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Abstract—Recent results of the authors—some of which are joint with Thalheim and Seleznjev—
in the area of combinatorial investigations of the relational database model are presented here. In
relational databases keys—combinations of attributes uniquely identifying the records—play an im-
portant role. The structure and size of keys have been widely investigated. Here, after a short review
of the earlier results, we discuss two generalizations: the (average) structure and size of keys in a ran-
dom database and the concept of error-correcting keys in case of unreliable data collection. © 2003
Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

A database M (or R) is an m X n matrix where the columns are the n attributes of the database—
the set of whose is denoted usually by 2—and the rows correspond to the m records or individuals.
It will be supposed that the data of two distinct individuals are different; that is, the rows of the
matrix are different.

If A,B C Q, b € Q we say that B (functionally) depends on A (denoted by A — B) or b
(functionally) depends on A (denoted by A — b) iff there are no rows (records) of M equal in A
but different in B (or b).

A subset K of Q is called a key if the data in K determine the individual (row) uniquely.
In other words, there are no two distinct rows of the matrix which are equal in K. A key is a
minimal key if no proper subset of it is a key. Usually, we denote the family of all minimal keys
by K while the family of all maximal subsets of attributes which are not keys is denoted by K~!.
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work of the second and third authors was supported by the Hungarian National Foundation for Scientific Research
Grant Number T029255 and European Community’s Centre of Excellence Grant Number ICA1-CT-2000-70009.
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REMARK 1.1. K is a Sperner family; that is, for every A, B € K we have A ¢ B. Therefore, by
the well-known theorem of Sperner [1], |K] < ( Ln72 | )

The first classic question of this area was whether every Sperner family can be obtained in this
way.
THEOREM 1.2. (See [2,3].) K is the set of minimal keys of a certain database iff K is a nonempty
Sperner family.

The next question is whether we can draw a conclusion from the number of records of the
database to the system of minimal keys or, more precisely, what is the minimal size (number of
records, that is number of rows of the matrix) of a database realizing a given Sperner family.

DEFINITION 1.3. s(K) = the minimal number of records of a database where the system of
minimal keys is K.

Regarding this question the following results were found first for the size of K and the size
of K1,

THEOREM 1.4.

'IC_1| < (S(QK)) (Demetrovics and Katona [4]),
2|K-1 < s(K) <14 K71 (Demetrovics and Katona [4]),
n
VK, s(K) < [EJ ) +1 (Demetrovics and Gyepesi [5]),
2
i n
K, s(K) > 3 [EJ (Demetrovics and Gyepesi [5]).
2

The proof of the lower bound for s(X) above is not constructive. Nothing is known about the
(nearly) worst Sperner families, that is about the maxyx s(K), and similarly, nothing is known
about maxx|—x $(K) or minjg— s(XC). The similar questions for X~! can be asked as well.
Though neither max x|k K~1! nor min|x|—x K~1 are known, here at least we conjecture that
for ks relatively small compared to n the minimum is attained by a family consisting of i and
i+ 1 element subsets where i is determined by (T:) <k=<|( 1-11)-

Some results are known for the special Sperner families consisting of sets of uniform size.
Let K} denote the family of all k-element subsets of an n-element set; that is,

- (2)-0-(.2).

We have then the following simple, but as later described surprisingly strong lemma.
n e
LEMMA 1.5. (See [4].) (,_,) < (5(2“).
The lemma implies that for k = 2

s (K3) =min{s:n§ (;)},

and therefore, we have the equality

S(Cp) = [14-\/21-{——&1].

Another easy consequence of the lemma is that in case of Kk = 3 for s = s(K%) we obtain
(5) < (5) which implies that n < s. It turned out that this upper bound is almost always the

2
exact answer.




THEOREM 1.6. (See [6].) If n = 12r +1 or n = 127 + 4, then

s (Kg)=mn.

THEOREM 1.7. (See [7].)
s(K3) =mn, fn="% n=3.

For higher values of ks we do not have such nice results, but at least the asymptotic of s(K7)
is determined.

THEOREM 1.8. (See [6].)
cpn®*—1/2 < s (KR) < dg e

In this section, finally we present a recent result for another type of minimal keys.

THEOREM 1.9. (See [8].) Let

K= {{1’2}: {21 3}1 B 55 {TL T 1,77‘}, {nv 1}}

Then,
4" < st <14 [KTE 6

where
i3t pencholul) sids gl mosginth

The interested reader can have a more detailed (but not so up-to-date) overview of these results
in, e.g., [9].

2. ERROR CORRECTING KEYS

Suppose that the data are collected in a nonreliable way; e.g., the transfer of data is done via a
noisy channel or the sources of the data are not completely reliable. We may then assume that at
most 1, or more general, at most e of the data of each individual may be incorrect. Under these
circumstances a collection of attributes C will be called an e-error-correcting key iff the data
in the columns belonging to C (some of which may be false) uniquely determine the individual
(row) of the database.

The first remark we make here is that in the contrary of the ordinary key systems, where a
database always has keys (in the worst case only the set of all of the attributes will be a key, but
it definitely will be) there may not exist error-correcting keys at all in a database. To understand
the forthcoming example, we need a few preliminary remarks, definitions, and propositions. The
number of different entries in two rows is called the Hamming distance of these two rows. The
m X |C| submatrix of M determined by the set C of its columns is denoted by M (C).

The following proposition can be then easily justified.

PROPOSITION 2.1. C C Q is an e-error-correcting key iff the pairwise Hamming distances of the
rows of M (C) are at least 2e + 1.

This suggests the definition.
DEFINITION 2.2. A subset of the attributes C C § is called a d-distance key iff the pairwise

Hamming distance of the rows of M (C) is at least d. Remark that the one-distance keys are just
the ordinary keys.

The following proposition will make it easier to understand the reason why a set of attributes
will be a d-distance key of a database with system of minimal keys iC.
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ProprosITION 2.3. C C  is a d-distance key of M iff for any choice of a1,...,a4—1 € C one can
find a K € K such that K ¢ C — {a1,...,a4-1}-

PrROOF. Assume that for a C C € there exist a1,...,a4-1 € Q such that C — {a1,...,04-1}
contains no member of K, implying that C — {a1,...,aq-1} is not a key. Therefore, there must
be two distinct rows of M which are equal in M(C —{ay,...,a4—1}) and so the Hamming distance
of these two rows in M (C) is less than d, C is not is d-distance key by definition.

Assume now that a C C Q is not a d-distance key, i.e., that M(C) contains two distinct
rows with Hamming distance < d. Denote the columns (plus probably a few arbitrarily chosen

columns) where these rows are different by {a1,...,a4-1}. Then, M(C — {a1,...,a4-1}) will
contain two distinct rows that are equal everywhere, and therefore, C' — {ai,...,a4—1} will not
be a key in M; it will not contain a member of K. |

It is again easy to see that any superset of a d-distance key will be a d-distance key as well,
and therefore, it is enough to focus on the minimal d-distance keys of a database, which will be
denoted by C4(M). Observe that by Proposition 2.3, K and d determine Cy; i.e., it is enough to
know the structure of the set of minimal keys IC of a database to be able to construct C. The
notation C4(K) will be used, if it is necessary to emphasize that C4 is generated by K.

Now, we are able to give the example of a database (set of minimal keys) for which there is no
d-distance key at all.

EXAMPLE 2.4. Fix an element a € Q (that is, a column) and an integer 2 < k. Define K as the
family of all k-element sets (C 2) containing a.

Then, C — {a} cannot contain any key, so the condition of Proposition 2.3 does not hold for
any C if 2 < d; there is no d-distance key in this database for 2 < d.

ExXAMPLE 2.5. Let K consist of all k-element subsets of 2. In this case, as it can be easily seen,
all subsets C of Q of size at least kK + d — 1 are d-distance keys.

In case of ordinary keys Theorem 1.2 completely describes the structure of them: a system of

sets is isomorphic to the set of minimal keys for a certain database iff it is a Sperner family. The
set of minimal d-distance keys is a Sperner family as well; however, the following example shows
that an arbitrary Sperner family may not be the set of minimal d-distance keys of a database
(for d > 2).
EXAMPLE 2.6. Let C be the family of all but one k + d — 1 element subsets of a large enough
set. Then C is a Sperner family, but using Proposition 2.3 it can be easily seen that if all C € C
are d-distance keys of a database, the only missing k& + d — 1 element subset of the underlying set
must be a d-distance key as well. Therefore, C may not be the set of all minimal d-distance keys
of any database.

The previous example, Example 2.5, suggests that the sizes of the members of Cg, if they exist,

do not exceed the sizes of the members of K by too much. We will show that this is not really
true.

Let ( (Qk) denote, as usual, the family of all subsets of 2 with size not exceeding k. For a

Sperner family K (system of minimal keys of a database) and d > 2 such that C4(K) is not empty,
let

f1(K,d) = min{|C|: C € C4(K)},
f2(K,d) = max{|C| : C € C4(K)}.

Using the above definitions, we define

Folns bl = mow {fi(l(:,d) K C (Sﬂk) , Ca(K) @} .

Now, we are ready to state the main theorem of this section.
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THEOREM 2.7. (See [10].)
c1k? < fi(n, k,d) < fa(n, k,d) < c2k?

holds for no(k,d) < n where c¢; and c; depend only on d.

ProOF. We will need a characterization of the minimal d-distance keys similar to Proposition 2.3.
We say that the elements aj,...,aq_1 € Q represent K—a family of subsets of Q—if each K € K
contains one of the as. Then, Proposition 2.3 is equivalent to the following statement: a C C Q is
a d-distance key of the database M with set minimal keys K iff no d — 1 elements can represent
the family {K : K € K, K C C}. If C is minimal with respect to this property then no proper
subset of C has the above property; that is, for all a € C the family {K : K € K, K € C — {a}}
can be represented by d — 1 elements.

PROPOSITION 2.8. C € Cy4(K) iff {K : K € K, K C C} cannot be represented by d —1 elements,
but for every a € C' and properly chosen a1, . ..,aq4—1 the d elements a,ay,...,aq—1 represent C.

The lower estimate of the theorem will be given by a nonempty, inclusion-free family X con-
sisting of some k-element sets which generates a C; consisting of one member having size at
least ck?.

For a given integer 1 < i pick a subset A of the underlying set Q of size 1+d—1. Let Ay, Ay, ...
be all the (H‘;'l) i-element subsets of A and

]C(’l,) = {Al UBl,AQUBg,...},

where A, By, B, ... are pairwise disjoint subsets of Q and |B;| = |Bz| = --- = k —%. This can be
carried out if [2] is big enough. We will show that the only member of Cq(K(i)) is C = AU(UJ; B:)-
It is easy to see that K (i) cannot be represented by d — 1 elements. On the other hand, if a € B;
for some j then the d-element set {a} U (A — A;) represents K. If, however, a € A, then any
d-element set D C A containing a represents K, and therefore, C is really a member of C4(K(7)).
It is easy to see that there is no other member.

Choose i = |k(1 —1/d)|. Then, the size of C' becomes

e i+d—-1 anr dd= U oo
i+d 1+( ; )(k Z)Ndd(d—l)!k'

For the upper estimate let us consider a C € C4(K) where K C ( <n k). We will prove that

|C| < dk?. By Proposition 2.8, C € C4(K) iff C € Cq(K') where K' = {K € K : K C C} and here
Klckco (fk) is a Sperner family as well, and thus, we have that C € C4(K’). Therefore, it
can be, and from now on will be, supposed that all members of K are subsets of C.

We may assume that the d-element sets {a,a1,...,aq4—1} representing K defined in Proposi-
tion 2.8 are all subsets of C, and therefore, they will have union C. Denote the family of them
by D ={D = {a,a1,...,a4-1} : a € C, a; € C, D represents K}.

We now know that

4 =1]=2 (2.1)

KeK DeD
DNK#0, foralDeD, Kek, (2.2)

and XC cannot be represented by a set with less than d element.
For a I C C define the I-degree of D as the number of members of D containing I; that is,

deg,(D) = |{D € D: I c D}|.
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We will prove that
deg; (D) < k-1, (2.3)

by induction on j = d — |I|.

The base case is j = d — |I| = 1; that is, |[I| = d — 1. If all members of K meet I, then K can
be represented by d — 1 elements, a contradiction. Therefore, there is a K € K which is disjoint
to I. By (2.2), all the sets D satisfying I C D must intersect this K, and therefore, their number
is < |K| < k. The base case is settled.

Now suppose that the statement is true for every I C C such that j > d — |I| > 1 that is
d—12> I 2d—3 > 1, Let I* 'C Ceuch that |I*|'='d —j=1; that'is, j F1 =d= [I*[
There must exist a K € K, K N I* = 0; otherwise K is represented by less than d elements, a
contradiction. Let K = {z1,...,z;} where [ < k. By (2.2), we have

l
{(DeD:I*cD}=|J{DeD:(I"U{xi}) c D}. (2.4)

i=1

The sizes of the sets on the right-hand side are deg;. ,,}(P) which are at most k?=J by the
induction hypothesis. Using (2.4),

deg;. (D) < lk¥7 < k4-3+1

is obtained, finishing the induction proof of (2.3).

Finally, consider any K ={y1,...,yr} € K where r <k. By (2.2), the families {D€D:y; € D}
cover D. Apply (2.3) for I = {y;}

{DeD:y, e D} <k* 1.
This implies |D| < k% and

<|D|d < dk?.

U p

DeD

Application of (2.1) completes the proof: |C| < dk®. [ |
We conclude this section with a few remarks.

REMARK 2.9. Consider the simplest case, when the probability of an incorrect data is so small
that practically at most one data of an individual can be incorrect. In this case, e =1, d = 3, and
therefore, if the minimal keys have at most k elements, then the minimal one-error-correcting keys
have at most 3k2 elements by the upper estimate of Theorem 2.7 and there exists a database with
minimal keys of size k and only a single minimal one-error-correcting key of size roughly (4/27) k*
by the lower estimate. So, even in this simple case, the error-correcting keys may be much larger
than the keys.

REMARK 2.10. Although Theorem 2.7 determines the order of magnitude of fi(n, k,d), it does
not give the exact value. We believe that the lower estimate is sharp; that is,

fl(n,k,d)zm?x{i+d_1+ (i+cj—1)(k_i)}

holds for ng(k,d) < n.

REMARK 2.11. The following variation of the original problem sounds similar to the problem
treated here, but it is actually very different. Suppose again that the data go through a noisy
channel, where each data can be distorted with a small probability or due to any other reason
we might have wrong data with a small probability. Try to define new attributes to make the
effective keys for the erroneous database small.
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3. FUNCTIONAL DEPENDENCIES
AND KEYS IN RANDOM DATABASES

In most of the cases, investigating databases the system of functional dependencies is already
known at setting up the structure, before collecting the data. In some situations, however, it
might not be the case. Then, the database exists in the reality (usually not coded in the computer,
yet) and the need is to find the rules in it, first of all, the functional dependencies.

In most cases, there is some a priori information on the relations of statistical nature. More
precisely, a probability distribution is given, determining the probabilities of the possible data-
bases M. Based on this information, we want to estimate the sizes of the functional dependencies.
It is useful to have functional dependencies A — b with small As and it may be easier to find them
if their approximate sizes are known in advance. The statistical rules could be quite complex, but
it seems to be hard to obtain any theoretical result unless the choices of entries of the database
are independent. Under this assumption, we determine the asymptotic probability of the event
A — b, depending on the size of A, for large databases. The main questions here are: what is
the typical size of the minimal sets A such that A — b for a given attribute b and what is the
typical size of the minimal keys.

The results of these investigations may be mostly found in [11-13]: the results in [11,12] are
of rather probabilistic flavor; the proofs use the so-called Poisson approximation technique. The
results and methods of [13] use the language of this paper and the proofs there—though rather
technical—are more combinatorial. In this section, we will first give the simplest versions of these
type results with their proof and then list the more sophisticated ones. The interested reader can
find the proofs of them in [13].

We will need some additional notations. The elements of the set of attributes will be denoted
by Q = {a1,as,...,a,}. The set of the possible entries of the i *® column—the domain of a;—will
be denoted by D(a;). Thus, the data of one individual (row of the matrix) can be viewed as an
element r of the direct product D(a;) x D(az) X --- x D(a,). Therefore, the whole database
(or matrix) can be described by the relation M C D(a1) x D(az) X --- X D(ay). This definition
coincides with the property of the database we assumed in Section 1: the data of two distinct
individuals cannot be identical. However, in this section, to avoid further technical difficulties,
we allow identical records. If r = (e, ea,...,e,) € M, then r(¢) will denote the i component of r;
that is, e; € D(a;).

For the simplest case of a random database, suppose that all the domains contain exactly two
elements; that is, |D(a;)| = 2 holds for all 1 <7 < n. We may also suppose that D(a;) = {0, 1}.
Further, these values are chosen with equal (1/2,1/2) probabilities. All the entries (data) are
chosen totally independently. Therefore, the probability of the choice of a given 0, 1-sequence of
length n as a row r € M is 1/2™.

All of our results will be of asymptotic nature. We will suppose that the number 7 of attributes
(columns) tends to infinity and the number of individuals (rows) is a function of n : m(n)

where m(n) tends to infinity with n. The investigated quantity |A| is also expressed as a function
of n.

THEOREM 3.1. Suppose that entries of the random database of m(n) rows and n columns are
chosen randomly from {0,1}: independently and with equal probabilities. Let A, C Q be of size
z = z(n), and suppose that b € Q — A,. Then, the probability of the event that b functionally
depends on A satisfies (here and later on log means log, always)

0, if z(n) — 2logm(n) — —o0,
i :
P(A—b) — < exp (_W) , Iif z(n) — 2logm(n) — d, (3.1)

1y if z(n) — 2log m(n) — oo.
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PRrOOF. Let z(n) = 2logm(n)+d(n) and s = 2* denote the number of all the possible sequences
on A. Then, s = 2% = 22logam . 9d — 2 . 9d where 29 will be denoted by ¢ and so s = em?.
We will calculate P (we have m — ¢ different rows). This can be calculated by adding up for all
the possible partitions of the m rows into m — i classes the number of ways one can assign a
distribution of the actual values to the given partition.

Let us suppose that we partition the rows into classes of sizes e; > ez > --- > e;n_4, where the
first k classes have cardinality at least 2, and the others have cardinality 1. It is easy to see that
k <iand }:f:l ej < 2¢ with equality only ife; = e = -+ = e = 2.

With this we have

P (we have m — ¢ different rows and the partition they generate

has classes of sizes e1,e3,...,€m—;)
=] (z+ k) == 1 s(s—1)---(s—m+1+1)
SN EE ) elel-et R OB T s™ ?

where the first term is the number of ways to choose the complete set of rows belonging to a class
of the partition with cardinality at least 2, the second term is the number of ways partitioning
these rows into the actual parts, the f;s denote the number of classes of equal sizes, and the last
term is the actual distribution of the values among the given positions and the whole divided by
the number of possible cases.

All of the above terms tend to 0, except the case wheni =k andsoe; =ex =---€; =2, ;41 =
.-+ = em—; = 1, when the first term (with a factor 1/s' “borrowed” from the last term) is

mitk 1
- — .
(i+k)st  (20)!c’

the second and third terms together are

(29)!
2t41)
and the last term (less a divisor factor s* already considered in the first term) tends to e~1/2¢,
Putting all these together we get that

1 —1/2¢
2l :

Now, let D; denote the event that there are m —i different partition classes. With this we have

P (we have m — i different rows) =

1
P(A—b) =) P(A—b]| D) P(D;) :Zp(m,? (3.2)
e i
and so =~
ih
P(a — b) — Z S e—1/2¢ _ gl/dc  ,=1/2¢ _ ~1/4c ,
i=0 =

COROLLARY 3.2. If the number of rows is a polynomial of n, that is, m(n) = n", then (3.1)
holds for z(n) = 2hlogyn + d(n). On the other hand, if m(n) = 27/2+1°82"  then the probability
of the event that there is any nontrivial functional dependency tends to 0.

Theorem 3.1 can be generalized in two different ways (we will consider the straightforward
most general form later).

(1) The number of the values of the attributes is not necessarily two and these numbers may
be different from each other, but for every attribute each value is taken with the same
equal probability.

(2) Every attribute takes the same values with the same probability distribution, but the
number of the values may be bigger then two and the probability distribution does not
have to be even.
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THEOREM 3.3. Suppose that entries of the random database of m = m(n) rows and n columns
are chosen randomly, that is independently, and the entries of the i*® column are the elements
of D(a;) with equal probabilities. For an A C U let 3, . , log, |D(a;)| — 2log, m(n) be denoted
by d(n) and suppose that b € U — A. Then, the probability of the event that b functionally
depends on A satisfies

0, if d(n) — —oo0,
P(A — b) — < exp (—%) , ifd(n) —d,
1, if d(n) — oco.

PROOF. It is the same as the proof of Theorem 3.1, only in (3.2) the term 1/2° should be replaced
by 1/|D(b)|. |
For the second case, assume that every element of the database is chosen mutually indepen-

dently from the same set {1,2,...,d} with the same distribution {g1,¢2,...,q4}. Let us denote
the entropy of the distribution by

d
Hy = —longf.
=1

THEOREM 3.4. Assume that the random database M has m = m(n) rows and n columns. Let A,
denote a z(n)-element subset of 2 and b an element from  not in A,. Then,

0, 1'f210gm—z—>+oo,
2
TE T ezaurl(z-yg_l)’ if 2logm s
2
1, ile?{g;m —z — —00,

asn — oQ.

In short, in case we have a subset A of the attributes of size a bit larger than (2logm)/H, — z,
then for every attribute b (not in A) of the database we have: A — b. In case B is another (finite)
set of attributes of the database we have a rather similar result for the dependency A — B (only
the —H3 factor in the middle row, in the power of 2 should be multiplied by the cardinality of B).
However, to assure that a set A is a key, we need the dependency A — € where the size of
goes to infinity.

THEOREM 3.5. Assume that the random database M has m = m(n) rows and n columns. Let A,
denote a z(n)-element subset of ). Then,

. 2logm
0 f -
. 1 I, © —+00,
P(A, is a key) — IR, i i
H,
L ifmzrggm—-z—»—oo

That is, it can be briefly said that the sets A of size somewhat larger than 2logm/H, are the
keys with high probability.

Finally, let us state the most general case, where the attributes of the database take values
from different sets, and the distribution of these values are not even (but, as mentioned at the
beginning of this section, the values of the database are still mutually independent).

Assume that the elements of the a; attribute of the database are chosen mutually independently
from the set D(a;) = {i1,12,...,%q, } with the distribution &; = {gi1, 2, - - ., ¢, }. Let us denote
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the entropy of the distribution & = {g1,¢2,...,94} by Ha(k) = —log Z?=1 g?. For the following
(last) theorem, we need an additional assumption about the above distributions, namely:

ik
€ < q;1,q:2, hold for all ¢ with a fixed e, (0 Fets 5) ? (3.3)

THEOREM 3.6. Assume that the random database M has m = m(n) rows and n columns where
the entries of the j** column can have d; different values with probabilities g;1, . .. ,q;d;, Tespec-
tively, and all the entries are chosen totally independently. Assume that (3.3) holds as well.
Let A, denote a z(n)-element subset of  and b an element from Q not in A,. Then,

as

—

10.

11.

12.

13.

0, if 2logm — 3 Ha(k;) — 400,
i=1

P(Az Lo b) = 6—2‘1—1(2—H2(Kb)_1)’ if2]ogm o Z HZ(’%) — a,
=1

z
1, if2logm — 3, Ha(k;) — —00,
=1
T —> 00,
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