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D. Konie has formulated the following theorem (see in [1] in a more
general form):

Let & be a finite connected graph and g a real function defined on the
vertices of (. Suppose that g(x) is the arithmetic mean of the values attained
by ¢ on those vertices which are connected with z by an edge. Then the
function g is constant on the set of vertices of G.

In this paper we try to generalize this problem for finite directed
graphs. More precisely, we investigate for which graph holds the above
property.

We will use the notation of C. BErGE [2].

Finite directed graphs

Let @ = (X, I') a finite directed graph without loops and multiple edges,
where X = {a;, ..., @,} is the set of vertices and I is map of X into
X (x¢1'x). Suppose that

1 5
(1) gla;) = > g(x) (Fe,#@,i1=12...,n).
1 I'x; \ x€lxi

We say that G has the Kionig-property if any function g satisfying (1) is con-
stant on X. Gn the other hand a non-empty set A is called a sink-set, if
I'A c A.

We may formulate the following theorem.

TurorREM 1. A finite directed graph G = (X, I') has not the Kénig-property
if and only if it has two-disjoint sink-sets.

The PROOF OF THE NECESSITY is the same as the original proof of KONIG.
Let A be the set of vertices, where g attains its maximum, and similarly,
let B be the set of vertices where g attains its minimum. Since, by the suppo-
sition, ¢ is not constant, 4 and B are disjoint. Now we verify in an indirect
way that A is a sink-set. Let a; and «; be two vertices such that x; € 4,
;¢ A, By € ["2;. In this case
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holds, because the right side is the arithmetic mean of values smaller than
or equal to g(x;), but at least one of them is strictly smaller. Similarly, B is
a sink-set, too.

Proor oF THE suFFICIENCY. We have to show if there are two disjoint
sink-sets A, B in X, then there exists a non-constant function g satisfying (1).

() We can suppose that there does not exist a sink-set €' in X such that
Cc X—AyB. In the contrary case we can use 4(JC instead of 4. (Or
finite times repeating this.)

Determine the indices so that 4 — ks 1 Thgar oo, 2} and B = {a,, .,
%149, - - - Xy} and rewrite (1) in the following form:
(2) — Tz gx) + 3 g@) =0 (I<i<n).
x€Ilx;

(2) is a homogeneous linear equation system. We must show that it has a
non-constant solution.

Let us consider the matrix N of coefficients of (2). Obviously, a; = —|I'z,|
and
1if o;€I'x;
0 otherwise.

Using the fact that A4 is a sink-set we obtain
_Oif k<i<l and 1<j<k;

tF79) -

(3) @y j ; ; .
if k<i<<l andl <j<nm.
Similarly
(4) a; =0 if I<i<n and 1<j<1,
because B is a sink-set, too. Finally,
n
(5) 2'1 a;; =0 1<i<n)
i=
is also obvious. The matrix N has the form
M
(6) Ne=| ® 0
ol o |
Put
0if k<7<,
gl =4 T >
1ifl <i<n.

These values satisfy the last n — % equations because of (3), (4) and (5).
It remains to solve the equation system

k n
2 a;9)+ 3 a;;=0 1<e<h).
j=1 j=I+1
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We will show in an indirect way that | M| 0, where M denotes the matrix
of coefficients of the variables g(z,), . . ., g(ax). Before the proof let us note a
property of the sum of a row in M. Instead of (5)

) 3y <0 (1 <i<h)
2

holds because non-negative elements are omitted from each row. If [M| = 0,
then the column vectors v; of M are linearly dependent, that is, there are
¢y - - -, ¢ real numbers such that

I K
(8) Zlcjvjz(), _ '2'](:}*’>0.
j= j=

We may assume there is a positive number among ¢, ..., ¢ Thus

max ¢; =d > 0. Let us choose the indices in such a manner that
1<j<k

6, =C¢=...= =c¢,=dbut ¢; < dforr <j< k. By condition (x) there
are m (1< m < r)and ¢ > r such that

(9) Uy = 1.
We separate two cases:

(@) 1 <t < k;
(b) k< t< n.

In the case (a) ¢; < d and in the case (b) we obtain from (5) and (9) the in-
equality
K
(IO) 2 amj <0
=1

instead of (7).
We will show that (8) cannot hold for the m-th co-ordinates. The following
inequality is trivial:

k ke
J.Zlcf“mi: — | LTy | + Z; i < —d| x|+
= j=
(11) Jj#Em
K k
+ Zdamj:dzamj;
J=1 j=1

Jj#Fm

and in the case (a)strict inequality holds. Thus, in the case (a) (11) and (7)
result

K
(12) '21 ¢jm; <0.
J:

In the case b) (12) follows from (11) and (10). The proof is completed.

COROLLARY. Every tournament and strongly connected graph has the Konig-
property. -
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The proof is obvious.

Let ¢ be an undirected graph. If we assign directions to the edges of G in
an arbitrary manner, then the resulting graph G is called an orientation of
G. If G is a complete graph, then any orientation of @ is a tournament,
thus, by Corollary, it has the Kénig-property. However, for the other cases
we have the following theorem.

THEOREM 2. Let G be a finite undirected non-complete graph. Then G has

an orientation Gf having the Kénig-property and another orientation G having
not this property.

Proo¥. Since ¥ is non-complete, we have two distinct vertices x; and x;
which are not connected by an edge. Assign directions to the edges incident
with 2; or x; in such a manner that z; and x; have only incoming edges.
The directions of the other edges are arbitrary. In this case {z;} and {a;}

will be sink-sets in the obtained graph G*. By Theorem 1 G* has not the Ko-
nig-property.

We prove the second part of the theorem first for trees. Let us consider
a terminal vertex e of a tree 7. We can assign directions to the edges of 7'
such that there exists a divected path from any vertex to e. Obviously, any
sink-set of the resulting 7'* contains the vertex e, that is, there are no two
disjoint sink-sets; T* has the Konig-property.

Let now G be an arbitrary undirected graph and 7' a spanning tree of G.
Assign directions to the edges of 7' in above manner and to other edges of ¢
in an arbitrary manner. We know that 7'* has not two disjoint sink-sets,
but the adding new edges does not fail this property, that is, G* has the
Kénig-property, indeed.

General solution of (1)

It a directed graph @ has the Konig-property, every solution of the system
(1) is constant. However, it is also interesting what is the general solution
of (1) if & has not the Kénig-property.

The following properties of a directed graph & are well-known (see e.g.
[3], p. 149.). We say that two vertices a, and x; are equivalent if they are
mutually connected (there is a directed path from z, to « jand another direct-
ed path from z; to x;) or ; = ;. This is an equivalency relation; the equi-
valency classes are called leaf, the section graphs defined by a leaf are the
leaf graphs. All the edges connecting two leaves have the same orientation.
We can construct a leaf composition graph G’ whose vertices are the leaves
of . Two leaves L, and L, are connected by a directed edge in " when there
are directed edges from L, to L, in G. A leaf graph is strongly connected.

Let L be a leaf of @ and let the corresponding vertex of L a sink. We call
such a set L minimal sink-set. (It is obvious by definition of G’ that Lisa sink-
set in G.) Let further ¢ be a function defined on G satisfying (1). Since L
has not outcoming edges, g satisfies (1) on L, too. However, L is strongly
connected, thus, applying Corollary we obtain that g is constant on 7.
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Consider all the minimal sink-sets L,, L, . . ., L, of G. g must be constant
on each of L;'s. Let us given these constant values in an arbifrary manner on
Ly, Ly, . . ., L,,. The other values of g are already uniquely determined by (1).

The proof of this statement is the same as the proof of sufficiency of
Theorem 1. Only that we have more than 2 sink-sets.
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