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Abstract

The subsets A, B of the n-element X are said to be s-strongly separating if the
two sets divide X into 4 sets of size at least s. The maximum number h(n, s)
of pairwise s-strongly separating subsets was asymptotically determined by
Frankl [8] for fixed s and large n. A new proof is given. Also, estimates for
h(n,cn) are found where ¢ is a small constant.



1 Introduction

Let X be a finite set of n elements. The following notion was introduced by
Marczewski [17]. The subsets A, B C X are called qualitatively independent
if they divide X into four non-empty parts that is ANB, ANB, ANB, ANB
are all non-empty. The significance of this notion in search theory lies in the
consequence that after knowing if an unknown x is in A or not we cannot
decide the same question for B, independenly on the answer for the first
question. The family F C 2% is called independent if their members are
pairwise qualitatively independent.

Rényi asked [23] the question what is the maximum size of an independent
family in an n-element set. The answer was found by the present author ([12],
see also [23]), and independently by Brace and Daykin [5], Bollobas [3] and
Kleitman and Spencer [16] (see also Schonheim [24] ).

Theorem 1.1 The mazimum number of pairwise qualitatively independent

;L

If the family F is independent then A, B € F,A # B implies A ¢ B
that is F is inclusion-free. The maximum size of an inclusion-free family is
determined by a classical theorem of Sperner [25].

Theorem 1.2 If F is an inclusion-free family in an n-element set then

7= ()

The following sharpening of Sperner’s theorem is also well-known as the
YBLM-inequality (earlier LYM) (see [27], [4], [13], [18]). It involves the sizes
of the “levels” of the family. If F is a family, define f;(F) = {F : F €
F|F| =i}

Theorem 1.3 If F is an inclusion-free family in an n-element set then

I

holds.



Kleitman and Spencer [16] introduced the notion of k-indpendence. A
family F C 2% is called k-independent iff

Mo AT # 0

holds for any choice of distinct Ay,..., A, € F and ¢; = 0,1 where A° =
A, A' = A that is when any k& members divide X into 2 non-empty parts.
Let f(n, k) denote the maximum size of a k-independent family. They proved
the following theorem.

Theorem 1.4 (Kleitman and Spencer [16]).
201271%7171 S f(’I’L, k’) S 2022”“71.

See also [1].

A set A can be considered as a partition (A, A). A generalization in
this direction is to consider partitions into r parts that is r-partitions. Two
r-partitions are called qualitative independent if all the r? intersections of
the classes are non-empty. The maximum number of pairwise qualitatively
independent r-partitions is denoted by g(n,r). As this is exponential in n
and an exact formula for g(n,r) is hopeless, it is sufficient to consider the
exponent:

. 1
¢ = limsup —log g(n, ).
n—oo T
After some preliminary results ([19], [20], [21], [22], [15]) Gargano, Korner
and Vaccaro have determined the exact exponent.

Theorem 1.5 (Gargano, Korner and Vaccaro [9]).

9
=2 (2<7).
G = (2<r)

For a recent interesting result concerning qualitative independence see
[14] .

A family S C 2% is s-strongly separating iff all four intersections ANB, AN
B, AN B, AN B are of size at least s for any two distinct members A, B € S.
The maximum size of an s-strongly separating family is denoted by h(n, s).
The determination of h(n,s) was asked in [12]. It has been asymptotically
answered by Frankl for fixed s.



Theorem 1.6 [§]

m m
dy(s)— < h(n,s) < da(s)—.
n°"z n°"z
where
21
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do(s) = \/%252(3 — Dl +e

The author returned to this question now because Benjamin Weiss [26]
suggested the following related problem. Find the maximum number of se-
quences of length n over the alphabet {0, 1,2} such that ifa = (a4, ...,a,),b =
(b1,...,b,) are two such sequences then every pair (¢, d) ¢,d € {0,1,2} oc-
curs either 0 times or at least twice among the pairs (a;, b;) (1 <i <n). The
analogous problem for {0, 1} is just h(n,2).

However we only found a new proof for Frankl’s theorem and some esti-
mates for the case when s = c¢n where ¢ is a small constant.

In the new proof of the upper estimate (in Theorem 1.6) it is sufficient
to use the following weaker condition. A family F is called s-diffbounded ift
|A— B| > s holds for any two members of F. Let us mention that a family is
1-diffbounded iff A ¢ B for any two distinct members, in other words, iff the
family is inclusion-free. It is obvious that if S is s-strongly separating then it
is s-diffbounded. The following theorem is a generalization of Theorem 1.3.

Theorem 1.7 Let s be a positive integer. If F is an s-diffbounded family in
an n-element set then

i fi(F)(isgl)) <1. (1.1)

Christian Bey [2] called the author’s attention to the fact that Theorem
1.7 is a special case of Theorem 4 of [28] (i =t in its notation).

Corollary 1.8 Let s be a positive integer. If F is an s-diffbounded family

m an n-element set then N

2
[ F| < ds(s)

1
n°"2



where

ds(s) = (\/%281(3 - DI+ 5) .

If § is s-strongly separating then the family
F={S8: S8}

is s-diffbounded. Here |S| < %|F| holds and this yields the following im-
provement of Corollary 1.8.

Corollary 1.9 Let s be a positive integer. If S is an s-strongly separating
family in an n-element set then

2 2"
S| < <\/j25_2(s — D!+ 5) -
T ns 2

In Section 3 the case when s = cn is considered. We have a non-trivial
upper estimate only when c is small.

Theorem 1.10

h(n, cn) < 2n(—%10gc—1.099)+0(n)

where ¢ < 0.099.

2 The case of fixed s

Proof of Theorem 1.7
Define the r-shadow of a family F in the following way.

o, (F)={A—-B:BCAecF,|B|=r}

Let A, B € F be distinct members and choose an s — 1-element subset C'
of A. Here |[A—B| > s implies A—C ¢ B. If D is an s — 1-element subset of
B then A—C ¢ B — D follows. This is obviously true if A = B but C # D.
Therefore o,_1(F) is inclusion-free.

Determine the sizes of the levels of o1 (F). The sets on level j =i—s+
1 (s =1 <i < n) are obtained from sets on level 7 in F:

Fi(0ur(F)) = fz-(f)( Z' )

s—1
The YBLM-inequality for the family o,_1(F) is exactly (1.1). i



Proof of Corollary 1.8
Theorem 1.7 will be used. Find the minimum of the ratio

(.4)
(i-51)

in the terms of (1.1). The above ratio is equal to
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(k)
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Its minimum is

Therefore (1.1) implies

n (%)
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s—1

1=s—1

The application of the Stirling formula leads to the desired result.

It is easy to see that

2
mﬁff%ﬂws
7
for large enough n.

Now Clorollary 1.9 easily follows.

In the proof of the lower estimate of Theorem 1.6 the following result will
be used from coding theory. A codeword is a 0,1 sequence of length n. We
say that the codeword has weight w if the number of 1s is w. The Hamming
distance of two codewords is the number of different digits. Let A(n, 20, w)
is the maximum number of codewords of weight w with pairwise Hamming

distance at least 24.

Theorem 2.1 (Graham and Sloane [10] ) Let ¢ > n be a prime power. Then

% < A(n,26,w).



Proof of of Theorem 1.6
The upper estimate is a consequence of Corollary 1.9.

The construction of the lower estimate is based on Theorem 2.1. Use the
theorem for n — s,2s,[5] — s. The codewords define, in an obvious way,
subsets of an n — s-element set Y with pairwise differences at least s. Denote
this family by F'. Add a disjoint set U to Y, where |U| = s. The extended

underlying set is X =Y U U. Define
F={FUU: FeF'},

that is U is contained in all the sets. Since the difference of any two members
of F’ have size at least s, the same holds for any two members of F, that is,
F satisfies the conditions of the theorem. By Theorem 2.1 we have

qsfl

< |F). (2.1)

By the prime number theorem there is a prime ¢ satisfying n < ¢ < n+o(n).
This fact, (2.1) and the Stirling formula proves the lower estimate with

21
dl(S) = \/;g—ff

for large enough n. i

3 The case when s = cn

The other end.

In the previous section the case when s is much smaller than n was
cosidered. Suppose now that n is divisible by 4 and s = 7. Let S be an -
strongly separating family. Then A, B € S, (A # B) divide X into four parts
of 7 elements each. Associate a vector with coordinates 1, —1 with a member
A of § writing 1 in the ith position iff the ith element of X is in A. Denote
the vectors obtained in this way from the members of S by vy, vs,...v,,. It
is easy to see that the inner product v;v; is 0 for 1 < ¢ < j < m. Let v
have 1s in each coordinate. Then vyv; = 0 also holds (1 < ¢ < m). That
is, vg,v1,...,U, are pairwise orthogonal vetors in an n-dimensional space.

Then m < n — 1 follows. The following little statement is obtained.



Proposition 3.1 Let n divisible by 4. Then
n
h( ,-) <n-—1
ny)=n
with equality iff there is a Hadamard matrix.
Consider now the case when n = 4s 4t with a small positive integer ¢. Then

lv;v;| < t must hold for all 0 < i < j < m. Since |v;] =n (0 < i < m)

— Y

therefore the normed version of v; is u; = |Z—| = Their lengths are 1, on

the other hand |uZuJ] < % holds for 0 < i < 7 < m. We arrived to a geometric
problem: what is the maximum number m of points on the surface of the
n-dimensional unit ball B™ (it is called the n — 1-dimensional spherical space
S~ 1) if the angle ¢ between any two vectors determined by these points
satisfies | cos ¢ < L.

A slightly different version of this problem is widely studied: what is
the maximum number M (d, ¢) of points on the surface of the d = (n — 1)-
dimensional spherical space S? if the angle between any two vectors deter-
mined by these points is at least . For good surveys see [7] and [6] .

In our case the vectors ug, uy, ..., Upy, —Ug, —U1, . . . , — Uy, POSsess the prop-
erty that their pairwise angle is at most arccos #. Denote the maximum
number of points P, ..., P, in the d-dimensional spherical space such that

the angle between any two of these points and their opposites is at least ¢
by N(d,y). The inequality 2N (d,¢) < M(d,p) is obvious. It does not
always hold with equality as the case d = 2,9 = arccos% shows, since
M (2,arccos 3) = 9 while N(2,arccosg) = 4. We have proved the follow-
ing lemma.

Lemma 3.2

1 t
)—1 < =M (4s+t—1,arccos

h(4s+t,s) < N(4s+t—1
(4s+t,s) < N(4s+ , AICC0S - 5 P

)—1.
In order to obtain good estimates on h(4s + ¢, s) for fixed t and large s one
should study the corresponding values of M(d, ¢) and N(d, ). E.g. it seems
to be not difficult to prove the inequality h(4s+1,s) < 4s+1, but h(5,1) =4
by Theorem 1.1 showing that the equality does not always hold.

The middle case.
Here we want to find h(n,cn) where ¢ is a constant and n is large. Our
only result is Theorem 1.10.



Proof of Theorem 1.10. This upper estimate is a trivial combination of
Lemma 3.2 and a theorem of Kabatjanskii and Levenstein [11] claiming

M(d, ) < (1 — cos )~ 227009+ (< 62,9974 .. °),

We have no reasonable lower estimate. Theorem 2.1 does not help, since
its estimate tends to 0 when s = ¢n and n tends to oco.

4 Open problems

Restriction with the pairwise entropy.
Let us repeat a problem posed in [12]. If p = (p1, ..., pm) is a probability
distribution then its entropy is

m

H(p) =) —pilogp;.

=1

Define the entropy of a pair of sets A, B C X as the entropy of the probability
distribution

<MmB|MmB|Mm§HXnE)
XX XX

What is the maximum number of subsets Ay, ..., A,, of an n-element set X
if the entropy of any pair A;, A; (i # j) is at least p? The case p = 4 is
solved by Proposition 3.1.

Combining the problems.
The combinations of the problems of Theorems 1.4, 1.5 and 1.6 give rise
to many new problems.
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