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a b s t r a c t

The huge number of solutions in genome rearrangement problems calls for algorithms
for counting and sampling in the space of solutions, rather than drawing one arbitrary
scenario. A closed formula exists for counting the number of DCJ scenarios between co-
tailed genomes, but no polynomial result has been published so far for arbitrary genomes.
We prove here that it admits a Fully Polynomial time Randomized Approximation Scheme.
We use an MCMC almost uniform sampler and prove that it converges to the uniform
distribution in fully polynomial time. The MCMC can be used to quickly draw a sample
of DCJ scenarios from a prescribed distribution and test some hypotheses on genome
evolution.

© 2012 Published by Elsevier B.V.

1. Introduction1

The genome rearrangement problem is a class of computational biology question which was first formulated by2

Sturtevant and Novitski [21]. It consists of finding a minimum size scenario of rearrangements which can explain the3

structural differences between twogenomes. According towhat a genomeandwhat a rearrangement is, a number of variants4

have been studied [11], but often the number of minimum solutions is so high that finding one is almost meaningless.5

Evolutionary hypotheses can be tested by drawing scenarios of rearrangements like the Random Breakpoint Model [2,4]6

or the sizes and positions of inversions [1,8]. Drawing conclusions from one scenario only can be misleading as argued by7

Bergeron et al. [4], while the absence of a uniform sampler makes it impossible to state ∧unbiased results.8

Some studies have focused on the enumeration, the structure, or computation of the size of the solution space for some9

rearrangements and small or restricted genomes [19,6,7,18], while statistical methods sample the space when the genomes10

are larger [8,10,14,15,17]. For the Double Cut-and-Join (DCJ) rearrangement, a simple variant of the ‘‘reversal/translocation’’11

model introduced by Yancopoulos et al. [23], a linear time algorithm gives one scenario [3], and it is possible to count their12

number in polynomial time if the genomes share the same telomeres [7,18]. Braga and Stoye [7] give an algorithm for the13

general case which runs in exponential time, and the complexity of the counting problem in the general case is not known.14

In this paper we prove that this problem admits a Fully Polynomial time Randomized Approximation Scheme (FPRAS).15

Thismeans that there is an algorithmwhich is polynomial in the size of the data and in 1/�, which gives an �-approximation16

of the number of solutions. We use for this a Markov chain Monte Carlo (MCMC) sampler, which samples the DCJ scenarios17

with a distribution converging to the uniform distribution in polynomial time.18

The paper is organized as follows. The first section gives the definition of genomes, DCJ, scenarios, and the basic objects19

wewill work on. Then in Section 3, we reduce the problem to pairs of genomes without common telomeres (the hard part),20
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Fig. 1. An example of two genomes with 7 markers.

and show that it is equivalent in complexity to the general case. In Section 4, we prove some partial results on counting the 1

number of DCJ scenarios. Then in Section 5, we describe the MCMC sampler and eventually prove its fast convergence with 2

multicommodity flow techniques in Section 6. 3

2. Preliminaries 4

2.1. Genomes and rearrangements 5

Definition 1. A genome is a directed, ∧edge-labelled graph, in which each vertex has total degree (indegree plus outdegree) 6

1 or 2, and each label is unique. Each edge is called a marker. The beginning of an edge is called its tail and the end of an 7

edge is called its head; the joint name of heads and tails is extremities. Vertices with total degree 2 are called adjacencies, and 8

vertices with total degree 1 are called telomeres. 9

By definition a genome is a set of disjoint paths and cycles, and neither the paths nor the cycles are necessarily directed. 10

The components of the genome are the chromosomes. An example of a genome is drawn in Fig. 1. All adjacencies correspond 11

to an unordered set of two marker extremities and telomeres to one marker extremity. For example, the (h1, t4) describes 12

the vertex of genome 2 in Fig. 1 in which the head of marker 1 and the tail of marker 4 meet, and similarly, (h7) is the 13

telomere where marker 7 ends. A genome is fully described by a list of such descriptions of adjacencies and telomeres. Two 14

genomes with the same edge label set are co-tailed if they have the same telomeres. It is the case for the two genomes of 15

Fig. 1. 16

Definition 2. A DCJ or ∧Double Cut and ∧Join operation transforms one genome into another by modifying the adjacencies and 17

telomeres in one of the following 4 ways: 18

• Take two adjacencies (a, b) and (c, d) and create two new adjacencies (a, c) and (b, d). The adjacency descriptors are not 19

ordered: namely, the two new adjacencies might instead be (a, d) and (b, c). 20

• Take an adjacency (a, b) and a telomere (c), and create a new adjacency and a new telomere from the 3 extremities: 21

either (a, c) and (b) or (b, c) and (a). 22

• Take two telomeres (a) and (b), and create a new adjacency (a, b). 23

• Take an adjacency (a, b) and create two new telomeres (a) and (b). 24

Given two genomes G1 and G2 with the same label set, it is always possible to transform one into the other by a sequence 25

of DCJ operations [23]. Such a sequence is called a DCJ scenario for G1 and G2. The minimum length of a scenario is called the 26

DCJ distance and is denoted by dDCJ(G1,G2). 27

Definition 3. The Most Parsimonious DCJ (MPDCJ) scenario problem for two genomes G1 and G2 is to compute dDCJ(G1,G2). 28

The #MPDCJ problem asks for the number of scenarios of length dDCJ(G1,G2), denoted by #MPDCJ(G1,G2). 29

For example, the DCJ distance between the two genomes of Fig. 1 is three and there are nine different most parsimonious 30

scenarios. 31

MPDCJ is an optimization problem, which has a natural corresponding decision problem asking if there is a scenario with 32

a given number of DCJ operations. So we may write that #MPDCJ ∈ #P, which means that #MPDCJ asks for the number of 33

witnesses of the decision problem ‘‘Is there a scenario for G1 and G2 of size dDCJ(G1,G2) ?’’. 34

We will use complexity classes in #P. FP is the class of problems in #P which have a polynomial solution. A problem in 35

#P is #P-complete if it is in #P and any problem in #P can be reduced to it by a polynomial-time counting reduction. Two 36

other classes, FPRAS and FPAUS, concern the approximability of the solutions. 37
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Definition 4. A counting problem in#P is in FPRAS if there exists a randomized algorithm such that for any problem instance1

x, and �, δ > 0, it generates an approximation f̂ for the number of solutions f , satisfying2

P
�

f
1 + �

≤ f̂ ≤ f (1 + �)

�
≥ 1 − δ (1)3

and the algorithm has time complexity bounded by a polynomial in |x|, 1/� and − log(δ).4

The variational distance between two discrete distributions p and q over a set X is defined as5

dTV (p, q) := 1
2

�

x∈X

|p(x) − q(x)|. (2)6

Definition 5. A counting problem in#P is in FPAUS if there exists a randomized algorithmsuch that for any problem instance7

x, and � > 0, it generates a random witness of the corresponding decision question following a distribution p satisfying8

dTV (p,U) ≤ � (3)9

where U is the uniform distribution over the space of witnesses, and the algorithm has a time complexity bounded by a10

polynomial in |x|, and − log(�).11

2.2. Finding one solution is easy12

Definition 6. The adjacency graph G(V1 ∪ V2, E) of two genomes G1 and G2 with the same edge label set is a bipartite13

multigraph with V1 the set of adjacencies and telomeres of G1, V2 the set of adjacencies and telomeres of G2. The number of14

edges between u ∈ V1 and v ∈ V2 is the number of extremities they share.15

Each vertex of the adjacency graph has either degree 1 or 2, and thus, the adjacency graph falls into disjoint cycles and16

paths. The paths might belong to one of three types:17

• odd path, containing an odd number of edges and an even number of vertices,18

• even path with two endpoints in V1: we will call themW -shaped paths,19

• even path with two endpoints in V2: we will call themM-shaped paths.20

In addition, cycles with two edges and paths with one edge are called trivial components.21

Theorem 7 (Yancopoulos et al. [23]; Bergeron et al. [3]).22

dDCJ(G1,G2) = N −
�
C + I

2

�
(4)23

where N is the number of markers, C is the number of cycles in the adjacency graph of G1 and G2, and I is the number of odd paths24

in the adjacency graph of G1 and G2.25

Since calculating C and I is easy, MPDCJ is clearly in P and has a linear running time algorithm. Bergeron et al. [3] also26

give a linear time algorithm to find one scenario of length dDCJ(G1,G2).27

A DCJ operation on a genome G1 which decreases the DCJ distance to a genome G2 is called a sorting DCJ for G1 and G2. It28

is possible to characterize the effect of a sorting DCJ on the adjacency graph of genomes G1 and G2. It acts on the vertex set29

V1 and has one of the following effects [7]:30

• splitting a cycle into two cycles,31

• splitting an odd path into a cycle and an odd path,32

• splitting anM-shaped path into a cycle and anM-shaped path,33

• splitting anM-shaped path into two odd paths,34

• splitting aW -shaped path into a cycle and aW -shaped path,35

• merging the two ends of aW -shaped path, thus transforming it into a cycle,36

• combining anM-shaped and aW -shaped path into two odd paths.37

Note that trivial components are never affected by these operations, and all but the last type of DCJ operations act on38

a single component of the adjacency graph. The last type of DCJ acts on two components, which are M and W -shaped39

paths.40

In this context, sorting a component involving adjacencies A on G2 means applying a sequence of sorting DCJ operations41

to vertices of this component so that the resulting adjacency graph has only trivial components involving the adjacencies of42

A. In a minimum length DCJ scenario, every component is sorted independently, except M and W -shaped paths, which can
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be sorted together. If in a DCJ scenario one operation acts on both an M and a W -shaped path, we say that they are sorted 1

jointly; otherwise we say that they are sorted independently. 2

3. Decomposing the #MPDCJ problem 3

The complexity status of #MPDCJ is not known. It is solvable in polynomial time when the genomes are co-tailed 4

[7,18], or more generally in the absence ofM andW -shaped paths. So the hard part is dealing withM andW -shaped paths. 5

We show here that for the general case, we may restrict ourselves to this hard part, and suppose that there are only M and 6

W -shaped paths in the adjacency graph. 7

Given two genomes G1 and G2 with the same label set, let AG be the adjacency graph of G1 and G2. Denote by G∗
1 the 8

genome which has the adjacencies and telomeres of G1 whenever they are implied in an M or W -shaped paths of AG, and 9

those of G2 when they are implied in another component of AG. By definition the adjacency graph between G1 and G∗
1 has no 10

M and W -shaped paths, while the adjacency graph between G∗
1 and G2 has only trivial components and M and W -shaped 11

paths. 12

Lemma 8. dDCJ(G1,G2) = dDCJ(G1,G∗
1) + dDCJ(G∗

1,G2). 13

Proof. Recall the characterization of the effect of DCJ operations on the adjacency graph implies that in a minimum length 14

DCJ scenario between G1 and G2, a DCJ operation never acts on two vertices involved in different components of AG, except 15

if these two components areM andW -shaped paths. This implies that the DCJ operations of a minimum length scenario are 16

of two kinds: those which act on the vertices involved inM andW -shaped paths, and the others. 17

The subsequence of DCJ operations of the first kind transforms G1 into G∗
1, and the complementary subsequence 18

transforms G∗
1 into G2. This proves the lemma. � 19

Definition 9. The #MPDCJMW problem asks for the number of DCJ scenarios between two genomes when their adjacency 20

graph contains only trivial components andM and W -shaped paths. 21

The correspondence between solutions for #MPDCJMW and #MPDCJ is stated by the following lemma. 22

Lemma 10. 23

#MPDCJ(G1,G2) = dDCJ(G1,G2)!
dDCJ(G∗

1,G2)!
�

i(ci − 1)! �j(lj − 1)! ×
�

i

cci−2
i

�

j

llj−2
j × #MPDCJMW (G∗

1,G2) (5) 24

where i indexes the cycles of the adjacency graph of G1 and G2, ci denotes the number of vertices in vertex set V1 belonging to the 25

ith cycle, j indexes the odd paths of the adjacency graph, lj is the number of vertices in vertex set V1 belonging to the jth odd path. 26

Proof. As M and W -shaped paths and other components are always treated independently, we have 27

#MPDCJ(G1,G2) =
�
dDCJ(G1,G2)

dDCJ(G∗
1,G2)

�
× #MPDCJ(G1,G∗

1) × #MPDCJMW (G∗
1,G2). 28

For the genomesG1 andG∗
1, whose adjacency graph do not containM andW -shaped paths, we have fromBraga and Stoye 29

[7] and Ouangraoua and Bergeron [18] that 30

#MPDCJ(G1,G∗
1) =

�

i

cci−2
i

�

j

llj−2
j × dDCJ(G1,G∗

1)!�
i(ci − 1)! �j(lj − 1)! . 31

These two equations together with Lemma 8 give the result. � 32

The following theorem says that the hardness of the #MPDCJ problem is the same as the #MPDCJMW problem. 33

Theorem 11. 34

#MPDCJMW ∈ FP ⇐⇒ #MPDCJ ∈ FP (6) 35

#MPDCJMW ∈ #P-complete ⇐⇒ #MPDCJ ∈ #P-complete (7) 36

#MPDCJMW ∈ FPRAS ⇐⇒ #MPDCJ ∈ FPRAS (8) 37

#MPDCJMW ∈ FPAUS ⇐⇒ #MPDCJ. ∈ FPAUS (9) 38

Proof. Both the multinomial factor and the two products in Eq. (5) can be calculated in polynomial time. Thus the 39

transformation between the solutions to the two different counting problems is a single multiplication or division by an 40

exactly calculated number. This proves that #MPDCJMW is in FP if and only if #MPDCJ is in FP, as well as #MPDCJMW is in 41

#P-complete if and only if #MPDCJ is in #P-complete. 42

Such a ∧multiplication and division keeps the relative error when the solution of one of the problems is approximated. 43

This proves that #MPDCJMW is in FPRAS if and only if #MPDCJ is in FPRAS. 44
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Concerning the last equivalence, the ⇐ part is trivial because #MPDCJMW is a particular case of #MPDCJ. Now we prove1

that #MPDCJMW ∈ FPAUS ⇒ #MPDCJ ∈ FPAUS. Suppose an FPAUS exists for #MPDCJMW , and let G1 and G2 be two arbitrary2

genomes. The following algorithm gives a FPAUS for #MPDCJ.3

• Draw a DCJ scenario between G∗
1 and G2 following a distribution p satisfying4

dTV (p,U) ≤ �5

where U is the uniform distribution over all possible most parsimonious DCJ scenarios between G∗
1 and G2.6

• Generate a DCJ scenario between G1 and G∗
1, following the uniform distribution. This scenario can be sampled sharply7

uniformly in polynomial time: (1) there are only cycles and odd paths in the adjacency graph of G1 and G∗
1, so the8

number of scenarios can be calculated in polynomial time; (2) there is a polynomial number of sorting DCJ steps on9

each component, and a sorting DCJ operation results in an adjacency graph that also only has cycles and odd paths.10

• Draw a sequence of 0s and 1s, containing dDCJ(G∗
1,G2) 1s and dDCJ(G1,G∗

1) 0s, uniformly from all
�dDCJ(G1,G2)
dDCJ(G∗

1,G2)

�
such11

sequences.12

• Merge the two paths ∧constructed at the two first steps, according to the drawn sequence of 0s and 1s.13

Note that the DCJ scenario obtained transformsG1 intoG2. Let us denote the distribution of paths generated by this algorithm14

by p�, and the uniformdistribution over all possible DCJ scenarios betweenG1 andG2 byU �. LetXs denote the set of all possible15

scenarios drawn by the above algorithm using a specific scenario s between G∗
1 and G2. Then16

�

s�∈Xs

|p�(s�) − U �(s�)| = |p(s) − U(s)|. (10)17

Using Eq. (10) we get that18

dTV (p�,U �) = 1
2

�

s

�

s�∈Xs

|p�(s�) − U �(s�)| = 1
2

�

s
|p(s) − U(s)| = dTV (p,U). (11)19

This proves that the above algorithm is an FPAUS for #MPDCJ, proving the left-to-right direction in Eq. (9). �20

We will show that #MPDCJMW is in FPAUS, thus #MPDCJ is in FPAUS. As MPDCJ is a self-reducible problem (there is a21

polynomial time reduction of the decision problem to the search problem), the FPAUS implies the existence of an FPRAS22

[13]. The FPAUS algorithm for #MPDCJMW will be defined via a rapidly mixing Markov chain. And first, we have to recall or23

prove some properties on the number of independent and joint sortings ofM and W -shaped paths.24

4. Independent and joint sorting ofM and W -shaped paths25

Our goal is to show that the number of DCJ scenarios in which an M and a W -shaped path are sorted independently is26

a significant fraction of the total number of scenarios sorting these M and W -shaped paths (independently or jointly). We27

build on the following results by Braga and Stoye [7].28

Theorem 12 (Braga and Stoye [7]). • The number of minimum length DCJ scenarios sorting a cycle with k > 1 vertices in G129

is kk−2.30

• The number of minimum length DCJ scenarios sorting an odd path with k > 1 vertices in G1 is kk−2.31

• The number of minimum length DCJ scenarios sorting a W-shaped path with k > 1 vertices in G1 is kk−2.32

• The number of minimum length DCJ scenarios sorting an M-shaped path with k > 0 vertices in G1 is (k + 1)k−1.33

Theorem 13. The number of DCJ scenarios that independently sort a W and an M-shaped path is
�k1+k2−1

k1−1

�
kk1−2
1 (k2 + 1)k2−1

34

where k1 and k2 are the number of vertices of G1 in the W and M-shaped paths, respectively.35

Proof. It is a consequence of the previous theorem. The W -shaped path is sorted in k1 − 1 operations, and the M-shaped36

path is sorted in k2 operations. Thus there are
�k1+k2−1

k1−1

�
ways to merge two scenarios. �37

Theorem 14. The number of DCJ scenarios that jointly sort a W and an M-shaped path is less than 2(k1 + k2)k1+k2−2, where k138

and k2 are the number of vertices of G1 in the W and M-shaped paths, respectively.39

Proof. Let tW1 and tW2 be the two telomeres of the W -shaped path, and tM1 and tM2 be the two telomeres of the M-shaped40

path. Let G�
1 and G�

2 be constructed from genomes G1 and G2 by adding a gene g , with extremities gh and gt , and replacing41

the telomeres of G1 by adjacencies (tW1 , gt), (tW2 , gh) and the telomeres of G2 by adjacencies (tM1 , gt), (tM2 , gh). In addition42

let G��
1 and G��

2 be constructed from G1 and G2 also by adding a gene g , and replacing the telomeres of G1 by adjacencies43

(tW1 , gt), (tW2 , gh) and the telomeres of G2 by adjacencies (tM1 , gh), (tM2 , gt). In both cases the M and W -shaped paths in G144

and G2 are transformed into a cycle with k1 + k2 adjacencies in both genomes. Call the cycles C � for the first case, and C �� for45

the second.46
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We prove that any scenario that jointly sort the W and M-shaped paths has a corresponding distinct scenario either 1

sorting the cycle C � or sorting the cycle C ��. This proves the theorem, because there are (k1 + k2)k1+k2−2 scenarios sorting 2

each cycle. 3

A scenario jointly sorting the M and W -shaped paths can be cut into two parts: the first contains DCJ operations which 4

act only on the M or only on the W -shaped path; the second part starts with a DCJ operation transforming an M and a 5

W -shaped path into two odd paths, and continues with operations independently sorting the two odd paths. 6

In the first part, either a DCJ operation acts on two adjacencies of the M or W -shaped path, and the corresponding 7

operation acts on the same two adjacencies on C � or C ��, or it acts on an adjacency and a telomere of the W -shaped path, 8

and the corresponding operation acts on two adjacencies of C � or C ��, one of them containing an extremity of g . So there is a 9

∧correspondence between being a telomere in theW -shaped path, and being adjacent to an extremity of g in C � or C ��. 10

Now the corresponding operation of the DCJ transforming the two paths into two odd paths has to create two cycles from 11

C � or C ��. Choose C � or C �� so that it is the case. Now sorting an odd path exactly corresponds to sorting a cycle, by replacing 12

being a telomere in the path by being adjacent to an extremity of g in the cycle. 13

So two different scenarios jointly sorting theM andW -shaped paths correspond to two different scenarios sorting either 14

C � or C ��. Then the number of scenarios jointly sorting theM andW -shaped paths is less than 2(k1 + k2)k1+k2−2. � 15

Theorem 15. Let T (k1, k2) denote the number of DCJ scenarios jointly sorting a W and an M-shaped path with respectively k1 16

and k2 vertices G1. Let I(k1, k2) denote the number scenarios independently sorting the same paths. We have that 17

T (k1, k2)
I(k1, k2)

= O
�

k1.51 k1.52

(k1 + k2)1.5

�
(12) 18

I(k1, k2)
T (k1, k2)

= O (k1 + k2) . (13) 19

Proof. To prove Eq. (12) it is sufficient to show that 20

2(k1 + k2)k1+k2−2

�k1+k2−1
k1−1

�
kk1−2
1 (k2 + 1)k2−1

= O
�

k1.51 k1.52

(k1 + k2)0.5

�
. (14) 21

Using Stirling’s formula, we get on the left hand side of Eq. (14) 22

2
√
2π(k1 − 1)

�
k1−1

e

�k1−1 √
2π(k2)

�
k2
e

�k2
(k1 + k2)k1+k2−2

√
2π(k1 + k2 − 1)

�
k1+k2−1

e

�k1+k2−1
kk1−2
1 (k2 + 1)k2−1

(15) 23

After simplifications and algebraic rearrangement, we get 24

2

�
2π(k1 − 1)k2
k1 + k2 − 1

�
k1 + k2

k1 + k2 − 1

�k1+k2−1 �
k1 − 1
k1

�k1−1 �
k2

k2 + 1

�k2 �
k1(k2 + 1)
k1 + k2

�
. (16) 25

from which Eq. (14) follows with applying (1 + 1/n)n tends to e, and (1 − 1/n)n tends to 1/e. 26

To prove Eq. (13) consider the subset of DCJ scenarios jointly sorting the W and M-shaped paths, and starting with a 27

DCJ operation which acts on a telomere of the W -shaped path, and on an adjacency which is link with a telomere of the 28

M-shaped path. The result is two odd paths with respectively k1 and k2 adjacencies and telomeres in G1. They can be sorted 29

in respectively k1 −1 and k2 −1 steps, in kk1−2
1 and kk2−2

2 different ways. Since we can combine any two particular solutions 30

in
�k1+k2−2

k1−1

�
ways, I(k1,k2)

T (k1,k2)
is bounded by 31

�k1+k2−1
k1−1

�
kk1−2
1 (k2 + 1)k2−1

�k1+k2−2
k1−1

�
kk1−2
1 kk2−2

2

. (17) 32

After minor algebraic simplification, this expression is equal to 33

k1 + k2 + 1
k2

�
1 + 1

k2

�k2−1

k2, (18) 34

which is clearly O(k1 + k2). � 35
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5. The Markov chain on DCJ scenarios1

Assume that there are n W -shaped paths andmM-shaped paths, and consider the complete bipartite graph Kn,m. Let M2

be a matching of Kn,m, which might range from the empty graph up to any maximum matching. A DCJ scenario is said to3

be M-compatible when an M-shaped and a W -shaped path are sorted jointly if and only if they are connected by an edge4

of M.5

We denote by {Pi}i set of degree 0 vertices in M, and by {MiWi}i the set of edges in M. Let l(Pi) be the minimum length6

of a DCJ scenario independently sorting Pi, and l(MiWi) be the minimum length of a DCJ scenario jointly sorting Mi and Wi.7

We can calculate N(Mi,Wi), the number of joint sortings ofMi andWi, in polynomial time [7]. Denote by N(Pi) the number8

of independent sortings of a path Pi. The number of M-compatible scenarios is9

f (M) =
�

(
�

i l(MiWi) + �
i l(Pi))!

l(Mi,Wi)!, . . . , l(Pi)!

�
ΠiN(Mi,Wi)ΠiN(Pi),10

and we can compute it in polynomial time. Define a distribution θ over the set of all matchings of the complete bipartite11

graph Kn,m as12

θ(M) ∝ f (M) (19)13

We first show that sampling DCJ scenarios from the uniform distribution is equivalent to sampling matchings of Kn,m14

from the distribution θ .15

Theorem 16. Let a distribution q over the scenarios of n W-shaped paths and m M-shaped paths be defined by the following16

algorithm.17

• Draw a random matching M of Kn,m following a distribution p.18

• Draw a random M-compatible DCJ scenario from the uniform distribution of all M-compatible ones.19

Then20

dTV (p, θ) = dTV (q,U) (20)21

where θ is the distribution defined in Eq. (19), and U denotes the uniform distribution over all DCJ scenarios.22

Proof.23

dTV (q,U) = 1
2

�

x scenario

|q(x) − U(x)|.24

Wemay decompose this sum into25

1
2

�

(M matching of Kn,m)

�

(x M−compatible scenario)

|q(x) − U(x)|26

�
(x M−compatible scenario) q(x) is p(M) since x is drawn uniformly among the scenarios compatible with M, and27 �
(x M−compatible scenario) U(x) is θ(M). Furthermore, both q(x) and U(x) are constant for a particular matching M, thus28

1
2

�

(M matching of Kn,m)

�

(x M−compatible scenario)

|q(x) − U(x)| = 1
2

�

(M matching of Kn,m)

|p(M) − θ(M)| = dTV (p, θ) (21)29

yielding the result. �30

Sowe are going to define anMCMC onmatchings of Kn,m converging to θ . The rapid convergence of this MCMCwill imply31

that #MPDCJWM admits an FPAUS, and hence #MPDCJ ∈ FPAUS, and then #MPDCJ ∈ FPRAS. The primerMarkov chain walks32

on the matchings of Kn,m and is defined by the following steps: suppose the current state is a matching M, and33

• with probability 1/2, the next state of the Markov chain is the current state M;34

• with probability 1/2, draw a random i ∼ U[1, n] and j ∼ U[1,m]; if ij ∈ M, then remove ij from M ; else if degM(i) = 035

and degM( j) = 0, then add ij to M.36

It is easy to see that thisMarkov chain is irreducible and aperiodic.We apply the standard∧Metropolis–Hastings algorithm37

on this chain [16], namely, when we are in state M, we propose the next state Mnew according to the primer Markov chain,38

and accept the proposal with probability39

min
�
1,

f (Mnew)

f (M)

�
. (22)40

The obtained Markov chain is reversible and converges to the distribution θ defined in Eq. (19). Furthermore, this is a41

lazy Markov chain (due to remaining in the current state with at least probability 1/2 in each step), providing that all its42

eigenvalues are positive real numbers (see for example [22]).43
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An important property of this Markov chain is that 1

Observation 17. The non zero transition probabilities as well as their inverses are polynomially bounded. 2

Indeed, the transition probability from M to Mnew , if non zero, is at least 3

1
2 × n × m

f (Mnew)

f (M)
. 4

M and Mnew vary by at most one edge MiWi, and on this edge, according to Theorem 15, the ratio of number of scenarios 5

jointly and independently sorting Mi and Wi is polynomial. Furthermore, the combinatorial factors appearing in f (M) and 6

f (Mnew) due to merging the sorting steps on different components are the same. So f (Mnew)
f (M)

as well as its inverse are 7

polynomially bounded. 8

We now prove the rapid convergence of this Markov chain using a Multicommodity flow technique. 9

6. Fast convergence of the MCMC 10

In this section, we prove that the constructed Markov chain rapidly converges to its stationary distribution. From its 11

construction, this distribution is θ as defined in Eq. (19). For this, we use the Multicommodity flow technique ∧developed by 12

Sinclair [20]. We denote by T (·|·) the transition probabilities of the Markov chain. 13

The Markov graph G(V , E) of our Markov chain on matchings is a directed graph whose vertices are the states of the 14

Markov chain, and there is an arc between two states u and v if there is a transition from u to v. We define the load of an arc 15

e = (u, v) as 16

Q (e) := T (u|v)θ(u). (23) 17

A path system Γ in a Markov graph is a set of distributions of paths for each ordered pair (x, y), x, y ∈ V . We will denote 18

the distribution of paths defined for (x, y) by Γx,y, and then 19

Γ := ∪(x,y)∈V×VΓx,y. (24) 20

Let p(x,y)(γ ) denote the probability of a path γ in the distribution Γx,y of a path system Γ . 21

Let 22

κΓ := max
e=(u,v)∈E

�

(x,y)∈V×V

�

γ∈Γ(x,y):e∈γ

θ(x)θ(y)px,y(γ )
|γ |
Q (e)

(25) 23

Theorem 18 (Sinclair [20]). For any path system Γ , 24

1
1 − λ2

≤ κΓ , (26) 25

where λ2 is the second eigenvalue of the transition matrix of the Markov chain. 26

This yields that if κΓ is bounded by a polynomial in the size of the data, then the Markov chain can be used for an FPAUS, 27

based on the following theorem. 28

Let pni denote the distribution of an irreducible, aperiodic, reversible Markov chain after n steps starting at a particular 29

state i, and θ its equilibrium distribution. Let the relaxation time be defined as 30

τi(�) := min
�
n0 ∈ N : dTV (pni , θ) ≤ � ∀n ≥ n0

�
. (27) 31

Theorem 19. [9] 32

τi(�) ≤ 1
1 − ρ

(log(1/θ(i)) + log(1/�)) (28) 33

where ρ is the second largest eigenvalue modulus, i.e., the maximum of the second largest eigenvalue and the absolute value of 34

the smallest eigenvalue (a reversible Markov chain has only real eigenvalues). 35

So to prove that the Markov chain we defined on bipartite matchings has a polynomial ∧relaxation time, we need to 36

construct a path system Γ on the set of matchings of Kn,m, such that κΓ is bounded by a polynomial in N , the number of 37

markers in G1 and G2. 38

In our case the path system between two matchings X and Y is a unique path with probability 1. Here is how we 39

construct it. 40

Fix a total order on the vertex set of Kn,m. Take the symmetric difference ofX andY, denoted byX∆Y. It is a set of disjoint 41

paths and cycles. Define an order on the components of X∆Y, such that a component C is smaller than a component D if 42

the smallest vertex in C is smaller than the smallest vertex in D. Now we orient each component in the following way: the 43

beginning of each path is its extremity with the smaller vertex. The starting vertex of a cycle is its smallest vertex, and the 44

direction is going towards its smaller neighbour. 45
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We transform X to Y by visiting the components of X∆Y in increasing order. Let the current component be C , and the1

current matching is Z (at first Z = X). If C is a path or cycle starting with an edge in X, then the transformation steps are2

the following: delete the first edge of C from Z, delete the third edge of C from Z, add the second edge of C to Z, delete the3

5th edge of C from Z, add the 4th edge of C to Z, etc.4

If C is a path or cycle starting with an edge in Y, then the transformation steps are the following: delete the second edge5

of C from Z, add the first edge of C to Z, delete the 4th edge of C from Z, add the third edge of C to Z, etc.6

This path has length at most nm, and κΓ can be written:7

κΓ ≤ nm max
e=(u,v)∈E

�

(x,y)∈V×V :e∈Γx,y

θ(x)θ(y)
Q (e)

.8

By Observation 17, the inverse of the transition probabilities is bounded by a polynomial in N , so we get Q29

κΓ ≤ O(poly(N)) max
e=(u,v)∈E

�

(x,y)∈V×V :e∈Γx,y

θ(x)θ(y)
θ(u)

. (29)10

We then have to show that
� θ(x)θ(y)

θ(u) can be bounded by a polynomial in N . Let Z → Z� be an edge on the path from X11

to Y. We define12

�M := X∆Y∆Z. (30)13

Lemma 20. The couple �M and Z → Z� determines X and Y.14

Proof. It is obvious that15

�M∆Z = X∆Y (31)16

hence, Z and �M determine the symmetric difference of X and Y. From the transition Z → Z�, we can trace back which17

transition steps have been alreadymade in the followingway. The order of the components ofX∆Y is determined, and from18

the transition Z → Z� we know the current component. We also know the beginning and the direction of the component,19

be it either a path or a cycle, hence, we know which edges have been changed in the component so far, and which ones not20

yet. From these, we can reconstruct X and Y. �21

Lemma 21. A matching can be obtained from �M by deleting at most two edges.22

Proof. On each component inX∆Y, we delete at most two edges before putting back one. Hence �M contains at most either23

4 consecutive edges along a path or 2 pair of edges, and all remaining edges are independent. Therefore it is sufficient to24

delete at most two edges from �M to get a matching. �25

Denote this matching by �M.26

Lemma 22.27

θ(X)θ(Y)

θ(Z)
= O(poly(N))θ( �M). (32)28

Proof. We prove that29

f (X)f (Y)

f (Z)f ( �M)
= O(poly(N)). (33)30

It proves the lemma, as θ(·) and f (·) differ only by a normalizing constant. �M∆Z differs at most in two edges from X∆Y.31

These edges appear in X∆Y, but not in �M∆Z. The two vertices of any missing edges correspond to components which are32

independently sorted either in Z or �M, but jointly in either X or Y. Amongst these two vertices, one of them correspond to33

a W -shaped component A, the other to an M-shaped component B. Let k1 be the number of adjacencies and telomeres of34

G1 in A, and k2 the number of adjacencies and telomeres of G1 in B. The ratio on the left-hand side of Eq. (33) due to such35

difference is36

T (k1, k2)
(k1 + k2 + 1)!

� I(k1)I �(k2)
k1!(k2 + 1)! (34)37

where I(x) denotes the independent sorting of aW -shaped component of size x, and I �(x) denotes the independent sorting38

of anM-shaped component of size x. However, it is polynomially bounded, since39

I(k1)I �(k2)�k1+k2+1
k1

� = I(k1, k2) (35)40

and we can apply Theorem 15. �41
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These results together lead to the following theorem: 1

Theorem 23. The ∧Metropolis–Hastings Markov chain on the matchings defined above converges rapidly to θ . 2

Proof. From Lemma 22, Eq. (29) may be written 3

κΓ ≤ O(poly(N)) max
e=(u,v)∈E

�

(x,y)∈V×V :e∈Γx,y

θ( �M). 4

By Lemmas 20 and 21, a matching �M may appear only a polynomial number of times in this sum. So 5

κΓ ≤ O(poly(N))
�

�M

θ( �M), 6

and as
�

�M θ( �M) = 1, κΓ is bounded by a polynomial in N . This proves the theorem. � 7

Using this result, we can prove the following theorem 8

Theorem 24. #MPDCJMW ∈ FPAUS 9

Proof. The above defined Markov chain on partial matchings is an aperiodic, irreducible and reversible Markov chain, with 10

only positive eigenvalues. Furthermore, a step can be performed in running time ∧polynomial with the size of the graph. For 11

any start state i, log(1/θ(i)) is polynomially bounded with the size of the corresponding genomes G∗
1 and G2, since there 12

are O(N2) DCJ operations, the length of the DCJ paths is less than N , thus the number of sorting DCJ paths are O(N2N), and 13

the inverse of the probability of any partial matching is less than this. Thus, the relaxation time is polynomial in both N and 14

log(1/�), according to Theorem 19. This means that in fully polynomial running time (polynomial both in N and − log(�)) 15

a random partial matching can be generated from a distribution p satisfying 16

dTV (p, θ) ≤ �. (36) 17

But then a random DCJ path can be generated in fully polynomial running time following a distribution q satisfying 18

dTV (q,U) ≤ � (37) 19

according to Theorem 16. This is what we wanted to prove. � 20

Now we are ready to conclude by our main theorem: 21

Theorem 25. #MPDCJ ∈ FPRAS 22

Proof. #MPDCJMW ∈ FPAUS according to Theorem 24. Then #MPDCJ ∈ FPAUS according to Theorem 11. Since #MPDCJ is a 23

self-reducible counting problem, it is in FPRAS [13]. � 24

7. Conclusion 25

Sampling from reversal scenarios has been conjectured to be #P-complete [17], but almost all counting problems on 26

genome rearrangement scenarios have an open complexity status (the only exception we are aware of is counting tandem 27

duplication and random loss scenarios, which is equivalent to counting the number of riffle shuffles of a deck of card [5], and 28

is given a solution in [12]).We conjecture that sampling fromDCJ scenarios is also #P-complete, andwe proved in this paper 29

that it admits an FPRAS. Braga and Stoye [7] prove that altering three consecutive steps in a DCJ sorting path is sufficient 30

to get an irreducible Markov chain. Such a Markov chain can be also used in a ∧Metropolis–Hastings algorithm to converge 31

to the uniform distribution of all DCJ sorting scenarios. We conjecture that it is also a rapidly mixing Markov chain, which 32

would give a more direct proof of the results in this paper. 33

This complexity result allows the device of theoretically grounded samplers in the space of genome rearrangements, 34

such as the one used in [17]. Its efficiency makes it practical to use in rigorous studies of modes of evolution in eukaryotes. 35

Miklós and Tannier [17] use the Braga and Stoye [7] sampler altering three consecutive DCJs in a scenario to sample among 36

the DCJ scenario space. By a parallel tempering technique, Miklós and Tannier [17] also sample in reversal and translocation 37

scenarios,which are a subset of DCJ scenarios, and apply themethod onmammalian and yeast data. It is thus a bioinformatics 38

application using the sampling of genome rearrangement scenarios, in which we compute the rates of different kinds of 39

rearrangements. This result, as well as a rigorous breakpoint re-use computation [4], is inaccessible without methods to 40

sample in the space of scenarios. So the next open problems for the combinatorics of genome rearrangements, which take 41

a very small place in the first exhaustive review of the field [11], will probably be related to dealing with the entire solution 42

space instead of only one representative. 43
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