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Let B(n,≤ 4) denote the subsets of [n] := {1, 2, . . . , n} of at most 4 elements. Suppose

that F is a set system with the property that every member of B can be written as
a union of (at most) two members of F . (Then F is called a 2-base of B.) Here we

answer a question of Erdős proving that

|F| ≥ 1 + n+
(n
2

)
− b

4

3
nc,

and this bound is best possible for n ≥ 8.

1. 2-bases

The n-element set {1, 2, . . . , n} is denoted by [n]. The family of all subsets of [n] is called

the Boolean lattice and is denoted by B(n). Its kth level is B(n, k) := {B : B ⊂ [n] :

|B| = k}, and B(n,≤ k) := ∪0≤i≤kB(n, i). The set system F is called a 2-base of A if

every member A ∈ A can be obtained as a union of two members of F , in other words

A = F1 ∪ F2, F1, F2 ∈ F . Note that we allow F1 = F2 and we do not insist that the

2-base is a subset of the set system.

The interest is in how small a base one can find. Let f(A) := min{|F| : F is a 2-base

of A}. This is known exactly in very few cases, even when the set system is a natural
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one. For example, it is not known even for the power-set itself (the discrete cube). In

1993 Erdős [2] proposed the problem of determining f(B(n)) and also the problem of

determining the minimum size of a 2-base of the small sets, f(B(n,≤ k)). We also use

fk(n) for f(B(n,≤ k)). Erdős conjectured that

f(B(n)) = 2bn/2c + 2dn/2e − 1,

and that the extremal family consists of all subsets of V1 and V2 where V1 ∪V2 = [n] is a

partition of [n] into two almost equal parts. A lower bound f(B(n)) ≥ (1 + o(1))2(n+1)/2

is obvious from the fact that

|A| ≤
(
|F|
2

)
+ |F|,

which holds for any 2-base F of A.

The aim in this paper is to answer this question for the family B(n,≤ 4). The question

of the smallest base for B(n,≤ k) is trivial for k ≤ 2, and for k = 3 it turns out to be a

question about graphs whose answer follows immediately from Turán’s theorem. So the

case k = 4 is the first non-trivial case. It boils down to an interesting question about

3-graphs (3-regular hypergraphs), and it might be somewhat surprising that it is possible

to give an exact answer.

Let f4(n) := 1 + n+
(
n
2

)
− h(n). The main result of this paper can be summarized in

the following table.

n 0 1 2 3 4 5 6 7 n ≥ 8

h(n) 0 0 1 2 4 5 7 8 b 43nc

Theorem 1.1. For n ≥ 8 f4(n) = 1 + n+
(
n
2

)
− b 43nc.

Let gk(n) := f(B(n, 4)), the size of a minimum 2-base for the k-tuples. We will deduce

from Theorem 1.1 that g4(n) + n+ 1 = f4(n) for n ≥ 5.

Theorem 1.2. We have g4(5) = 5, g4(6) = 8, g4(7) = 13 and for n ≥ 8 g4(n) =(
n
2

)
− b 43nc.

In the following section we discuss fk(n) in the (easy) case k ≤ 3. Then give construc-

tions for f4(n) separating the cases n ≤ 7 and n ≥ 8 and thus providing lower bounds for

h(n). In Chapter 2 the structure of minimal bases of B(n,≤ 4) is investigated, namely

those with minimum deficiency with at least 2, and then (the upper bounds for) the

values of h(n) in the above table is proved in Chapter 3. In Chapter 4 the uniform case

(the case of g4) is considered, and in Chapter 5 we close with a few remarks on the case

k > 4.

1.1. The case B(n,≤ 3)

For k ≥ 1 every 2-base of B(n, k) must contain the ∅ and all singletons. This easily leads

to

f0(n) = 1, f1(n) = 1 + n, f2(n) = 1 + n.
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Suppose that F is a 2-base of B(n,≤ k), 1 < k ≤ n, such that |F| = fk(n) and
∑

F∈F |F |
is minimal. Such bases are called minimal. Then

(i) ∅ ∈ F , B(n, 1) ⊂ F ,

(ii) for every F ∈ F we have |F | ≤ k − 1.

Indeed, one only need to observe that in case of F ∈ F , |F | = k, x ∈ F one can replace

F by F ′ := F \ {x}, i.e., F \ {F} ∪ {F ′} is also a 2-base.

Construction 1.3. Consider a 2-partition V1 ∪ V2 of [n] with bn/2c ≤ |V1| ≤ |V2| ≤
dn/2e and let F be all the subsets of V1 and V2 of size at most 2. Every triple from [n]

meets a Vi in at least 2 elements so it also contains a 2-element member of F . Hence F
is a 2-base of B(n,≤ 3).

Claim 1.4. f3(n) = 1 + n+
(bn/2c

2

)
+
(dn/2e

2

)
.

Proof of Claim 1.4. Suppose that F is a minimal 2-base of B(n,≤ 3) satisfying the (i)

and (ii). Split it into subfamilies according to the sizes of its members, F = F0 ∪F1 ∪F2

where Fi := F∩B(n, i). Then F2 is a graph (i.e., a 2-graph) with the property that every

triple contains an edge, so its complement H2 is triangle-free. (H2 := B(n, 2) \F2.) Then

Turán’s theorem [7] implies that |H2| ≤ bn2/4c, hence

|F| = |F0|+ |F1|+ |F2| ≥ 1 + n+

(
n

2

)
− bn

2

4
c. �

1.2. Constructions for B(n,≤ 4) if n ≤ 7

Let F be a minimal 2-base of B(n,≤ 4) satisfying (i) and (ii). Let Fi := F ∩B(n, i), then

F = F0∪F1∪F2∪F3 where F0 = {∅}, F1 = B(n, 1). Use the notation H2 := B(n, 2)\F2.

Then

|F| = 1 + n+

(
n

2

)
− |H2|+ |F3| := 1 + n+

(
n

2

)
− h(n).

Since B(n,≤ 2) is a 2-base of B(n,≤ 4) we have h(n) ≥ 0.

Let us summarize the properties of F2 ∪ F3.

For every triple T ⊂ [n] either T contains a pair fromF2 (1.1)

orT ∈ F3 (1.2)

For every quadruple Q ⊂ [n] either Q contains a triple fromF3 (1.3)

orQ is a union of two edges fromF2. (1.4)

Construction 1.5. For n ≥ 4 let H2 be a Hamilton cycle, |F3| = 0.

It is easy to show that this family F2 satisfies (1.1) and (1.4) so (together with B(n,≤ 1))

it is a 2-base. This construction shows that h(n) ≥ n (for ≥ 4), and one can see that this

is the best possible for n = 4 and n = 5.

Claim 1.6. h(0) = h(1) = 0, h(2) = 1, h(3) = 2, h(4) = 4 and h(5) = 5.
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The proof of this (and the following two claims concering n = 6 and 7) is a short, finite

process. For completeness we sketch them in Section 3.

Construction 1.7. For n = 6 let F3 be two disjoint triples F1, F2 and let F2 be the

six pairs contained in either of F1 or F2.

Another construction of the same size can be obtained by considering a Hamilton cycle

F2 := {12, 23, 34, 45, 56, 16} with two triples F3 := {135, 246}.

Claim 1.8. h(6) = 7.

Construction 1.9. For n = 7 label the seven elements by two coordinates, V :=

{v(1, 1), v(1, 2), v(1, 3), v(2, 1), v(2, 2), v(3, 1)}. Let F2 be the ten pairs v(α, β)v(α′, β′)

with α 6= α′ and β 6= β′, and let F3 be formed by the three triples having a constant coor-

dinate i.e., {v(1, 1), v(1, 2), v(1, 3)}, {v(2, 1), v(2, 2), v(2, 3)} and {v(1, 1), v(2, 1), v(3, 1)}.
(This is a truncated version of Construction 1.13 for n = 9.)

Claim 1.10. h(7) = 8.

Construction 1.11. Let n1, n2 be nonnegative integers, V 1 ∪ V 2 a partition of [n]

with |V i| = ni, F i a minimal 2-base on Vi. Define F as F1 ∪ F2 together with all pairs

joining V 1 and V 2.

It is easy to see that this construction satisfies (1.1)–(1.4), it is a 2-base. Indeed, it is

sufficient to check a triple T and a quadruple Q meeting both V1 and V2. Then T contains

a pair joining V 1 and V 2 thus it satisfies (1.1). If |Q ∩ V 1| = |Q ∩ V 2| = 2, then it is a

union of two crossing pairs. Finally, if Q = {a, b, c, d} and Q ∩ V 1 = {a, b, c}, then since

F1 is a 2-base, Q∩V 1 satisfies either (1.1) or (1.2). In the first case Q∩V 1 it contains a

pair, say ab from F1, then {a, b}∪{c, d} is a partition of Q satisfying (1.4). In the second

case Q ∩ V 1 ∈ F1, so Q satisfies (1.3). We obtained:

Claim 1.12. For n1, n2 nonnegative integers h(n1 + n2) ≥ h(n1) + h(n2). �

1.3. Constructions for n ≥ 8

Construction 1.13. Suppose that F3 is a triple system on [n] of girth at least 4,

i.e., |F ′ ∩ F ′′| ≤ 1 for F ′, F ′′ ∈ F3 and F1, F2, F3 ∈ F3 and F1 ∩ F2 6= ∅, F1 ∩ F3 6= ∅,
F2 ∩ F3 6= ∅ imply F1 ∩ F2 ∩ F3 6= ∅. Suppose further that every degree of F3 is at

most two, i.e., every singleton is contained in at most two triples. Define H2 as the pairs

covered by the members of F3.

This construction (together with B(n,≤ 1)) form a 2-base. Indeed, if a triple T ⊂ [n]

contains no edge from F2, then it belongs to F3, so either (1.1) or (1.2) holds. More-

over, if Q = {a, b, c, d} ⊂ [n] is a quadruple and contains no triple from F3, then the

induced graph H2|Q contains no triangle. So F2|Q contains two disjoint edges (and thus



2-bases of quadruples 5

fulfills (1.4)) unless H2|Q has a vertex of degree 3, say, ab, ac, ad ∈ H2. Since the degree

of F3 at the vertex a is at most two and the edges of H2 are obtained from the triples

of F3 we get that there exists a triple T ∈ F3 with a ∈ T ⊂ Q. We obtained that

Construction 1.13 indeed defines a 2-base.

For n = 3k, k ≥ 3 we obtain h(3k) ≥ 4k as follows. Let [n] = {a1, a2, . . . , ak} ∪
{b1, b2, . . . , bk}∪{c1, c2, . . . , ck}. Define F3 as all triples of the form aibici and aibi+1ci+2

(indices are taken modulo k). This satisfies the constraint of Construction 1.13. Since

|H2| = 3|F3|, we get h(n) ≥ 2|F3| = 4k.

If we leave out from the above construction the 2 triples of F3 and the 4 pairs of H2

containing the element 3k we obtain that h(3k − 1) ≥ 4k − 2. Thus we already have the

cases n = 3k and n = 3k − 1 in the following

Claim 1.14. h(n) ≥ b 43nc for n ≥ 8.

Proof. We only need a construction for n = 3k+ 1, k ≥ 3 to show h(3k+1) ≥ 4k+ 1. It

is enough to show h(10) ≥ 13, h(13) ≥ 17 and h(16) ≥ 21, then the general case follows

from h(9) ≥ 12 using Claim 1.12.

Define the six triples of F3 as {1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {1, 4, 7}, {2, 5, 8} and {3, 6, 10}
and H2 as the 18 pairs covered by these triples and {9, 10}. The graph H2 has only these

6 triangles, so (1.1)-(1.2) hold, and it is not difficult to check the four-tuples, too.

The other cases are similar: for n = 13 we can define F3 := {1, 2, 3}, {4, 5, 6}, {7, 8, 9},
{10, 11, 12} and {1, 4, 10}, {2, 5, 7}, {6, 8, 11}, {3, 9, 13} and H2 consists of these triangles

and the pair {12, 13}.
Finally, for n = 16 we define F3 as {1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}, {13, 14, 15}

and {1, 4, 13}, {2, 5, 7}, {6, 8, 10}, {9, 11, 14}, and {3, 12, 16}. Again H2 consists of the

triangles obtained from F3 and the edge {15, 16}. �

2. Bases with deficiency at least 2

The aim of this paper is to prove Theorem 1.1 so suppose that F is a minimal 2-base of

B(n,≤ 4) and that F2 ∪ F3 satisfies (1.1)-(1.4).

Lemma 2.1. If abc ∈ F3, then either {ab, bc, ca} ⊂ F2 or {ab, bc, ca} ⊂ H2.

Proof. Suppose, on the contrary, that ab ∈ F2, ac /∈ F2. Replace abc by ac in F . Since∑
F∈F |F | is minimal the family F ′ := F \ {abc} ∪ {ac} is not a 2-base. What can

go wrong? Since we added a new pair, conditions (1.1) and (1.2) still hold. The only

condition we can violate is (1.3)-(1.4). We removed abc, so there exists an Q = abcd not

a union of two members of F ′. So abcd does not contain any triple from F ′ and also bd,

cd /∈ F ′. Consider bcd. We have bcd /∈ F so (1.1) implies that bc ∈ F2. Consider acd.

Since ac, cd, and acd /∈ F again (1.1) implies that ad ∈ F2. However, then Q = ad ∪ bc,
a contradiction. �
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Use the notation deg−2 (x) for the degree of the vertex x in the graph H2 and deg3(x)

for the degree of x in F3. The difference deg−2 (x) − deg3(x) is called the deficiency of

the vertex x ∈ V . ¿From now on in this Section we suppose that

deg−2 (x)− deg3(x) ≥ 2 for every x ∈ [n]. (2.1)

Let N(x) denote the neighborhood of x in H2, N(x) := {y : xy ∈ H2}, deg−2 (x) = |N(x)|.
Let T (x) denote the set of triples T from F3 with x ∈ T ⊂ N(x) ∪ {x}, and let t(x) :=

|T (x)|. Suppose that D = maxx∈[n] deg−2 (x), and a has maximum degree in H2. Consider

A = {a} ∪N(a), |A| = D + 1, let t := t(a). Then (2.1) implies t, t(x) ≤ D − 2.

2.1. Eliminating the case D ≥ 5

Claim 2.2. (2.1) implies that D ≤ 4.

Proof. Consider the
(
D
3

)
four-tuples of A containing x, let B := {Q : a ∈ Q ⊂ A,

|Q| = 4}. Note that none of these can satisfy (1.4) so each of them contains a member

of F3. Classify them into two groups as follows:

B1 := {abcd : b, c, d ∈ A and there exits a T ∈ F3 with a ∈ T ⊂ {a, b, c, d}},
B2 := {abcd : abcd ⊂ A, abc, abd, acd /∈ F3}.

Each Q ∈ B2 contains a member of F3|N(a), hence

|B2| ≤ |F3|N(a)|.

Each member of T (a) is contained in D − 2 four-tuples from B1, hence

|B1| ≤ t(D − 2). (2.2)

Here the sum of the left hand sides is
(
D
3

)
. The sum of right hand sides can be estimated

by the degrees of F3 on A. Using deg3(x) ≤ D − 2 we obtain(
D

3

)
= |B1|+ |B2| ≤ t(D − 2) + |F3|N(a)| = t(D − 3) + |F3|A|

≤ t(D − 3) +
1

3

∑
x∈A

deg3(x) ≤ t(D − 3) +
1

3
(t+D(D − 2)). (2.3)

Hence
1

6
D(D − 2)(D − 3) ≤ t3D − 8

3
. (2.4)

Since t ≤ D − 2 we get D ≤ 6. In case of t ≤ D − 3 (2.4) implies D ≤ 4. So two cases

left in the proof of the Claim, namely (D, t) = (6, 4) and (5, 3).

In case of D = 6, t = 4 the right hand side of (2.2) can be improved by 2, since there

are at least 2 coincidences when we estimated the cardinality of B1. So |B1| ≤ 14, and we

can decrease the right hand sides of (2.3) and (2.4) by 2, and that leads to a contradiction

12 ≤ 4× 10
3 − 2.

In case of D = 5, t = 3 we use two things. The first one is implied by Lemma 2.1 and

(1.1):

(C1) If abc ∈ T (a) then bc ∈ H2; if abc /∈ T (a) and b, c ∈ N(a) then bc ∈ F2. Thus

F2|N(a) has exactly
(
D
2

)
− t edges.
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(C2) If deg3(x) ≥ 3, then t(x) = 3. Indeed, (2.1) implies deg−2 (x) ≥ deg3(x) + 2 ≥ 5.

Consequently deg−2 (x) = 5 = D, x has maximum degree, D, and then the previous

considerations for a are valid for x, too, i.e., (2.4) implies that t(x) = 3 is the only

possibility.

Now we are ready to show that, in fact, (D, t) = (5, 3) is impossible. Suppose, on the

contrary, that there is such a construction and let N(a) = {b, c, d, e, f}. Consider the

3-edge graph G := {xy : axy ∈ F3}. There are 4 non-isomorphic possibilities for G.

(α) G is a triangle, {bc, cd, bd},
(β) G is a path of length 3, {bc, cd, de},
(γ) G is a star, {bc, bd, be},
(δ) G has 2 components, {bc, cd, ef}.

In each case we will find one or more x ∈ N(a) with t(x) = 3. Then the triples containing

x cover no pair from F2 and this will lead to a contradiction.

In case of (α) by (1.3) we have bef, cef, def ∈ F3. Hence deg3(f) ≥ 3. Then (C2)

implies that t(f) = 3 and then Lemma 2.1 gives that {b, c, d, e} ⊂ N(f), ef /∈ F2.

However, ef ∈ FF2 by (C1), a contradiction.

The other cases can be handled in the same way. In case of (β) we have bdf, bef, cef ∈
F3, hence deg3(f) ≥ 3. Then t(f) = 3 and {b, c, d, e} ⊂ N(f), ef /∈ F2. In case of (γ)

we have cdf, cef, def ∈ F3, hence deg3(f) ≥ 3. Then t(f) = 3 and {c, d, e} ⊂ N(f),

ef /∈ F2. In case of (δ) we have bde, bdf ∈ F3, hence deg3(b) ≥ 3. Then t(b) = 3 and

{c, d, e, f} ⊂ N(b), bf /∈ F2. This final contradiction completes the proof of the case

(D, t) = (5, 3) and Claim 2.2. �

2.2. The case D ≤ 4

¿From now on in this Chapter we suppose that D ≤ 4.

Claim 2.3. (2.1) and deg−2 (a) = 4 imply that t(a) = deg3(a) = 2 and the two triples

containing the element a meet only in a, e.g., N(a) = bcde and T (a) = {abc, ade}.

Proof. Suppose, first, that t(a) = 0. Then all the four triples of the form xyz, x, y, z ∈
N(a) belong to F3. Hence deg3(b) ≥ 3, contradicting D ≥ deg2(x) ≥ 2 + deg3(x). If

t(a) = 1, say abc ∈ T (a), then bde, cde ∈ F3 is implied by (1.3). Hence deg3(e) ≥ 2, so

deg−2 (e) = 4. Since (1.1) implies that be, ce, de ∈ F2 we get that N(e) ∩ {b, c, d} = ∅, so

t(e) = 0. However, we have seen that deg−2 (e) = D = 4 implies t(e) > 0.

So we get t(a) ≥ 2, i.e., by t(x) ≤ D−2 we have t(a) = 2. The only case left to exclude

is when the triples in T (a) meet in two elements, say T (a) = {abc, acd}. Then bde ∈ F3,

so deg3(b) ≥ 2. Hence we get deg−2 (b) = 4, this implies t(b) = 2 and {c, d, e} ⊂ N(b). We

get ab, ae, be ∈ H2, abe /∈ F3, contradicting (1.1). �

Claim 2.4. (2.1) and deg−2 (x) = 3 imply that deg3(x) = 1.

Proof. Suppose, on the contrary, that deg3(x) = 0. Consider N(x) = abc, we have

ab, bc, ca ∈ F2 by (1.1) and abc ∈ F3 by (1.3). Then ab ∈ F2 implies that abc /∈ T (a)
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Therefore t(a) cannot be D−2 = 2. So Claim 2.3 gives that deg−2 (a) 6= 4. Since deg3(a) ≥
1 we get that deg−2 (a) = 3. Consider N(a) = xyz. Note that y, z /∈ {x, a, b, c}. Then

xyz ∈ F3 by (1.3). This contradicts deg3(x) = 0, so we have deg3(x) ≥ 1. On the other

hand, (2.1) implies deg3(x) ≤ 1. �

Claim 2.5. (2.1) implies that h(F) ≤ 4
3n.

Proof. For x ∈ [n] define ϕ(x) := 1
2 deg−2 (x) − 1

3 deg3(x). We are going to prove that

ϕ(x) ≤ 4/3 for every x. This implies the Claim as follows

h(F) = |H2| − |F3| =
∑
x∈[n]

ϕ(x) ≤ 4

3
n. (2.5)

Using the previous three Claims one can split [n] into three parts, [n] = P ∪ Q ∪ R,

where P := {x : deg−2 (x) = 4, deg3(x) = 2}, Q := {x : deg−2 (x) = 3, deg3(x) = 1}, and

R := {x : deg−2 (x) = 2, deg3(x) = 0}. For each cases we have ϕ ≤ 4/3. �

Note that h(F) = 4
3n in Claim 2.5 is only possible for Construction 1.13, especially

P = [n] and Q = R = ∅. (2.6)

3. Proof of the main result

Let F be a minimal 2-base for B(n,≤ 4). Then

1 + n+

(
n

2

)
− h(n) = |F| = |F|([n] \ {x})|+ 1 + (n− 1− deg−2 (x)) + deg3(x)

≥ 1 + n+

(
n

2

)
− h(n− 1)− (deg−2 (x)− deg3(x)) (3.1)

gives that the deficiency of every vertex is at least h(n)− h(n− 1).

Proof of Theorem 1.1. We use induction on n to show that h(n) ≤ 4
3n. This

is certainly true for n ≤ 2. Suppose that h(n − 1) ≤ 4
3 (n − 1) and consider h(n). If

h(n) ≤ h(n− 1) + 1, then we are done. If h(n) ≥ h(n− 1) + 2, then, as we have seen in

(3.1) there exists a minimal 2-base F on [n] with deficiency at least 2. Then Claim 2.5

gives h(n) = h(F) ≤ 4
3n. �

Proofs of Claims 1.6, 1.8 and 1.10. The case n ≤ 4 is trivial. Suppose that 5 ≤ n ≤ 7

and let F be a minimal 2-base on n vertices.

The case n = 5 is easy. h(F) ≥ 6 implies |F2| + |F3| ≤ 4. If |F2| = 4, then there

is a unique way to satisfy (1.1) (namely, F2 is a union of an edge and a triangle) and

then (1.4) is violated. If |F2| = 3, then there are at least 2 triples not containing any

member of F2, so (1.2) gives |F3| ≥ 2. If |F2| ≤ 2, then they satisfy (1.1) with at most

3|F2| triples. Hence, (1.2) gives |F3| ≥ 10 − 3|F2|. Then |F2| + |F3| exceeds 4, a final

contradiction.

If the minimum deficiency of F is (at most) 1 then (3.1) gives h(n) ≤ h(n− 1) + 1 and

we are done. ¿From now on suppose that the deficiency of F is at least 2, i.e. (2.1) holds.
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For n = 6 Claim 2.5 gives that h(F) ≤ 4
3 × 6 = 8. By (2.6) h(F) = 8 is only possible,

if P = [n], i.e., H2 is a 4-regular graph, and F3 consists of four triples. Then F2 is a

matching, say, F2 = {a1a2, b1b2, c1c2}. Then (1.2) implies that all the eight triples of the

form aibjck should belong to F3, a contradiction. We have obtained h(F) = h(6) ≤ 7.

For n = 7 Theorem 1.1 implies h(F) ≤ b7× 4
3c = 9. We claim that h(7) = 8. Suppose,

on the contrary, that h(F) = 9. Consider the partition of [n] = P ∪ Q ∪ R defined in

the proof of Claim 2.5. For R 6= ∅ (2.5) gives |R| = 1, |P | = 6, Q = ∅. Then H2|P is a

4-regular graph, not joined to R so deg−2 (R) = 2 is impossible. Finally, if R = ∅, |Q| = 2

and |P | = 5 then we get |F3| = 4. The four members of F3 can pairwise meet in at most

1 vertex (by Claims 2.3 and 2.4) and have girth 4. But such an F3 does not exist on 7

vertices.

So we have obtained the exact value of h(n) for every n. �

4. 2-bases for quadruples

Here we prove Theorem 1.2. Suppose that F is an extremal 2-base for B(n, 4), i.e.,

|F| = g4(n), such that |F1| + |F4| is minimal. The case n = 5 is a short finite process,

|F| ≤ 4 leads to a contradiction. So the pentagon gives g4(5) = 5.

In the case n = 6 the 6 pairs of a hexagon and the 2 disjoint triples of second example

in Construction 1.7 shows g4(6) ≤ 8. Consider a minimal 2-base F . If degF (x) ≥ 3, then

|F| = degF (x) + |F|([n] \ {x})| ≥ degF (x) + g4(n− 1) (4.1)

implies |F| ≥ 3 + 5 and we are done. Moreover, it is easy to check that a hypergraph of

7 edges on 6 elements with maximum degree 2 cannot be a 2-base, so g4(6) ≥ 8. ¿From

now on we may suppose that n ≥ 7.

The upper bounds for g4(n) follows by leaving out the singletons and the empty set

from Constructions 1.9 and 1.13 in Chapter 1. To prove a lower bound we proceed like

in Chapter 2. The main idea of the proof is that first we investigate the minimal 2-bases

with a maximum degree condition

degF (x) ≤ n− 3 (4.2)

for all x ∈ [n].

We claim that (4.2) implies that F4 = ∅. Indeed, suppose, on the contrary, that Q ∈ F4.

If Q contains any proper subset F ∈ F , x ∈ F ⊂ Q, Q 6= F , then one can replace Q by

Q \ {x} to obtain another 2-base with smaller |F1|+ |F4|. So we may suppose that such

a proper subset does not exist. Consider Q \ {x} ∪ {y} for some x ∈ Q, y ∈ [n] \Q. This

is a union of (at most) two sets A,B ∈ F . Both of them contain y. We obtain that the

sets {F : y ∈ F ⊂ Q ∪ {y, |F | > 1} cover Q, and some vertex of Q is covered at least

twice. Hence there exists an x ∈ Q covered by these sets more than n− 4 times while y

runs trough [n] \Q. Take Q itself, too, we get that degF (x) > n− 3 contradicting (4.2).

Use that notations of the previous section, like D := max deg−2 (x) and deg−2 (a) = D,

etc. We claim that (4.2) implies that

D ≤ 4.
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In the proof of this one cannot use Lemma 2.1 neither (1.1) nor (1.2), however (2.2)–(2.4)

still hold, implying D ≤ 6. Furthermore, ab, ac, ad /∈ F2, and abc, abd, acd /∈ F3 imply

not only bcd ∈ F3 but a ∈ F1. Thus in the case B2 6= ∅ (e.g., for D > 4) one gets a ∈ F1.

Then (4.2) gives t(a) ≤ deg−2 (a)− 3 = D − 3. So (2.4) gives D ≤ 4.

Using the same idea one can see that Claim 2.3 remains true. The following analog of

Claim 2.4 is obviously true: deg−2 (x) = 3 implies deg1(x) + deg3(x) = 1.

Like in Claim 2.5 we show that (4.2) implies

|F| ≥
(
n

2

)
− 4

3
n. (4.3)

Indeed, for x ∈ [n] define ϕ(x) := 1
2 deg−2 (x) − 1

3 deg3(x) − deg1(x). As before we have

that (4.2) implies that ϕ(x) ≤ 4/3 for every x, completing the proof of (4.3) for this case.

Finally, for hypergraphs with maximum degree at least n− 2 one can use induction on

n. The inequality(4.1) implies that (4.3) always holds.

The case n = 7 can be finished like in the proof of Claim 2.5 considering a partition

of [n] into three parts, [n] = P ∪ Q ∪ R, where now Q := {x : deg−2 (x) = 3, deg1(x) +

deg3(x) = 1}. The details are omitted. �

5. More hypergraphs

Let T (n, k, r) denote the minimum size of a hypergraph F ⊆ B(n, r) such that every

k-subset of [n] contains a member of F . The determination of T (n, k, r) is proposed by

Turán [8] who solved the case r = 2 (the case of graphs, see [7]) and has a longstanding

conjecture T (n, 4, 3) = (4
9 + o(1))

(
n
3

)
. For a survey on this see Sidorenko [6].

One can prove for every odd integer k that our fk(n) equals to (1 + o(1))T (n, k, (k +

1)/2), but the even case is more involved and apparently leads to a new Turán type

problem. The authors intend to return to this topic in a future work.
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