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Let k=m, and M be a finite set of cardinal number m. Determine the largest
number n such that there exists a system of n sets a, satisfying the conditions

a,cM, a,#a,, |aal=k (p<v<n),

where |a| is the cardinal number of a.
If m+k is even, then the system consisting of the sets a such that

acM and |a|=4(m+k)

has the required properties. P. ERDGs, CHAO Ko and R. RADO have guessed, that
this system contains the maximum possible number of sets [1].

In this note 1 prove this conjecture, and determine the extremal system also in
the case when m+k is odd. For the proof I use a theorem (Theorem 2) which is
also interesting in itself.

Notations:

The letters a, b, ¢, d, e denote finite sets of non-negative integers, all other
lower-case letters denote non-negative integers. If k =/, then [k, /) denotes the set

k,k+1,..,1-1} = {t:k=1<l}.

The obliteration operator ~ serves to remove from any system of elements
the element above which it is placed. Thus [k, I)={k, k+1, ,f} The cardinal
number of the set a is denoted by |a|; inclusion, union, difference and intersection

of sets are denoted by acbh, a+b, a—b, ab.
If k=Il=m, S(k, 1, m) denotes the set of all systems {a,, a,, ..., @,} such that

a,c[0,m), |a,|=1 (v=<n),
a,#a,, l|aa/lzk (u<v<n).

Put A ={ay, ..., a,}, where |a,| =1 (v<n). A° or {aq, ..., a,}? denotes the system
of sets b, such that |b,|=g, b,#b, (u<v=<|4%), and for some pu b,Ca,.

Let us consider 4={ay, ..., a,}, where a, are arbitrary sets. Denote by A4,
the subsystem of sets a, satisfying the conditions a,€ A and |a,|=1

THeOREM 1. If 1=g=/ 1=k=! and g+ k<, further ¢>0, then there exists
a system A={ag, ...,a,} € S(k, 1, m) for which

|47]
~— <t
n
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PROOF. Let m=k be a non-negative integer. If a,, a,, ..., a, are distinct sets

such that
[0,k)cac[0,m) and la|=/,

then A={aq, ..., d,} € S(k,/,m) and n =[T:f] Clearly |A¢|= (;'] (in fact itis

[”" y
I—k
can be arbitrarily small, if m is sufficiently large, because g</—k.
THEOREM 2. If 1 sg=/l1=k=landg+k =], further A= {a,, ..., a,} € S(k, |, m)

easy to see that |A'|=[’;] ] and

then
)
1 n————=— = |44
(1 [21 k] | 4|
ReMARK. From g=/—k and /=g it easily follows that
[ZI—k]
g
2 —= =1
(2 [2!_ k]
/

and equality holds if and only if g+k = lor g=1.

Proor of Theorem 2. If g =1/, the theorem is trivial (moreover always equality
holds). In what follows we consider the case g</.

We distinguish three cases.

Case 1: 2l—k=m.

By counting in two different ways the number of pairs (a,, ¢) where c€ A¢
and cca,, we obtain

I m
el

We have to prove that

[:gl [“




INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS 331

This is trivial, if 2/ — k =m, moreover equality holds only in case 2/ —k = m.
Hence we obtain that equality holds in (3) only if m = 2/—k and every ¢ is included

in (T: g] distinct sets a,, that is A4 is the system of all subsets of [0, m). Thus equality

in Case 1 can hold only in this way.

Case 2: g=1.

Since g+ k=/, we have k=/—1. There are two cases: k=[/ and k = /—1.
If k=1, then n=1 and we can choose m=k. Here 2/—k = k = m, therefore we
have Case 1. Assume next k = /—1. If we have a system A4 = {aq, ..., d4,} €
€ S(/—1, I, m) such that every set of / — 1 is included at most in two a,, then consider
the set aya, . Clearly |(a¢a,;)a,| <!—1, on the other hand |(apa;)a,| </—2 is impos-
sible, because in this case we should have

laga,| = |(aga,)a,|+1 < (I-2)+1 =1-1.

Thus |agaya,| = 1—2.

We have a,—a, Ca, for every v, because of |aga,| = /—1 and |(apa,)a,| =
= [—2. Similarly a, —a,ca,. Here aya,, ay—a,, a; —a, are disjoint sets, there-
fore
(4) a, = (ap—a,)+(a, —ap) +aga, — 4,,
where A, is an element of aga,. From this results n=/+1, and every element is
contained at most in / sets a,. Thus n % = |A'|, since every a, has exactly / elements.

If the system A is such that there is a set ¢ satisfying |c¢| = /— 1, which is included
at least in 3 sets a, (for example ay, a, and a,) then for arbitrary v<n ¢ca,. Namely,
|ca,| < I—2 can not be true, because in this case |aga,| < I—1, similarly |ca,| =
= /—2 can not hold, since its consequence would be a,Da,—¢, a,Da, —c and
a,=a, —c because of |apa,| = laa,] = |la,a,] = -1, that is |a,| = /41, which
is impossible. This completes the proof in Case 2, since here |[A!| = n+/—1>n.

In Case 2 equality can hold if and only if every set of /—1 is included at most
by two a,, and A consists of all sets a, satisfying (4). This falls under Case 1, where
equality holds.

Case 3: 2]—k <= m and g=>1.

We use induction over m, and we apply Cases 1 and 2.

Here 1 <g</=m, thus m=3. First we consider m =3, Here /=3, thus n=1,
g=2, k=1 or 2 (k=3 is impossible, since we should then have 2/—k = m, and

B _, )

this is Case 1). Since |42| =3 and g 7 —. in both cases strict inequality
HEE

holds.

Suppose that m=3 and for m —1 Theorem 2 is true. We prove the theorem
for m. Denote by s, the sum of the elements of a,. We can clearly assume that our

n=1

system is such that |4¢| is minimal and amongst all such systems 2 s, is minimal.
veD

Denote now by A the system A= {a,:v<n}.
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We separate in Case 3 two subcases.
Case 3a. Suppose that whenever

m—1¢€a,éA and A€[0,m)—a,
then
a,—{m—-1}+{i} €A.

We may assume that for some no=n, m—1¢€a, (v<n,) and m—1lga,
(no=v=<n). If n=1, this is Case 1, because we can choose m =/ and thus 2/—k=m
holds. Let be n> 1. If n, =0, then the theorem holds by our induction hypothesis.
Suppose that no=2. Let be p<v<n,. Then |a,+a,| = 2]—k < m, and there
exists an element A€ [0, m) —a, —a,. Putb, = a,— {m—1} (u<n,). Here b, + {1} € 4,
|bb,| = |(b, -f:{l])b.] = |(b,+{4))a,| =k, and therefore /—1=k and
B = {bg, ..., by} €S(k,1—1,m—1). If no=1, since n>1, then m—1da, and
laga;| = /—1. Thus also /—1 = k and B = {bo} € S(k,/—1,m—1). We can use
our induction hypothesis, if no=1 and g—1>1, since both g—1+k = /-1
(because of g+k = /) and g—1 < /—1 (because of g </) hold, and /—1=k=1.
Therefore we have in this case

[2(1— 1)—k

g1 ] = |B-!| = p.

©) " [2(:-1)-1:]

-1

We can not use the induction hypothesis, when g — 1 = 1 that is g =2. However,
(5) holds, because we can apply Theorem 2 for k, /—1 and g—1 = 1 (Case 2).

On the other hand C = {a,,, ..., 4,} € S(k, I, m — 1). We can use the induction
hypothesis, if / = m—1:

21-::]

2.'—k]
!
If /=m, then this is Case 1, because 2/—k = m. Trivially
[w—k‘ [2(1-1)-&]
£ ) g""l

[Zl;k] - [2(:;_1)1-k]

(6) (n—ny)

= |Co =r.

M

since />g and g+k—1/ = 0.
Adding (5) and (6), applying (7) we get

7

(8

=p+tr.
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Denote by d, (v=p) elements of B?~', and by ¢, (v<r) elements of C9. Let
e, =d,+{m—1} (v <p). Then obviously le,| =g, e, =e, (u=v=<n). Moreover for
every v<p there exists an index u<ng, such that d, cb Hence e,ca,, since
e, =d,+{m—1} and a, = b,+ {m—1}. Thus e, < 4", moreover trmally e, #¢,
(p-cp,v-:r] since m—lCe and m—lde,. Consequemly (P o TP ST -7 S -

P
are distinct elements of A9, that is

pt+r = |49,

which completes the proof of 3a.

It remains to prove that in Case 3a equality can not hold. If m = 3, this is true.
Suppose now that m =3, and use induction over m. Apply the same steps, as in
the proof of the inequality. In those cases, where then induction could be used,
it can be used here too, that is if m =2/ —k, then m —1 = 2(/— 1) — k. Thus it follows
by induction hypothesis that in (5) (and in the theorem) strict inequality holds.
Those cases where induction could not be used are settled by Cases 1 and 2. Thus
in Case 3a strict inequality always holds.

Case 3b. Suppose that there are a€ 4 and 4 € [0, m) — a such that m —1€a and
a—{m—1}+{A}¢ A. Then A<=m—1.

We may assume that the sets are labelled in such a way, that the following
relations hold:

m—1€a,, Aa,, b, = a, —{m—l{+{4;&’rl (v <nyg),
m—1¢€a, iéa, ¢, =a,~{m-1}+{i}€A (ng=v<ny),
m—1€a,, A€a, (n,=v<n,),

m—14a, (n, =v=n).

Here 1 =no=n,=n,=n. Put b,=a, (ng=v-<n). We have now to prove that
B = {bg, ..., b} € S(k, I, m).
Let be y<v<n. We must prove that
b,#b, and |bb,|=k.

For p=v<ng or ng=pu<v these are obvious. Now let be y<ngo=v. Then b, € A4,
b,=a,€ A, and hence b, #b,.

If ng=v<n,, then ¢,€A; and there are k distinct common elements of a,
and ¢,. A and m—1 are not among these, therefore they are common elements also
of b, and b,=a,.

lf ny,=v<n,, then |a,a,| =k, but 4§ a,a,. If instead of a, we take b,, then out
of the common elements at most one is lost: |b,a,| = |b,b. Izk—l but i. which is
common element, does not belong to these k — 1 elernems Thus |bb,| =k.

Finally, if n, =v <n, then a, and a, have k common elements. m -I does not
belong to them, since m — 14 a,. Therefore the same k elements are also common
elements of b, and b,. Thus B¢ S(k, /, m) is proved.

Now we must show, that | 49| = |B¢|. Let ¢ be such a set that |c¢| =g, c€ B but
c§ A?. Then cc b, for some v<n, because of c¢¢€ B?. Obviously v-<n,, because if
nog=v=<n, then b,=a, and c€ 4.

/€c, because cc b, for some v<n,, and cTa, = b,+{m—1} —

On the other hand m — 14 ¢, because of m—14 b, (v=<n,).
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Let be d = ¢—{A}+ {m—1}. Here dCa,, that is d€A* since ccb, and
b, = a,— {A}+{m—1}. However, d¢B*. If dcb, would hold for some v<n,
then obviously ng=v=<n, because in the cases v<no and my=v—<n, m— 14 b,
holds. If ng=v=<n,, then ccc, = a,— {m—1}+ {4} holds (for such v, for which
dc b,) and since c, € A, follows ¢ € 4%, which contradicts our supposition. However,
if dc b, holds for n, =v<n,, then cCa, because of 1€b,=a,, m— 1€b, = a,,
and this also is a contradiction.

Hereby we associated a set d to every set ¢, which is an element of B¢, but is
not one of A¢ (to distinct sets ¢ correspond distinct sets d) in such a way, that set
d is an element of A?, but is not one of B¢. From this follows

&) |A%| = | B9|.
Since for fixed n we supposed A to be the system, for which |4¢| is minimal, in (9)
only equality can hold. However we have

fbo oo ba)—f(@o, .., @) = no[— (m—1)+ 4] <0,

which contradicts the maximum property of 4. This shows that Case 3b can not
occur.,

REMARKS.

1. In this proof 1 used the sequence of ideas contained in the proof of ERDOS—
CHAO Ko—RADO's Theorem 1 ([1]).

2. We showed also, that equality can hold in Case 1, and here only if m = 2/—k,
and A contains every subset of cardinal number /, or in the trivial case g=1

The following are all consequences of Theorem 2.

3. THEOREM | OF ERDOsS—CHAO Ko—Rapo [1). If 1=/=4im and
A={ao, ..., a,} € S(1, 1, m), then n;-(?:ll].
Proor. Let b, = [0,m)—a, and B={b,,...,b,}. Then [|b|=m—I=l,
|b,b,| = [0, m)—(a,+a,)| 2 m=2I+1, because |a, +a,| = 2/-1 (u<v=<n). We
use now Theorem 2 for m—2/+1, m—1I and [ in place of k, / and g. We can apply

the theorem, since 1=/=m—1, 1sm—2l+1=m—1 and /+(m—2/+1) = m—1.
Thus

Im— 1]
/
(10) n——+=+ = |B'|.
[m-— 1
m—1
Let be c€B'. Then there exists a number p<n such that ccb,. For this
([0, m) -b,)=ca,=®. Thus cq A. Consequently

|B'|+|A| = |B'|+n = [T]
From this, applying (10),
m— l]
n= .

=1
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REMARKS.

1. [1] contains this theorem in a more gencral form which follows from the
form proved here by a simple step, shown in [1].
2.If 21—k=m, la,|=1! (v<n), and {aq, ..., a,| € S(k, !, m), then trivially

n 5[?] and this estimate is the best possible. If 2/—k <m, then according to

Theorems | and 2 of ERD6S—CHAO Ko—RADO [1], the estimate né(T__kk] holds

in most cases. The estimate is however not true for every case: In [1] an interesting
example is cited. Further simple example:

2a. Let k = [—1, |a,|=/. Then either n=/+1 or n>1+1.

Consider in the latter case the subsets of a, having /— 1 elements. The number
of these is /, and one of these is included in a, (1=v<n). Thus there exists a set
¢ C agy such that |¢| = /—1, and there exist two sets, for example a, and a, for which
cCay, cCay. We showed if there is a set ¢ for which |¢| = /— 1 and which is included
at least in 3 sets a,, then for everyv<n c¢Ca,. As a consequence n =m—1[+1,
because there can exist at most as many sets @, as the number of distinct elements
which are not contained in set ¢. That is n=max (/+1, m—1+1), and there is
always a system satisfying the equality.

2b. Let m = 21—k +1, |a,|=! (v<n) and k> 1. Use Theorem 2 for g = /-
—k+1:

! a U=k+1| —
(1) ﬂm = I{ao. ....a,,} | = p.

If ¢c€{ay,....a,}'"**' then |[0, m)—¢| = I. Moreover, since cCa, for some
ven, la,([0,m)—c)| = la,—c| = k—1. Thus [0, m)—cé A and the elements of
A and the complementary sets of the elements of A'~**' are distinct, therefore

[2)‘—k+l]
n+p = / .

- lzf—k] B [m—l
= ! — ; .
Here equality holds if and only if A is the system of all subsets of [0, m—1)
having / elements. Namely, according to Remark 2 of Theorem 2 equality in (11)

can hold only if the number of elements is 2/ —k and A is as specified. In this case
equality is trivial.

Hence applying (11)

THEOREM 4, Let 2=k=m. If A={ay, ....a,} is a system such that a,#a,,
la,a,| =k, a,=[0.m) (u<v-<n), then either
(a) k+m=2 n= 3 [T]

or
(b) k+m=2r—1 né[T:|1]+ ﬁ -

i=p f
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Moreover there exists a unique maximal sysiem of sets a such that ac [0, m)
and |a| v in case (a), and in case (b) a system of sets of the same property and additio-
nally of all the sets satisfying the conditions

az[0,m—-1) and lal =v—1.

Proor. 1. If |=k=I/=m and 4A={a,, ..., a,} € S(k.l, m), then "é[ffkl‘

From Theorem 2 for /—k = g follows n=|A'-*|. However, |A'-¥| -E-L.Tk], that

. m
15 né(;_k]-
If in addition /—k <4(m— 1) then "élfink]{[l-:'-kl '

2. If I<4(m+k—1) and A is an arbitrary system satisfying the conditions
of Theorem 4, then

m m
(12) [AII""‘A-"-H-I-”é("‘_!_{_k_‘]:[’_k_},l]'

and equality can hold only if |4,/=0 and A,,_,,,_, consists of all the sets a such
that |[a| = m—I+k-1.

Proof of (12): If I<4(m+k—1), then /|—k<4(m—1) thus by 1:

, m
“’*"‘l:-kﬂ]'

If |4,]=0, (12) is true. If 0<|A,|<(,_2’+l], we shall show, that

m
M'_'“_'I{(m-f-}-k— l]—|-41|-

Let ¢€(A,)'-**'. Then there exists a number v such that ¢Ca,, |a,| =/ and
a,€A, thus |a([0,m)—c)| = |a,—c| = k—1 <k, and hence [0, m)—c¢ A. Since
[0, m)—c| = m—I+k—1,thereare |(A4,))~**!|sets of cardinal number m — I+ k — 1,
which can not be elements of 4 and 4, _,,,-, respectively. We have

[Am-tsx-1] = [ ]"'KA;V_*HL

m—Il+k—1

To complete our proof we must show, that |[(A4,)=**'| = | A4,|. This trivially follows
from Theorem 2. We can use the theorem because of k=2, (/—k+1)+k=/ and
I>1—k+1 and thus the coefficient (2) is larger than 1. Equality can hold only in
the case [4,|=0.

3. |A,| =0 (u=<k), thus we have to determine the maximum of |A4|=|4,|+ ...
...+ |A,|. By 2 the pairs |4, +|A4,-1l, |Axsil+|Am-2]. ... are maximal, if the
first term is 0. The last pair is |Aym+n-2)| + |d4m+x)| and herealso! = 3(m+k —2)<
<4(m+ k —1). The maximum of |4,,| is 1. This completes the proof in the case (a).

Similarly in case (b) for the maximal system |4,|=0 (u<4(m+k—1)) and
|An|=1. Only the term |4, ,,-,,/ remains. In the Remark 2b we have shown that
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m - | m—1 ¢ y

is the system of all the sets satisfying the conditions
acl0,m) |al=4(m+k—1).

This system trivially satisfies the conditions. Therefore this is the maximal
system as stated.
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