Work after 2000

Work in relativity theory after 2000

Work in relativistic computing

Work in algebraic logic after 2000

Sample papers

ˇ         A twist in the geometry of rotating black holes: seeking the cause of acausality.  General Relativity and Gravitation 40,9 (2008), 65-89. Andréka, H.  Németi, I. and Wüthrich, C.

ˇ         Visualizing  ideas about Gödel-type rotating universes. In: Gödel-type Spacetimes: History and New Developments. Eds: M. Scherfner and M. Plaue. Kurt Gödel Society, Collegium Logicum X, 2010, 77-127. Németi, I. Madarász, J. X.  Andréka, H. and Andai, A. 

ˇ         Axiomatizing relativistic dynamics without conservation postulates. Studia Logica 89,2 (2008), 163-186.  Andréka, H. Madarász, J. X. Németi, I.  and Székely, G.

ˇ         Logic of spacetime and relativity. In: Handbook of Spatial Logics. Eds: Aiello, M. Pratt-Hartmann, I., and van Benthem, J. Springer Verlag,  2007. pp. 607-711.  Andréka, H. Madarász, J. X. and Németi, I.    Further recent work in relativity

ˇ         Relativistic computers and the Turing barrier. Applied Mathematics and Computation 178 (2006), 118-142.  Németi, I. and Dávid, Gy.           Further recent work in relativistic computing

ˇ         Weakly higher order cylindric algebras and finite axiomatization of the representables. Studia Logica 91,1 (2009), 53-62. Németi, I. and Simon, A.

ˇ         Epimorphisms in cylindric algebras and definability in finite variable logics. Algebra Universalis 61,3-4 (2009), 261-282. Andréka, H. Comer, S. D. Madarász, J. X. Németi, I. and Sayed-Ahmed, T.

ˇ         Omitting types for finite variable fragments and complete representations of algebras. Journal of Symbolic Logic 73,1 (2008), 65-89.  Andréka, H.  Németi, I. and Sayed-Ahmed, T.

ˇ         Mutual definability does not imply definitional equivalence, a simple example. Mathematical Logic Quarterly 51,6 (2005), 591-597.  Andréka, H. Madarász, J. X. and Németi, I.

ˇ         Algebras of relations of various ranks, some current trends and applications. Journal of Relational Methods in Computer Science 1 (2004), 27-49.  Andréka, H. Madarász, J. X. and Németi, I. Further recent work in algebraic logic