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Abstract

The subsetsA,B of the n-elementX are said to be s-strongly separating if the
two sets divide X into 4 sets of size at least s. The maximum number h(n, s)
of pairwise s-strongly separating subsets was asymptotically determined by
Frankl [8] for fixed s and large n. A new proof is given. Also, estimates for
h(n, cn) are found where c is a small constant.



1 Introduction

Let X be a finite set of n elements. The following notion was introduced by
Marczewski [17]. The subsets A,B ⊂ X are called qualitatively independent
if they divide X into four non-empty parts that is A∩B,A∩B,A∩B,A∩B
are all non-empty. The significance of this notion in search theory lies in the
consequence that after knowing if an unknown x is in A or not we cannot
decide the same question for B, independenly on the answer for the first
question. The family F ⊂ 2X is called independent if their members are
pairwise qualitatively independent.

Rényi asked [23] the question what is the maximum size of an independent
family in an n-element set. The answer was found by the present author ([12],
see also [23]), and independently by Brace and Daykin [5], Bollobás [3] and
Kleitman and Spencer [16] (see also Schönheim [24] ).

Theorem 1.1 The maximum number of pairwise qualitatively independent
set in an n-element sets is (

n− 1⌈
n
2

⌉ ).
If the family F is independent then A,B ∈ F , A 6= B implies A 6⊂ B

that is F is inclusion-free. The maximum size of an inclusion-free family is
determined by a classical theorem of Sperner [25].

Theorem 1.2 If F is an inclusion-free family in an n-element set then

|F| ≤
(
n⌊
n
2

⌋).
The following sharpening of Sperner’s theorem is also well-known as the

YBLM-inequality (earlier LYM) (see [27], [4], [13], [18]). It involves the sizes
of the “levels” of the family. If F is a family, define fi(F) = |{F : F ∈
F , |F | = i}|.

Theorem 1.3 If F is an inclusion-free family in an n-element set then

n∑
i=0

fi(F)(
n
i

) ≤ 1

holds.

1



Kleitman and Spencer [16] introduced the notion of k-indpendence. A
family F ⊂ 2X is called k-independent iff

∩ki=1A
εi
i 6= ∅

holds for any choice of distinct A1, . . . , Ak ∈ F and εi = 0, 1 where A0 =
A,A1 = A that is when any k members divide X into 2k non-empty parts.
Let f(n, k) denote the maximum size of a k-independent family. They proved
the following theorem.

Theorem 1.4 (Kleitman and Spencer [16]).

2c12
−kk−1n ≤ f(n, k) ≤ 2c22

−kn.

See also [1].
A set A can be considered as a partition (A,A). A generalization in

this direction is to consider partitions into r parts that is r-partitions. Two
r-partitions are called qualitative independent if all the r2 intersections of
the classes are non-empty. The maximum number of pairwise qualitatively
independent r-partitions is denoted by g(n, r). As this is exponential in n
and an exact formula for g(n, r) is hopeless, it is sufficient to consider the
exponent:

qr = lim sup
n→∞

1

n
log g(n, r).

After some preliminary results ([19], [20], [21], [22], [15]) Gargano, Körner
and Vaccaro have determined the exact exponent.

Theorem 1.5 (Gargano, Körner and Vaccaro [9]).

qr =
2

r
(2 ≤ r).

For a recent interesting result concerning qualitative independence see
[14] .

A family S ⊆ 2X is s-strongly separating iff all four intersections A∩B,A∩
B,A∩B,A∩B are of size at least s for any two distinct members A,B ∈ S.
The maximum size of an s-strongly separating family is denoted by h(n, s).
The determination of h(n, s) was asked in [12]. It has been asymptotically
answered by Frankl for fixed s.
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Theorem 1.6 [8]

d1(s)
2n

ns−
1
2

≤ h(n, s) ≤ d2(s)
2n

ns−
1
2

.

where

d1(s) =

√
2

π

1

2s
− ε

and

d2(s) =

√
2

π
2s−2(s− 1)! + ε.

The author returned to this question now because Benjamin Weiss [26]
suggested the following related problem. Find the maximum number of se-
quences of length n over the alphabet {0, 1, 2} such that if a = (a1, . . . , an), b =
(b1, . . . , bn) are two such sequences then every pair (c, d) c, d ∈ {0, 1, 2} oc-
curs either 0 times or at least twice among the pairs (ai, bi) (1 ≤ i ≤ n). The
analogous problem for {0, 1} is just h(n, 2).

However we only found a new proof for Frankl’s theorem and some esti-
mates for the case when s = cn where c is a small constant.

In the new proof of the upper estimate (in Theorem 1.6) it is sufficient
to use the following weaker condition. A family F is called s-diffbounded iff
|A−B| ≥ s holds for any two members of F . Let us mention that a family is
1-diffbounded iff A 6⊂ B for any two distinct members, in other words, iff the
family is inclusion-free. It is obvious that if S is s-strongly separating then it
is s-diffbounded. The following theorem is a generalization of Theorem 1.3.

Theorem 1.7 Let s be a positive integer. If F is an s-diffbounded family in
an n-element set then

n∑
i=s−1

fi(F)

(
i

s−1

)(
n

i−s+1

) ≤ 1. (1.1)

Christian Bey [2] called the author’s attention to the fact that Theorem
1.7 is a special case of Theorem 4 of [28] (i = t in its notation).

Corollary 1.8 Let s be a positive integer. If F is an s-diffbounded family
in an n-element set then

|F| ≤ d3(s)
2n

ns−
1
2
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where

d3(s) =

(√
2

π
2s−1(s− 1)! + ε

)
.

If S is s-strongly separating then the family

F = {S, S : S ∈ S}

is s-diffbounded. Here |S| ≤ 1
2
|F| holds and this yields the following im-

provement of Corollary 1.8.

Corollary 1.9 Let s be a positive integer. If S is an s-strongly separating
family in an n-element set then

|S| ≤

(√
2

π
2s−2(s− 1)! + ε

)
2n

ns−
1
2

.

In Section 3 the case when s = cn is considered. We have a non-trivial
upper estimate only when c is small.

Theorem 1.10
h(n, cn) ≤ 2n(−

1
2
log c−1.099)+o(n)

where c ≤ 0.099.

2 The case of fixed s

Proof of Theorem 1.7
Define the r-shadow of a family F in the following way.

σr(F) = {A−B : B ⊂ A ∈ F , |B| = r}.

Let A,B ∈ F be distinct members and choose an s− 1-element subset C
of A. Here |A−B| ≥ s implies A−C 6⊆ B. If D is an s−1-element subset of
B then A−C 6⊆ B−D follows. This is obviously true if A = B but C 6= D.
Therefore σs−1(F) is inclusion-free.

Determine the sizes of the levels of σs−1(F). The sets on level j = i− s+
1 (s− 1 ≤ i ≤ n) are obtained from sets on level i in F :

fj(σs−1(F)) = fi(F)

(
i

s− 1

)
.

The YBLM-inequality for the family σs−1(F) is exactly (1.1).
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Proof of Corollary 1.8
Theorem 1.7 will be used. Find the minimum of the ratio(

i
s−1

)(
n

i−s+1

)
in the terms of (1.1). The above ratio is equal to(

n+s−1
s−1

)(
n+s−1

i

) .
Its minimum is (

n+s−1
s−1

)( n+s−1
bn+s−1

2 c
) .

Therefore (1.1) implies

|F| =
n∑

i=s−1

fi(F) ≤

( n+s−1
bn+s−1

2 c
)(

n+s−1
s−1

) .
The application of the Stirling formula leads to the desired result.

It is easy to see that

d3(s) =

√
2

π
2s−1(s− 1)! + ε

for large enough n.
Now Corollary 1.9 easily follows.

In the proof of the lower estimate of Theorem 1.6 the following result will
be used from coding theory. A codeword is a 0,1 sequence of length n. We
say that the codeword has weight w if the number of 1s is w. The Hamming
distance of two codewords is the number of different digits. Let A(n, 2δ, w)
is the maximum number of codewords of weight w with pairwise Hamming
distance at least 2δ.

Theorem 2.1 (Graham and Sloane [10] ) Let q ≥ n be a prime power. Then(
n
w

)
qδ−1

≤ A(n, 2δ, w).
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Proof of of Theorem 1.6
The upper estimate is a consequence of Corollary 1.9.

The construction of the lower estimate is based on Theorem 2.1. Use the
theorem for n − s, 2s, bn

2
c − s. The codewords define, in an obvious way,

subsets of an n−s-element set Y with pairwise differences at least s. Denote
this family by F ′. Add a disjoint set U to Y , where |U | = s. The extended
underlying set is X = Y ∪ U . Define

F = {F ∪ U : F ∈ F ′},

that is U is contained in all the sets. Since the difference of any two members
of F ′ have size at least s, the same holds for any two members of F , that is,
F satisfies the conditions of the theorem. By Theorem 2.1 we have(

n−s
bn
2
c−s

)
qs−1

≤ |F|. (2.1)

By the prime number theorem there is a prime q satisfying n ≤ q ≤ n+o(n).
This fact, (2.1) and the Stirling formula proves the lower estimate with

d1(s) =

√
2

π

1

2s
− ε

for large enough n.

3 The case when s = cn

The other end.
In the previous section the case when s is much smaller than n was

cosidered. Suppose now that n is divisible by 4 and s = n
4
. Let S be an n

4
-

strongly separating family. Then A,B ∈ S, (A 6= B) divide X into four parts
of n

4
elements each. Associate a vector with coordinates 1,−1 with a member

A of S writing 1 in the ith position iff the ith element of X is in A. Denote
the vectors obtained in this way from the members of S by v1, v2, . . . vm. It
is easy to see that the inner product vivj is 0 for 1 ≤ i < j ≤ m. Let v0
have 1s in each coordinate. Then v0vi = 0 also holds (1 ≤ i ≤ m). That
is, v0, v1, . . . , vm are pairwise orthogonal vetors in an n-dimensional space.
Then m ≤ n− 1 follows. The following little statement is obtained.
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Proposition 3.1 Let n divisible by 4. Then

h
(
n,
n

4

)
≤ n− 1

with equality iff there is a Hadamard matrix.

Consider now the case when n = 4s+ t with a small positive integer t. Then
|vivj| ≤ t must hold for all 0 ≤ i < j ≤ m. Since |vi| = n (0 ≤ i ≤ m)
therefore the normed version of vi is ui = vi

|vi| = vi√
n
. Their lengths are 1, on

the other hand |uiuj| ≤ t
n

holds for 0 ≤ i < j ≤ m. We arrived to a geometric
problem: what is the maximum number m of points on the surface of the
n-dimensional unit ball Bn (it is called the n−1-dimensional spherical space
Sn−1) if the angle ϕ between any two vectors determined by these points
satisfies | cosϕ| ≤ t

n
.

A slightly different version of this problem is widely studied: what is
the maximum number M(d, ϕ) of points on the surface of the d = (n − 1)-
dimensional spherical space Sd if the angle between any two vectors deter-
mined by these points is at least ϕ. For good surveys see [7] and [6] .

In our case the vectors u0, u1, . . . , um,−u0,−u1, . . . ,−um possess the prop-
erty that their pairwise angle is at most arccos t

d+1
. Denote the maximum

number of points P1, . . . , Pm in the d-dimensional spherical space such that
the angle between any two of these points and their opposites is at least ϕ
by N(d, ϕ). The inequality 2N(d, ϕ) ≤ M(d, ϕ) is obvious. It does not
always hold with equality as the case d = 2, ϕ = arccos 1

3
shows, since

M(2, arccos 1
3
) = 9 while N(2, arccos 1

3
) = 4. We have proved the follow-

ing lemma.

Lemma 3.2

h(4s+t, s) ≤ N(4s+t−1, arccos
t

4s+ t
)−1 ≤ 1

2
M(4s+t−1, arccos

t

4s+ t
)−1.

In order to obtain good estimates on h(4s + t, s) for fixed t and large s one
should study the corresponding values of M(d, ϕ) and N(d, ϕ). E.g. it seems
to be not difficult to prove the inequality h(4s+1, s) ≤ 4s+1, but h(5, 1) = 4
by Theorem 1.1 showing that the equality does not always hold.

The middle case.
Here we want to find h(n, cn) where c is a constant and n is large. Our

only result is Theorem 1.10.
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Proof of Theorem 1.10. This upper estimate is a trivial combination of
Lemma 3.2 and a theorem of Kabatjanskǐı and Levenštein [11] claiming

M(d, ϕ) ≤ (1− cosϕ)−
d
2 2−0.099d++o(d) (ϕ ≤ 62.9974 . . .◦).

We have no reasonable lower estimate. Theorem 2.1 does not help, since
its estimate tends to 0 when s = cn and n tends to ∞.

4 Open problems

Restriction with the pairwise entropy.
Let us repeat a problem posed in [12]. If p = (p1, . . . , pm) is a probability

distribution then its entropy is

H(p) =
m∑
i=1

−pi log pi.

Define the entropy of a pair of sets A,B ⊂ X as the entropy of the probability
distribution (

|A ∩B|
|X|

,
|A ∩B|
|X|

,
|A ∩B|
|X|

,
|A ∩B|
|X|

)
.

What is the maximum number of subsets A1, . . . , Am of an n-element set X
if the entropy of any pair Ai, Aj (i 6= j) is at least ρ? The case ρ = 4 is
solved by Proposition 3.1.

Combining the problems.
The combinations of the problems of Theorems 1.4, 1.5 and 1.6 give rise

to many new problems.
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