_{1}(x)$. As before we have that (4.2) implies that $\varphi(x) \leq 4 / 3$ for every x, completing the proof of (4.3) for this case.

Finally, for hypergraphs with maximum degree at least $n-2$ one can use induction on n. The inequality(4.1) implies that (4.3) always holds.

The case $n=7$ can be finished like in the proof of Claim 2.5 considering a partition of $[n]$ into three parts, $[n]=P \cup Q \cup R$, where now $Q:=\left\{x: \operatorname{deg}_{2}^{-}(x)=3, \operatorname{deg}_{1}(x)+\right.$ $\left.\operatorname{deg}_{3}(x)=1\right\}$. The details are omitted.

5. More hypergraphs

Let $T(n, k, r)$ denote the minimum size of a hypergraph $\mathcal{F} \subseteq \mathcal{B}(n, r)$ such that every k-subset of $[n]$ contains a member of \mathcal{F}. The determination of $T(n, k, r)$ is proposed by Turán [8] who solved the case $r=2$ (the case of graphs, see [7]) and has a longstanding conjecture $T(n, 4,3)=\left(\frac{4}{9}+o(1)\right)\binom{n}{3}$. For a survey on this see Sidorenko [6].

One can prove for every odd integer k that our $f_{k}(n)$ equals to $(1+o(1)) T(n, k,(k+$ $1) / 2$), but the even case is more involved and apparently leads to a new Turán type problem. The authors intend to return to this topic in a future work.

References

[1] B. BollobÁs, Extremal Graph Theory, Academic Press, London, (1978).
[2] Paul Erdős, personal communication.
[3] Z. Füredi, Turán type problems, pp. 253-300, in "Surveys in Combinatorics, 1991", edited by A. D. Keedwell, Cambridge University Press 1991.
[4] Katona, Nemetz, Simonovits A new proof of a theorem of P. Turán and some remarks on a generalization of it, (in Hungarian), Mat. Lapok 15 (1964), 228-238.
[5] D. Mubayi and V. Rödl, On the Turán number of triple systems, J. Combin. Theory, Ser. B 100 (2002), 135-152.
[6] A. F. Sidorenko, What we know and what we do not know about Turán numbers, Graphs Combin. 11 (1995), 179-199.
[7] P. Turán, On an extremal problem in graph theory, (in Hungarian), Math. Fiz. Lapok 48 (1941), 436-452.
[8] P. Turán, Research problems, MTA Mat. Kutató Int. Közl. 6 (1961), 417-423.

[^0]: ${ }^{\dagger}$ Research supported in part by a Hungarian National Science Foundation grant OTKA T 032452, T 037846 and by a National Science Foundation grant DMS 0140692.
 \ddagger Research supported by the Hungarian National Science Foundation grants OTKA T 037846, T 038210, T 034702.

