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Abstract

Demetrovics et al [Design type problems motivated by database theory, J. Statist. Plann. Inference
72(1998) 149-164] constructed a decomposition of the family of all k-element subsets of an n-element
set into disjoint pairs (A, B)(A N B =@, |A| = | B| = k) where two such pairs are relatively far from
each other in some sense. The paper invented a proof method using a Hamiltonian-type theorem.
The present paper gives a generalization of this tool, hopefully extending the power of the method.
Problems where the method could be also used are shown. Moreover, open problems are listed which
are related to the Hamiltonian theory. In these problems a cyclic permutation is to be found when
certain restrictions are given by a family of k-element subsets.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

(f) denotes the family of all k-element subsets of X. Let [n] = {1,2,...,n}. The

following problem was raised in [2]. Can we decompose ('2') into (unordered) disjoint

pairs (with one exception if ('k’) is odd) in such a way that these pairs are not too close to
each other in a certain sense? The answer was given in the following way.
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Theorem 1.1. Suppose that 1 <k is an integer and n is greater than some n(k). Then there
are L% (Z)J unordered pairs (A;, B;) of disjoint k-element subsets (A; N B; =0, |A;| =
| Bi| = k) of [n] such that
: k
min|A; N Azl 1B N B} < 5. (1.1)

which implies

min{|A; N B;|, |Bi N A;|}<

N =

(1.2)
by the unorderedness.

The proof of this theorem in [2] is the starting point of the present paper. Let us show the
main idea of this proof.

Sketch of the proof. Define two graphs Go=(V, Ep) and G1=(V, E1) on the same vertex
setV = <[Z] ) . Two k-element subsets are adjacent in Gy if their intersection is empty, while

they are adjacent in G if they intersect in at least [(k + 1)/2] elements. Let us formulate
the statement of the theorem in terms of these graphs. A pair of disjoint subsets is an edge
in Go. Therefore we want to find a matching in G containing all vertices with one possible
exception. Conditions (1.1) and (1.2) can be expressed by G in the following way: two
edges of the matching do not form a cycle with two edges of G 1. Such a cycle will be called
an alternating four-cycle.

We will show the existence of a Hamiltonian cycle (cycle containing every vertex of the
graph exactly once) in G with the same property. Choosing every second edge in this cycle
gives us the desired matching. If we forget about the conditions (1.1) and (1.2) (i.e., the
exclusion of an alternating four-cycle) then it is easy to construct a Hamiltonian cycle in
G using the following theorem of Dirac [3].

Theorem 1.2. If G is a simple graph on N vertices and every degree in G is at least N /2,
then G has a Hamiltonian cycle.

In our case N = (Z ), while the degree of the regular Gy is ("zk). The condition of the
Dirac theorem holds for large n.

However, if we want to find a Hamiltonian cycle in which no two edges form an alternating
four-cycle with the edges of the other graph then we need a Hamiltonian theorem for two
graphs, proved in [2].

Theorem 1.3. Let Go = (V, Eo) and G1 = (V, E1) be simple graphs on the same vertex
set |V| = N, such that Eoy N\ E1 = 0. Let r be the minimum degree of Go and let s be the
maximum degree of G1. Suppose, that

2 -8t —5—1%N (1.3)




holds, then there is a Hamiltonian cycle in G such that if (a, b) and (c, d) are two vertex-
disjoint edges of the cycle, then they do not form an alternating cycle with two edges
OfGl .

Here the graph G is also regular, its degree is s = Zr(k+l)/2] e (/;) (Z:I;) It is easy
to see that the largest exponent of n in this expression is | (k — 1) /2], therefore the exponent
of nins?is 2| (k — 1)/2] < k. Hence (1.3) holds for large n. [

Theorem 1.1 was sharpened in [4]. The proof was a modification of the proof sketched
above. In Section 2 we extend the method proving a much more general Hamiltonian theorem
than Theorem 1.3. It implies the result of [4], but many more applications are expected. The
limits of the method are also illustrated.

Section 3 is of survey type. It is a mixture of related open problems, known results and
easy remarks. Its main goal is to bridge the gap between the results like Theorem 1.3 and
other known results, at least in a form of open questions. We also try to show what are the
most natural conditions under which the existence of Hamiltonian cycles can be investigated
and what are the most applicable conditions.

Theorem 1.1 has two motivations. One of them is coming from database theory (see
[2]), where the construction of certain matrices was needed. Theorem 1.1 is actually this
construction in another form. The other motivation comes from the following celebrated
theorem of Baranyai [1].

Theorem 1.4 (Baranyai [1]). If k divides n then there is a set of partitions of [n] into k-

element classes such that each element of ( 'Z]) is contained in exactly one such partition.

This theorem has many applications. Observe, however, that the theorem imposes no
condition on the relationship between two partitions. If something would be known how
the classes of two distinct partitions pairwise intersect, it would enhance the applicability of
the theorem. However it seems to be hopeless to obtain such a stronger Baranyai theorem.
Theorem 1.1 can be considered as a very modest step toward this direction. We consider
pairs of disjoint k-element subsets rather than partitions into k-element classes. We divide

(“,j') into the union of such pairs. Here we are able to prescribe some conditions on the
intersections.

Section 4 is dealing with conjectures related to Baranyai’s theorem. The results of this
section are very modest: we pose a new, closely related conjecture and partially prove it,
using another old conjecture concerning the existence of the rth power of a Hamiltonian
cycle in a graph, that is the existence of a cyclic permutation x1, . .., x, of the vertices such
that {x;, x;} is an edge of the graph for each pair satisfying |i — j|<ror|i — j|>n —r.
The method is a novel application of the method illustrated above.

2. A new Hamiltonian type theorem

In the following theorem 2k +1 (1 <k) simple graphs will be given on the same vertex set
ViG=(V,E),Hi=(V,L;), Ji=(V, M;)(1<i<k). Suppose that E is disjoint to all other




edge sets. Let |V| = N, denote the minimum degree in G by r and the maximum degrees in
H; (J;) by I; (m;). We say that the edges {x, y}, {y, 2}, {z, u}, {u, x} form an alternating
four-cycle if {x, y}, {z,u} € E and {y, z} € L;, {u, x} € M; hold for some i (1<i<k).A
pair of distinct edges of G are called acceptable (with respect to Hy, ..., Hg, Jy ..., Ji) if
one cannot find two edges in L; and M;, resp., for some i (1<i<k) such that these four
edges form an alternating four-cycle. A set of edges of G is said to be acceptable (with
respect to Hy, ..., Hy, J1 ..., Ji) if any pair of its vertex-disjoint distinct elements are
acceptable.

Theorem 2.1. If

k

k
N<2r—821,-m,-—z:(l,-+m,~) 2.1
i=1

i=1

holds for the degrees of the graphs above, then there is an acceptable Hamiltonian cycle
inG.

The proof follows the proof of Theorem 3.17 in [2]. We start with a lemma.

Lemma 2.2. Suppose that there is an acceptable Hamiltonian path P in G from o € V
to B € V in G and that (2.1) holds. Then one can find vertices y and 6 neighboring, and
located in this order along P which satisfy the following conditions: (i) {a, 6}, {B, 7} € E,
(ii) the set of three edges {«, 0}, {B, y}, e € P — {y, 8} is acceptable for any choice of e.
(a =7y and B = 0 are allowed.) Therefore adding {o, 6} and {B, y}, and deleting {y, 0} from
P results in an acceptable Hamiltonian cycle.

Proof. Left (right) neighbor means the neighbor towards a (ff) along P, respectively.
Let us first give a lower estimate on the number of pairs (y, 6) satisfying only (i) at
the moment. There are at least r vertices d (among the N — 1 candidates) such that
{a,0} € E. f has also at least r neighbors in G. Therefore there are at least r ver-
tices whose right neighbor can be ¢ satisfying (i). Hence at least 2r — N + 1 vertices
o0 satisfy both conditions: they are joined with o and their left neighbor is joined by
pin G.

In what follows, we will subtract the number of cases, when the pair (y, d) does not satisfy
(ii). This can happen in three different ways.

The pair of edges {«, J}, {f, y} is not acceptable. Since {y, 6} is not an edge of H; or
Ji (1<i<k),this case implies that {3, 6} belongs to L; UM; for some (1 <i < k). Therefore,
the number of such &’s can be upperbounded by Z{'(:l ;i +m;).

The pair {o, 6} and some {x, y} = e € P is not acceptable. Suppose that the edges
{a, xHx, y}, {y, 0}, {9, «} form an alternating cycle and {a, x} € L; holds. Then {y, é} €
M; must also hold. There are at most /; such choices for x, two choices for y (since it is a
neighbor of x in P) and m; choices for ¢. Therefore, there are at most 21;m; paths (o, x, y, 0)
making an alternating cycle in this way. Since {«, x} can also lie in M; and then {y, 0} € L;
should hold, the total number of these cases is at most 4 Zf-;l lim;.



The same upper bound is valid for the number of cases when the pair {f, Z}, e € P isnot
acceptable. Therefore, there is an appropriate pair y, d if 2r = N +1—>";_, (l; + m;) —
8 Zle lym; is positive, proving the lemma. [J

Proof of Theorem 2.1. If Uf.":] L LJU{-‘:l M; =0, then the application of Dirac’s theorem
ensures the existence of a Hamiltonian cycle. The proof will use an indirect way. Suppose that
this set of edges is not empty and G does not contain an acceptable Hamiltonian cycle. Delete
edges from Uf-‘zl L;U Uf-‘:, M until such a Hamiltonian cycle appears. Without loss of gen-
erality it can be supposed that the last deleted edge {u, v} is in L;. That is, there is no accept-
able Hamiltonian cycle with respectto L = L U{{u, v}} € L1, LC L Csisk), M c
M; (1<i<k), but there is one with respect to L} (1 <i <k), M| (1<i<k). This cycle C
must contain two edges of G which form an alternating four-cycle F with {u, v} and an edge
from M. (There can be more such F’s!)

The vertices u and v are not neighbors in C, since ENL;=0@. The edgesin FNE=FNC
and {u, v} must have common vertices. Let the neighbors of v in C be w and z. Then either
{v,w} e FNC or{v, z} € FNC musthold. Thus the path P; obtained from C by deletion
of the two edges at v is acceptable with respect to H{', Hy, ..., H;, J{ ..., J].

Lemma 2.2 will be applied twice. In these steps “acceptable” will mean acceptable
with respect to H{', Hy, ..., H;, J{ ..., J,. First apply Lemma 2.2 for the path P, = C —
{v, w}. The obtained new cycle C; can be non-acceptable only because of {v, z}, since
Py is acceptable. Apply Lemma 2.2 now for the path P3 = C| — {v, z}. The resulting
cycle is acceptable with respect to H{, H}, ..., H;, J{ ..., Ji» in contradiction with our
assumption. [

Enomoto and Katona [4] contains the following sharpening of Theorem 1.1.

Theorem 2.3. Suppose that 1<k is an integer and n>n(k). Then there are |3 (})]

unordered pairs (A;, B;) of disjoint k-element subsets (A; N B; =0, |A;| = |Bi| =k) of [n]
such that
|A; NAj|+|B; N Bj|<k, 2.2)
which implies
|[Ai N Bj|+|B;NA;|I<k (2.3)
by the unorderedness.
The proof used a theorem analogous to Theorem 1.3, but it was developed specially for

this purpose, its applicability was very limited. Here we sketch how to prove Theorem 2.3
by our new Theorem 2.1

Sketch of the proof of Theorem 2.3. As before, let V = ([Z]) and say two vertices are
adjacent in G if they are disjoint subsets of X. Two vertices are adjacent in H; if the
intersection of the subsets has size i (2<i <k—1), they are adjacent in J; if the intersection
is of size at least k — i + 1 (2<i <k). Then the order of magnitude of /; is n¥~* while the




order of magnitude of m; is n'~!. Their product is asymptotically constant times n*~!.
Therefore (2.1) holds, Theorem 2.1 can be applied. [

Of course, the present proof of Theorem 2.3 is neither shorter nor easier than the original
proof in [4], since it is based on Theorem 2.1 which is a generalization of the theorem
used in the original proof. We have shown the present proof to illustrate the usage of our
Theorem 2.1. Let us explain the main difference between Theorems 1.3 and 2.1. In both
theorems the existence of a Hamiltonian cycle in the graph G (G in Theorem 1.3) is ensured
when certain pairs of edges are not allowed to be simultaneously in the cycle. These pairs
are defined by another graph (G1) in Theorem 1.3 and by a sequence of other graphs in
Theorem 2.1. Translating this into the terms of applications, Theorem 1.3 can be used when
the there is one forbidden situation for the pairs of disjoint pairs of k-element subsets while
Theorem 2.1 can be used when there are more forbidden situations. Namely, in Theorem 1.1
it is excluded that both parts of the two pairs have an intersection of size more than k/2.
On the other hand, in Theorem 2.3 more cases are excluded: if the intersection of the “first
parts” has O elements then the intersection of the “second parts” cannot be larger than %,
if the intersection of the “first parts” has one element then the intersection of the “second
parts” cannot be larger than k — 1, if the intersection of the “first parts™ has 2 elements then
the intersection of the “second parts” cannot be larger than k — 2, and so on....Observe that
Theorem 2.1 can also be applied in cases when other pairs of conditions are imposed on the
sizes of the intersections of the “first parts™ and the “second parts”.

In the present paper the Hamiltonian-type theorems are applied only for subsets of an un-
derlying set. However they could be applied for other combinatorial structures, as well. One
could, for instance, obtain theorems analogous to Theorems 2.3 for pairs of k-dimensional
subspaces of a finite affine geometry.

3. Cyéles with edges of forbidden compositions

One further step in the generalization is the following model. Given a graph G = (V, E)
and a family & C (Z) Find a Hamiltonian cycle in G such that no two edges of the cycle
form a four-element set in % . In Theorem 2.1 the members of & are defined as disjoint
unions of edges of H; and J; (one from each, with fixed i). In the present section we will
consider the generalization of this model, when a family Z of k-element subsets is given and
a Hamiltonian cycle is sought under some conditions determined by & . First we generalize
our previous result for these terms. Then we show some known results in this area and pose
some open problems which lie inbetween.

The previous results suggest that the existence of a Hamiltonian cycle can be ensured by
bounds on the degrees. This is why we define here the degree of D C V in the family &#
by d(D, #)=|{F € &% : D C F}|. The maximum t-degree d;(¥) of & is the maximum
of d(D, #) for all t-element subsets D C V. Here do(F) = |F|. If F C (‘,:) then the
inequality

I+

N — 1
dj_1(F) ———d)(F l1<l<k 3.1
-1 )\k—l+1l() (<l<k) 3.1




is obvious. This implies that restrictions for d; imply restrictions on smaller values s < ¢.
(Like in the case of simple graphs, an upper bound on the degree gives an upper bound on
the number of edges.)

However, if we analyze the proofs of Lemma 2.2 and Theorem 2.1, it turns out that not
the degrees above, but another notion plays an important role. Let P = (v, ..., vy) be a
permutation of the elements of V and define

d(vi, P,F)=|{F € Z :v; € F, F contains two neighboring elements of P}|.
The linear 1-degree of v in

di(v, F) = mle}x dw, P, 7),

where the maximum is taken for all permutations P with v = v. Finally the maximum linear
1-degree of Z is

di(#F) =max d|(v, F).
v

The maximum linear 2-degree d,(F) is defined analogously.

d({vi, vy}, P, F)=
{F € & : v, vy € F, F contains two other neighboring elements of P}|,

dy(D, F) = max d(D, P, 7),

where D = {v1, vy} is a two-element set and the maximum is taken for all permutations
P = (v1,...,vn). The maximum linear 2-degree is

dr(F) = max dx(D, 7),

where the maximum runs for all two-element sets D C V.
Checking the proofs of Lemma 2.2 and Theorem 2.1 one can see that the following
statement is true.

Theorem 3.1. Let G = (V, E) be a simple graph on |V| = N vertices F C (Z) and

suppose that the following inequality holds:
N <2r —dy(F) — 4d|(F), 3.2)
where r is the minimum degree of G. Then there is a Hamiltonian cycle in G such that no

disjoint union of two edges of the cycle are in F .

The proof is based on the following lemma, which is a generalization of Lemma 2.2. A
set of edges of G is called acceptable if the union of no two edges is a member of ..

Lemma 3.2. Suppose that there is an acceptable Hamiltonian path P in G from oo € V
to f € V in G and that (3.2) holds. Then one can find vertices y and 6 neighboring, and
located in this order along P which satisfy the following conditions: (i) {a, 0}, {f, 7} € E,




(ii) the set of three edges {a, 0}, {B, y},e € P — {y, 8} is acceptable for any choice of e.
(o =7y and B = 0 are allowed.) Therefore adding {«, 6} and {f, 7}, and deleting {7y, 6} from
P results in an acceptable Hamiltonian cycle.

Proof. There are at least 2r — N + 1 neighboring pairs {y, 6} satisfying (i). The proof of
this statement can be transferred from the proof of Lemma 2.2 without any change.

In what follows, we will subtract the number of cases, when the pair (y, ) does not satisfy
(ii). This can happen in three different ways.

The pair of edges {a, J}, {f, y} is not acceptable, i.e., {a, B, 7, 6} € Z holds. The number
of such members of # cannot be more than d»(%), by the definition of this parameter.
Therefore the number of such pairs {y, 6} can be upperbounded by d»(%).

The pair {o, 6} and some {x, y} = e € P is not acceptable, i.e., F = {a, 0, x, y} € &
holds. Observe that F contains the fixed o and two neighboring elements along P. Therefore
the number of such F’s cannot be more than d; (#), by the definition of this parameter. In
a given such F at most two element can play the role of § (if the three elements different
from o are three consecutive elements along P, otherwise there is only one “0” in them).
Consequently, the number of such §’s is at most 2d | (F).

The same upper bound is valid for the number of cases when the pair {f3, y}, e € P is not
acceptable. Therefore there is an appropriate pair y, § if 2r — N + 1 — do(F) — 4d1(F)
is positive, proving the lemma. [

Proof of Theorem 3.1. If % is empty then the application of Dirac’s theorem ensures the
existence of a Hamiltonian cycle. The proof will use an indirect way. Suppose that # is not
empty and G does not contain an acceptable Hamiltonian cycle with respect to . Delete
members from & until such a Hamiltonian cycle appears. Let A be the last deleted member.
Then there is no acceptable Hamiltonian cycle with respect to some %' C Z, but there is
one with respectto #” = Z’ — {A}. This cycle C must contain two edges of G whose union
is A. Let one of these edges be {u, v}. If A consists of four consecutive element of C then
choose {u, v} not to be “in the middle”. ((3.2) cannot hold when N = 4.)

Apply Lemma 3.2 for the path P = C — {u, v}, which is acceptable. The resulting cycle
is acceptable with respect to #’, in contradiction with our assumption.  [J

The most interesting case is when G is the complete graph. In the rest of the section
only this case will be considered. Then r = N — 1 holds. If # is a family of 4-element
subsets of V then we say that the cyclic permutation (vy, ..., vy) of the elements of Vis a
(2, 2)-Hamiltonian cycle for 7 if {v;, vi+1, vj, vj41} ¢ & holds (the indices are considered
mod m) for every pair 1<i, j <N. Theorem 3.1 implies the following corollary, if the
obvious inequality d» (%) <d (%) is substituted.

Corollary 3.3. LetV be a set of N elements and suppose that the family & C ( Z ) satisfies
the inequality

5d{(F)<N —2. (3.3)

Then there is a (2, 2)-Hamiltonian cycle for % .



This can be considered a Dirac-type theorem, analogous to Theorem 1.2. There is, how-
ever, a fundamental difference. The total degree in case of simple graphs is N — 1, Theorem
1.2 gives a linear bound in terms of N. (To make the analogy closer, we have to speak about
the forbidden edges, the degree of the graph of forbidden edges is bounded from above.)
Here d can be quadratic in N while our bound (3.3) is linear. By the trivial inequality
d; <d, (3.3) can be rewritten as 5d| (%) <N — 2. In this case the situation is worse than
before, since the possible order of magnitude here is N3. Can we expect that the statement
of the corollary holds under a condition like d; <cN3? Not really, since the analogous
problem for graphs would sound in the following way. Give an upper bound on the degrees
in a graph which ensures the existence of a cycle where not only the edges of the cycle
are not edges in the graph, but no two vertices of the cycle are adjacent in it. The triv-
ial answer shows that when the best upper bound for the degree d; (0<t<3) is searched
which implies the existence of a (2,2)-Hamiltonian cycle then not even the exponent of N
is trivial.

The following example given by Katona and Kierstead [7] is useful towards this aim
since it seems to be nearly optimal. Suppose that N is odd and partition the set of edges
of Ky into r = (N — 1)/2 Hamiltonian cycles Hy, ..., H,. The family ¢ y is defined as
the set of all unions of two vertex-disjoint edges from the same Hamiltonian cycle H;. If
C is a Hamiltonian cycle then at least three of its N = 2r + 1 edges are in one H;. Two of
them are disjoint. This contradiction shows that there is no (2,2)-Hamiltonian cycle for this
family & . It is easy to see that d3 (" y) < 6. Their construction for the case when N is even
is similar. Then d3(# ) <9 holds. Using (3.1) we obtain

9 3 3
(A NS SN, d (A W) < 5”2’ do(AH N) = |H n|< §N3. (3.4)

This shows that a naive Dirac-type theorem is not true in these cases: the condition
d (7)< c¢N*" does not ensure the existence of a (2,2)-Hamiltonian cycle for .

One could think that the condition d3 (%) < 1 would be sufficient. We found the following
construction which shows that this is not true for all N.

Let N = 2" and V be the set of all 0,1 vectors of n coordinates. Z is defined as
the family of all 4-element subsets {v;, v, v3, v4} of V satisfying vi + vy + v3 + vg4 =
0 (mod 2). These are the points and planes of the n-dimensional affine space over G F (2).
(For Steiner quadruple systems see, e.g. [9]). Suppose that (v, va,...,vy) is a (2,2)-
Hamiltonian cycle for Z. It is easy to see that v;—; + v; and v; + v;4| are different
vectors. Since this is a (2,2)-Hamiltonian cycle, v; + vi4) and v; + v;4; (the indices
are considered mod N) must be different in general, because they satisfy v; + vi41 +
v; +vj41 # 0. Hence all the sums v; + v;41(1<i < N) are different. Therefore, one
of them is 0, i.e., v; = v;+| for some i. This contradiction shows that there is no (2,2)-
Hamiltonian cycle for this % . On the other hand, every 3-element subset {v}, v3, v3} of V
uniquely determines a vy satisfying v; + vy + v3 + v4 = 0 (mod 2). Therefore d3(#) = 1
holds.

Problem 1. Forwhat N’s does d3(7 ) < 1 imply the existence of a (2, 2)-Hamiltonian cycle
for the family 7 ? (The condition is equivalent to |F N G| <3 for every pair F, G € F.)




To be more formal, introduce the notation
\%
ma2(N, t) = min {d,(f) ¥ (4) and there
is no (2,2)-Hamiltonian cycle for # } 5

We have
m22(N,3)<9
by the construction of [7] and
mp2(2",3)=0
by the constructions with 0,1-vectors. Problem 1 asks which N’s satisfy the inequality
1<my2(N, 3).

Problem 2. Give estimates on ma2(N, 0), m32(N, 1) and my (N, 2).

In general, if a family

1%
sl
ip+ia+---+i

is given, we say that a cyclic permutation P = {vy, ..., vy} of the elements of V is an
(i1, ..., ir)-Hamiltonian cycle for & if there are no i consecutive, i consecutive, ..., i,
consecutive elements, resp. of P whose union is in Z, i.e.,

-
U {vj[a Vji41s+v v Uj[-H[—l} ¢ F

=1

holds for any choice of ji, ..., j- (mod m). Moreover, let us define

\%
i (N, ) =min{di(F) : F C
m“,...,l,( ) { t( ) (i1+i2+"‘+ir)
and there is no (i1, ..., iy)-Hamiltonian cycle for & }.

The most natural one is the case of k-Hamiltonian cycles (where r = 1, i; = k in the
previous notation, and (k) is replaced by k). Here there is a real Dirac-type theorem.

Theorem 3.4 (Katona and Kierstead [7]).

N 2 N—k
ez s Wit o 2 e Lo
TR ) [ 2 l

In a very recent, deep and difficult work R6dl, Ruciriski and Szemerédi almost completely
solved the case k = 3.

Theorem 3.5 (Rodl et al. [12]). % —2<m3(N, 2) holds if N is a “huge” number.



R&dl et al. [12] hope that they can generalize their result for arbitrary k and are able to
lower the constraint on the number of vertices.
Another result for k-Hamiltonian cycles is the following one.

Theorem 3.6 (Katona and Kierstead [7] and Frankl and Katona [5]).

B o0 by (N,0)< M (3.5)
el TS o e IR L o

The upper estimate is improved by the following pretty construction of Tuza [14] under
the assumption that an (N — 1, 2k — 3, k — 2) Steiner system exists, i.e., a family & of
2k — 3-element subsets of an N — 1-element set such that every k — 2-element subset is
contained in exactly one member of %. Let v be a fixed element of V and take a Steiner
system & C 2V~ satisfying the above conditions. Then define the family # in the
following way using the notation o/ +a ={A U {a} : A € &/}:

fz((l__f)+v>—gy<(kfl)+v). (3.6)

Let us see that there is no k-Hamiltonian cycle for this &#. An indirect way will be
used: suppose that there is a cyclic ordering of the elements of V so that no consecu-
tive k elements form a member of & . Investigate especially the elements around the dis-
tinguished v: (v_g41,...,v_2,v_1,V,v1,V2,..., Vk—1). There are k intervals of length
k in this part of the cyclic ordering. None of them is a member of &, i.e., each of
them is a subset of S U {v} for some S € . In other words, any of the k intervals

of length £ — 1 in the sequence (V—g41,..., V-2, V-1, V1, V2, ..., Uk—1) is a subset of
some member of &. Suppose {V_k+1,...,v-2,v-1} C S and {vy,va,...,_1} C S»
where Sy, $2 € & holds. Since [{v_g+1,...,V-2,V_1, V1, V2, ..., Up—1}| =2k — 2 and
the members of % have only 2k — 3 elements, S; and S, must be different. Let i be the
smallest integer for which {v_;, v—_j41,...,v—1, V1, V2, ..., vk—i—1} C S still holds. Then
{v—it1, V—iq2, ..., V=1, V1, V2, ..., Vk—;}is a subset of some S3 # S (but S3 = S, might
be true). Taking the intersections we obtain {v_;4+1, ..., v—1, V1, V2, ..., Ug—i—1} C S1NS3
with a contradiction, since the left-hand side has k — 2 elements, but |S; N S3| <k — 2 holds
by the property of &.

Determine now | |. It is easy to see that

since every k — 2-element subset is a subset of exactly one member of .. Hence we have

-2




by (3.6). This implies the following improvement of (3.5) if the Steiner system in question
exists.

(N 0) < N —1 N —1

It is easy to see that

b R 1 R

and the difference of the two sides is

N-2
k—3)°
Summarising, the order of magnitude (for large N, fixed k) of the upper estimate in (3.5)
is correct and (3.6) improves the second term only, if the Steiner system in question exists.

This is definitely true for k = 3 (trivial) and k = 4 (see [15,16]) with infinitely many N’s
(with positive density), but is unknown for k > 5.

Problem 3. Give estimates on my(N,t) (1<t <k —1).

The problem of (1, 1, ..., 1, 2)-Hamiltonian cycles is in fact a traditional Hamiltonian
problem for graphs.

2N, t).

.....

Problem 4. Give estimates on m»

Our following construction shows that the example of [7] can be replaced by a family
Z of quadratic size if we are looking for cyclic permutations which are not only (2,2)-
Hamiltonian cycles, but also (3,1)-Hamiltonian cycles. In other words, the cycle to be found
cannot contain two distinct “edges” whose union is either a member of the given family or it is
contained in one of the members. Let us define the problem more formally. Given a family
of 4-element subsets of V, we say that the cyclic permutation (vy, ..., vy) of the elements of
Vis a4 -Hamiltonian cycle for 7 if {v;, viy1, v, vj41} ¢ F and {v;, viy1, Vi, Vj} € F
hold (the indices are considered mod m2) for every pair 1 <i, j < N. Define

ma, (N, 0)=

. Vv ’ s :
min {IJ*'! CF G (4) and there is no 4-Hamiltonian cycle for f} .

Let4 <N,V ={l1,..., N} and define  y by

N+ 1 N+3
ﬁ'N:{{l,Z,i,j}:either (3<i<j< ;_)or< o <i<j<N>}




for odd N and by

| =

TN = {{1,2,1‘,]‘}: either (3<i<j<

N
—I—l) or (7+2<i<j<N)}
SN ;

for even N. Deleting the set {1, 2} from each member of  y a simple graph is obtained on
the vertex set {3, ..., N}. Let us call this graph the reduced graph.

Try to find a 4, -Hamiltonian cycle for 7 y. First suppose that 1 and 2 are neighbors in the
cyclic permutation P = {vy, ..., vy}, say vy = 1, vy = 2. Observe that the complement of
the reduced graph is not Hamiltonian. Therefore the cyclic permutation (vs, v3, ..., vy—_1)
contains an edge of the reduced graph. If this is {v;, vi4+1}(2<i <N — 2) then both {1, 2}
and {v;, vi4+1} are neighbors in P and their union is in Z y, a contradiction. On the other
hand, if {vz, vy—1} is in the reduced graph, then both {1, v} and {2, vy_1} are neighbors
in P and their union is in 7 y, a contradiction, again.

Suppose now that 1 and 2 are not neighbors in the cyclic permutation P. Let v; = 1,
then v2 # 2, vy # 2,v2 # vy. Since 4 < N then one of the neighbors of 2 in the cyclic
permutation, say v; is different from both vy and vy. Observe that the reduced graph
“contains no empty triangle” that is one of the pairs {vs, vy}, {v2, v;}, {vj, vy} is an edge
of the reduced graph. If {v,, v;} is this edge, then its union with {1, 2} is in J y, but this is
also a union of two pairs of neighbors in P : {1, vz} U {2, v;}. If the edge in the reduced
graphis {v;, vy} then the same argument works. Finally, if {v2, vy} is in the reduced graph
then {vy, v1, v2,2} € 7 n. In all three cases, the cyclic permutation contains two distinct
edges whose union is either a member of 7 y or a subset of a member. This contradiction
finishes the proof of the following statement.

Proposition 3.7. There is no 4. -Hamiltonian cycle for 7 y (4 < N).

Since
N —3)?
BW T w el

|7 Nl = (3.7

N(N —4)
4

is quadratic in N, |7 y| is much smaller than | y| although it “almost” satisfies the

condition that it contains no (2,2)-Hamiltonian cycle. Our proposition proves that +(N,0)

is at most (3.7). We believe that 7 y is the best construction for this modified problem, that

is, mq, (N, 0) is actually equal to (3.7).

if 4 < N is even

Problem 5. Is it true that if | 7| is less than (3.7) then there is a 4 -Hamiltonian cycle
Sfor 77

Let us summarize the content of the present section. There are some nice results concern-
ing the k-Hamiltonian cycles. They seem to be the most natural generalizations of Dirac’s
classical theorem. The author is hoping that they will have important applications. On the



other hand, the existing applications need results on the existence of (2,2)-Hamiltonian
cycles. Moreover, the conditions in these theorems (Theorem 3.1, Corollay 3.2) use some
unusual concepts of (“linear”) degrees. The results involving the most natural generaliza-
tion of the regular degree are not strong enough for the known application. Since these two
types of problems are rather far from each other, there are many open question inbetween
which sound natural to ask after considering the existing results. These questions are asked
in forms of Problems.

4. A Baranyai-type conjecture

The following conjecture of Baranyai and the author tries to give a result analogous to
the Baranyai theorem for the case when & does not divide n. Let m be the lowest common
multiple of k and n, use the notation @ = m/ k. Define

A= s ookl fk 4 Lk 4+ DR0A SO0 e e~ e+ 1,
Ry 7 N 7 5

where the elements of the sets are considered mod n. The families obtained from " by
permuting the elements of the underlying set [n] are called wreaths. If k divides n then a
wreath is just a partition.

Conjecture 4.1 (see Katona [6]). ([’,i]) can be decomposed into disjoint wreaths.
The aim of the present section is to state the following conjecture.

Conjecture 4.2. The members of ('Z') can be listed in such a way that any |n/k| — 1
consecutive ones are disjoint.

First we prove the latter conjecture in the easy case k = 2.

Theorem 4.3. One can list the edges of the complete graph K,, in such a way that any
[n/2] — 1 consecutive ones are disjoint.

Proof. It was proved in the 19th century [11] that K, can be decomposed into perfect
matchings if n is even. (That is, Baranyai’s theorem for k = 2.) We use here Walecki’s proof
(see [10]) . Cases are distinguished according to the parity of n.

1. Suppose that n is even. The decomposition of Walecki starts with the perfect matching

n n n
P={l, ol 1 3 —2,...,{——1,— 1],[—, ]] 4.1
i ={{lin—1},{2,n~2} > >+ 78 4.1
Let P; (1<i<n — 1) denote the set of edges obtained by replacing the vertices
JA<Lj<n —1)by j+i — 1(mod (n — 1)) while n remains unchanged. (Then it is
easy to see that P;’s are pairwise disjoint and their union is K,,.)



List the edges following the order in (4.1), first the edges in Py thenin Ps, ..., P,_j.
Consider the beginning of the list obtained from P; and P;:

{{1 n—1},{2,n—=2),... [5 e +—1}

{?nL&JL””-——+2]{ +1,n}}. 4.2)

Itis easy to see that any n/2 — 1 consecutive edges are (vertex)-disjoint. By the construction,
any n/2 — 1 consecutive edges are in P; U P;y; for some i. Howeyver this part of the list is
isomorphic to (4.2).

2. Let n be odd. The proof in this case is analogous, but # is not distinguished. Define

=%Lm4zn—n““¢";{";3”.

Let P; (1<i<n)denote the set of edges obtained by replacing the vertices j (1< j<n) by
J + i — 1(modn). After giving these definitions, the proof follows the previous
case. [

For general k we can only prove a much weaker statement under the assumption that
another conjecture holds. We say that a graph contains H" if the vertices of the graph can
be listed in such a way that if the list is x1, ..., x5 then {x;, x;} is an edge for each pair
satistying |i — j|<rorl|i — j|=>N —r.

Conjecture 4.4 (Seymour [13]). If the minimum degree of a graph on N vertices is at least
[(r = 1)/r]N then the graph contains H".

In the particular case r = 2 “a graph contains H"”’ becomes “‘a graph contains a Hamilto-
nian cycle”. The conjecture becomes Dirac’s theorem [3]. The conjecture is almost proved
for every r, namely the following theorem holds.

Theorem 4.5 (Komlos et al. [8]). If the minimum degree of a graph on N vertices is at
least [(r — 1)/rIN and N is large enough (No(r) < N) then the graph contains H" .

Our very weak result is the following one.

Theorem 4.6. If Conjecture 4.4 is true and no(k) < n then the members of ([Z]) can be

listed in such a way that any |n/k?| consecutive ones are disjoint.

Proof. Define a graph G whose vertex set is ([Z|) and say two vertices are adjacent iff the

. 3 FAUR 5 4 n—k
corresponding k-element sets are disjoint (Kneser graph). The degree of a vertex is ( X )

Therefore the condition in Conjecture 4.4 is

—O=<("7"):




This is equivalent to
()
0-(7)

That is, we have to prove the inequality

\
N

n nmh—1)---(m—k+1)

K nm—1)--(n—k+1)—=@m—-k--(n—2k+1)

We will check the validity of the equivalent

m—Knm—1 - (n—k+D<nn—k)(n —k—1)---(n —2k+ 1) 4.3)

for large n and fixed k. It is easy to see that the coefficients of n ! and »n*, resp. of the
two polynomials in (4.3) are the same. On the other hand, the coefficients of n¥~! on the
left-hand side is

k2<§)+ Z ij. (4.4)

I<i<j<k—1

The coefficient on the right-hand side is

i P L (i+k)(j+k)=k2(§>+k . G+D

k<i<j<2%—1 0<i<j<k—1 0<i<j<h—1

+ > i

1<i<j<k—1

The latter one is obviously larger than (4.4) when 2 < k. This proves (4.3) for large n. [
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